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Abstract: This paper deals with power control of a grid connected variable speed wind turbine 

system, based on doubly fed induction generator. In this paper we propose a novel control 

scheme of the rotor side converter, that is based on indirect control of power consist currents 

and powers control loops. The two loops of rotor currents: direct and quadrature component are 

controlled by the technique of the second order sliding mode using the super-twisting 

algorithm in order to eliminate the chattering phenomenon. A fuzzy logic controller is applied 

to the active and to the reactive powers loops exchanged between the stator of the doubly fed 

induction generator and the grid to track the maximum power point. In order to maintain the 

voltage of the DC-link constant of the grid side converter, the classical proportional integral 

controller is used. The proposed control strategy, which combines the second order sliding 

mode and fuzzy logic, is applied to a 1.5 MW three blade wind turbine shows robustness for 

variations in the wind speed. 

 

Keywords: Hybrid control, Second Order Sliding Mode Controller (SOSMC), Fuzzy Logic 

Controller (FLC), Proportional Integral (PI), Wind turbine, Doubly Fed Induction Generator 

(DFIG), Maximum Power Point Tracking (MPPT). 

 

Nomenclature  

𝑃𝑠,𝑄𝑠

 

The stator active and reactive powers. 

 
𝑃𝑠

∗, 𝑄𝑠
∗ The reference values of the stator powers.

 
𝑃𝑟 ,𝑄𝑟

 

The rotor active and reactive powers.

 
𝑅𝑔,𝐿𝑔

 

The grid resistance and inductance.  

GSC The grid side converter. 

RSC

 

The rotor side converter. 

DFIG

 

The doubly fed indication generator. 

SOSMC The second order sliding mode control. 

MPPT The maximum power point tracking.  

FLC The fuzzy logic control. 

PI

 

 The proportional integral.  

𝑃𝑎  The extracted power from the wind. 

𝜎 The leakage factor. 

𝐶𝑃 The power coefficient. 

𝜆 The tip speed ratio. 
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𝛽 The angle of blade. 

𝑃𝑣𝑒𝑛𝑡  The wind power. 

𝜌 The air density. 

𝑉 The wind speed. 

𝑅 The radius of the wind. 

Ω𝑡 The rotor speed of the wind turbine. 

Ω𝑚𝑒𝑐  The mechanical speed of the DFIG. 

Ω𝑚𝑒𝑐
∗  The reference values of the mechanical speed of the DFIG. 

G The gain multiplier. 

𝜆𝑐𝑝𝑚𝑎𝑥   The tip speed ratio max. 

𝐽 The inertia. 

𝑓 The friction coefficient. 

𝑇𝑒𝑚−𝑟𝑒𝑓  The electromagnetic torque. 

𝑉𝑑𝑟 , 𝑉𝑞𝑟  The rotor voltage components. 

𝑖𝑑𝑟 , 𝑖𝑞𝑟  The rotor current components. 

𝑖𝑑𝑟
∗ , 𝑖𝑞𝑟

∗  The reference values of the rotor currents. 

𝜙𝑑𝑟, 𝜙𝑞𝑟 The rotor flux components. 

𝑅𝑟, 𝐿𝑟 The rotor resistance and inductance. 

𝑀 The mutual inductance. 

𝐿𝑠, 𝑅𝑠 The stator resistance and inductance. 

𝜔𝑟, 𝜔𝑠 The stator and the rotor pulsation. 

𝜙𝑑𝑠,𝜙𝑞𝑠 The stator flux components. 

𝑔 The slip. 

𝑣𝑠 The grid voltage. 

𝑉𝑑𝑟 𝑒𝑞,𝑉𝑞𝑟 𝑒𝑞  The equivalent control of the rotor voltage. 

𝑉𝑑𝑟 𝑆𝑇, 𝑉𝑞𝑟 𝑆𝑇 The continuous control. 

𝑒1, 𝑒2 The error of the rotor currents. 

𝑒3, 𝑒4 The error of the active and the reactive powers. 

S The sliding surface. 

 

1. Introduction 

 Much of the wind turbines installed today for electrical power generation are used with 

variable speed wind turbines and are equipped with double fed induction generators (DFIG) as 

shown in Figure 1. 

 And the DFIG has several advantages including variable speed operation in this point there 

are two possible operation modes: sub-synchronous and super-synchronous [1 -3].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The general structure of a double fed wind generator. 

 

 Different schemes and regulators can be used to control the powers converter of the DFIG. 

The proportional integral (PI) controller is one of the most used of regulating the rotor currents 
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and the stator powers generation in the DFIG. In this case, the used system is composed by tow 

stator powers loops and tow currents loops. However, this controller has the same weakness 

such as the uncertainty on some behavior parameters of the generator, turbine and external 

disturbances caused by unpredictable wind speed. 

 To improve dynamic behavior of wind turbine system, and overcome this difficulty, we 

adopt, in this work, the variable structure control strategy exactly, the sliding mode control as a 

control approach.  

 The sliding mode control has received much attention in the field of electrical drives 

control [4 - 8]. In this method, the response of control system depends only on the sliding 

surface. 

 Despite the robustness of this control, the first sliding mode control faces the main problem 

of discontinuous control what inevitably results in a chattering phenomenon [5]. 

 Even, if different methods have been applied out recently to reduce the chattering, few 

papers [9 - 13] present the solution for second order sliding mode control. In these approaches, 

sliding surfaces are chosen so that they will be compatible with the errors in reactive power and 

electromagnetic torque as is described in references [9 - 11], where, the sliding surfaces are 

chosen coinciding with the errors in the stator active and reactive powers as in references [12 - 

13]. 

 The reproach to this approach is that it does not incorporate the rotor currents loops, that is 

why we suggest in this work the use of the control strategy with two stator powers loops and 

two rotor currents loops.  

 In this paper, a second order sliding mode control strategy is applied to the two rotor 

current loops using the super-twisting algorithm technique in order to improve the chattering 

phenomenon and where the active and the reactive powers are controlled using fuzzy logic 

regulators.  

 

2. Wind turbine modeling 

The mechanical power extraction from the wind is given as follow: 

𝑃𝑎 = 𝐶𝑃. 𝑃𝑣𝑒𝑛𝑡 = 𝐶𝑃(𝜆, 𝛽 ).
𝜌.𝜋.𝑅2.𝑉𝑣𝑒𝑛𝑡

3

2
 (1) 

 

Figure 2 shows the variation of theCPwith respect to the given values of the tip speed ratio λ 

and the blade pitch angle β: 

𝐶𝑃 =  0.5 − 0.167. (𝛽 − 2). sin [
𝜋 .( 𝜆 + 0.1 )

( 18.5 − 0.3.𝛽)
] − 0.00184. (𝜆 − 3). (𝛽 − 2) (2) 

where  

𝜆 =
Ω𝑡.𝑅

𝑉𝑣𝑒𝑛𝑡
 (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The turbine characteristic with maximum power point tracking. 
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 The Maximum Power Point Tracking (MPPT) method is applied to the wind turbine, in 

order to generate the maximum electrical power from the wind. the structure of this control 

strategy as shown in Figure 3.  

 To obtain the maximum wind capture and the maximum power output, Figure.2 shows that 

the maximum (CP = 0.5 ) is reached at tip speed ratio(𝜆 = 9) at 𝛽 constant and equal to two 

degrees: (𝛽 = 2°), where the rotor speed ( 𝛺𝑡−𝑟𝑒𝑓) is given by the following formula. 

 

     𝛺𝑡−𝑟𝑒𝑓 =
𝜆(𝐶𝑃 𝑚𝑎𝑥).𝑉𝑣𝑒𝑛𝑡

𝑅
 (4) 

 
Figure 3.  The diagram block of the maximizing power with speed control. 

 

3. Modeling and control of the double fed indication generator  

The generator dynamics model is given by the following system of equations: 

 𝑉𝑑𝑟 =  𝑅𝑟 . 𝑖𝑑𝑟 +
𝑑 𝜙𝑑𝑟

𝑑𝑡
− 𝜔𝑠𝑙 . 𝜙𝑞𝑟 (5) 

 𝑉𝑞𝑟 =  𝑅𝑟 . 𝑖𝑞𝑟 +
𝑑 𝜙𝑞𝑟

𝑑𝑡
− 𝜔𝑠𝑙 . 𝜙𝑑𝑟 

 (6) 

 

where:𝜔𝑠𝑙 = 𝜔𝑠 − 𝜔𝑟  

𝜙𝑑𝑞𝑟 = 𝐿𝑟 . 𝑖𝑑𝑞𝑟 +  𝑀. 𝐿𝑑𝑞𝑠   (7) 

 

By substituting equation (7) into the rotor voltage equations given in (5) and (6), the rotor 

direct current and quadrature current components will be written as: 
   𝑑𝑖𝑑𝑟

𝑑𝑡
 =  𝑔1  −

𝑀

𝐿𝑠 . 𝜎. 𝐿𝑟

𝑑|𝜙𝑠|

𝑑𝑡
+  

1

𝜎. 𝐿𝑟

. 𝑉𝑑𝑟  
  (8) 

 𝑑𝑖𝑞𝑟

𝑑𝑡
 =  𝑔2  +  

1

𝜎. 𝐿𝑟

. 𝑉𝑞𝑟 
  (9) 

 

where: 

𝑔1 =  
𝑅𝑟

𝜎. 𝐿𝑟

. 𝑖𝑑𝑟 + 𝜔𝑠𝑙 . 𝑖𝑞𝑟 
(10) 

 𝑔2 =  
𝑅𝑟

𝜎. 𝐿𝑟

. 𝑖𝑞𝑟 −  𝜔𝑠𝑙 (𝑖𝑑𝑟 +  
𝑀

𝜎. 𝐿𝑠. 𝐿𝑟

. |𝜙𝑠|) 
(11) 

 

The stator active and the reactive powers and the rotor voltages can be written according to the 

rotor currents as: 

𝑃𝑠 = −
𝑣𝑠. 𝑀

𝐿𝑠

. 𝑖𝑞𝑟  
(12) 

𝑄𝑠 =
𝑣𝑆

2

𝜔𝑠. 𝐿𝑠

−
𝑣𝑠. 𝑀

𝐿𝑠

. 𝑖𝑑𝑟  
(13) 

Fatma Zahra TRIA, et al.

714



 
 

 
 

𝑉𝑑𝑟 =  𝑅𝑟 . 𝑖𝑑𝑟 +  𝑠. 𝐿𝑟 . 𝜎. 𝑖𝑑𝑟 − 𝑔. 𝜔𝑠. 𝐿𝑟 . 𝑖𝑞𝑟 . 𝜎 (14) 

𝑉𝑞𝑟 =  𝑅𝑟 . 𝑖𝑞𝑟 +  𝑠. 𝐿𝑟 . 𝜎. 𝑖𝑞𝑟 +  𝑔. 𝜔𝑠𝐿𝑟 . 𝑖𝑑𝑟 . 𝜎 +   
𝑔. 𝑀. 𝑣𝑠

𝐿𝑠

 
(15) 

 

 We note that, in equations (12) and (13), the stator active power depend only on the rotor 

current iqr and the stator reactive power depend only on the rotor current idr. 

 According to equations (12), (13), (14) and (15), we have realized the overall structure of 

the field oriented control of the DFIG, based on an indirect control with tow stator powers 

loops and tow rotor currents loops. Where the two loops (powers and rotor currents) are 

controlled by the traditional PI controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The block diagram of the DFIG control (two power loops and two currents loops) 

using PI controllers. 

 

we note that: 

ℎ1 = 𝑔. 𝜔𝑠. 𝐿𝑟 . 𝜎. 𝑖𝑑𝑟   

ℎ2 = 𝑔. 𝜔𝑠. 𝐿𝑟 . 𝜎. 𝑖𝑞𝑟  

 

4. Hybrid control of the double fed indication generator:  

 In our system, the two loops of the rotor currents (direct and quadrature components) are 

controlled by the technique of the SOSMC. The fuzzy logic controller is applied to the stator 

active and to the reactive powers loops exchanged between the stator of the DFIG and the grid.  

 

A. The Second Order Sliding Mode Design 

A.1 The Sliding Surfaces 

 Our goal is to make the direct and the quadrature components of the rotor currents control 

closer to their reference where we have applied the indirect control of powers. The sliding 

surface is given by: 

 

𝑆 =  [ 𝑆( 𝑖𝑑𝑟)       𝑆 (𝑖𝑞𝑟) ]. 

 

 We define the rotor currents errors, respectively, as follow:e1 = (𝑖𝑑𝑟
∗ –𝑖𝑑𝑟) and e2 = (𝑖𝑞𝑟

∗  – 

𝑖𝑞𝑟), where the idr
*  and iqr

*  are, respectively, the reference values of the direct and the 

quadrature components of the rotor currents. As described in references [11 - 12], the sliding 

mode of the rotor currents surfaces can be used in their integral form:  
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𝑆 (𝑖𝑑𝑟) =  𝑒1 +  𝑐𝑑 ∫ 𝑒1  𝑑𝑡 
(16) 

𝑆 (𝑖𝑞𝑟) =  𝑒2 +  𝑐𝑞 ∫ 𝑒2  𝑑𝑡 
(17) 

 

Where cd and cq are the positive control gains. 

The main condition in the second order sliding mode is achieving the following equality: 
𝑑𝑆 (𝑖𝑑𝑟)

𝑑𝑡
=  

𝑑𝑆 (𝑖𝑞𝑟)

𝑑𝑡
= 0 

  

(18) 

 

The substitution of equation (18) in (16) and in (17) gives of equations: 
𝑑𝑆(𝑖𝑑𝑟)

𝑑𝑡
=  −

𝑑𝑖𝑑𝑟

𝑑𝑡
+ 𝑐𝑑 . 𝑒1 

(19) 

𝑑𝑆(𝑖𝑞𝑟)

𝑑𝑡
=  −

𝑑𝑖𝑞𝑟

𝑑𝑡
+ 𝑐𝑞 . 𝑒2 

(20) 

 

The substitution of equation (8) and (9) into (19) and (20) leads to: 
𝑑𝑆(𝑖𝑑𝑟)

𝑑𝑡
=  𝑔1 −  

𝑀

𝐿𝑟 . 𝐿𝑠. 𝜎

𝑑|𝜙𝑠|

𝑑𝑡
+  

1

𝜎. 𝐿𝑟

. 𝑉𝑑𝑟 + 𝑐𝑑 . 𝑒1 

𝑑𝑆(𝑖𝑞𝑟)

𝑑𝑡
=  𝑔2 + 

1

𝜎. 𝐿𝑟

. 𝑉𝑞𝑟 +  𝑐𝑞 . 𝑒2 

(21) 

 

(22) 

 

Let’s define two functions F1 and F2 as follow: 

𝐹1 =  𝑔1 −  
𝑀

𝐿𝑟 . 𝐿𝑠. 𝜎

𝑑|𝜙𝑠|

𝑑𝑡
+  

1

𝜎. 𝐿𝑟

. 𝑉𝑑𝑟 +  𝑐𝑑 . 𝑒1 
(23) 

𝐹2 =  𝑔2 + 
1

𝜎. 𝐿𝑟

. 𝑉𝑞𝑟 +  𝑐𝑞 . 𝑒2 
(24) 

 

Then, we obtain the following equations systems: 
𝑑𝑆 (𝑖𝑑𝑟)

𝑑𝑡
=  𝐹1 +  

𝑉𝑞𝑟

𝜎. 𝐿𝑟

 
(25) 

𝑑𝑆 (𝑖𝑞𝑟)

𝑑𝑡
=  𝐹2 + 

𝑉𝑑𝑟

𝜎. 𝐿𝑟

 
(26) 

 

The Variable Structure Control Law 

The aim of the use of a SOSMC, is to control the rotor voltage applied to the rotor side 

converter. The rotor controlled voltage may be derived according to the control law: 

𝑉𝑑𝑟 =  𝑉𝑑𝑟 𝑆𝑇 + 𝑉𝑑𝑟 𝑒𝑞  (27) 

𝑉𝑞𝑟 =  𝑉𝑞𝑟 𝑆𝑇 + 𝑉𝑞𝑟 𝑒𝑞  (28) 

 

Equivalent Control 

Gives in equation (25) and (26) can be generalized by the following expression: 
𝑑𝑆 

𝑑𝑡
=  𝐹 + 𝐵. 𝑉𝑟 

(29) 

 

with 

𝐹 =  [𝐹1        𝐹2]T, 𝑉𝒓 =  [𝑉𝑑𝑟       𝑉𝑞𝑟]
𝑇
  and 𝐵 =  

1

𝜎.𝐿𝑟
 

The equivalent control of equations (27) and (28) is given by the substitution of equation (18) 

in (25) and in (26) and are represented as follow: 

[
𝑉𝑑𝑟 𝑒𝑞

𝑉𝑞𝑟 𝑒𝑞
] =  −𝐵−1 [

𝐹1

𝐹2
] 

(30) 
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So the equivalent command takes the following form: 

𝑉𝑑𝑟 𝑒𝑞 =  𝜎. 𝐿𝑟 (−𝑔1 + 
𝑀

𝐿𝑠. 𝜎. 𝐿𝑟

𝑑|𝜙𝑠|

𝑑𝑡
−  𝑐𝑑 . (𝑒1)) 

(31) 

𝑉𝑞𝑟 𝑒𝑞 = −𝜎. 𝐿𝑟 . (𝑔2 + 𝑐𝑞 . (𝑒2)) (32) 

 

The Super-Twisting Algorithm 

The super-twisting algorithm is defined as follow: 

𝑉𝑑𝑟 𝑆𝑇 =  𝛿𝑞|𝑆 (𝑖𝑞𝑟)|
(1

2⁄ )
 𝑠𝑎𝑡 (𝑆 (𝑖𝑞𝑟)) − 𝑤𝑞 ∫ 𝑠𝑎𝑡 (𝑆 (𝑖𝑞𝑟))  𝑑𝑡 

(33) 

𝑉𝑞𝑟 𝑆𝑇 =  𝛿𝑑|𝑆 (𝑖𝑑𝑟)|(1
2⁄ ) 𝑠𝑎𝑡 (𝑆 (𝑖𝑑𝑟)) − 𝑤𝑑 ∫ 𝑠𝑎𝑡 (𝑆 (𝑖𝑑𝑟)) 𝑑𝑡 

(34) 

 

where: 

𝛿𝑑, 𝛿𝑞, 𝑤𝑑 and 𝑤𝑞 are the  positive control gains. 

 

Fuzzy Controller of Active and Reactive Powers 

The active and the reactive powers errors are respectively given by:       e3 ( 𝑃𝑠) = ( 𝑃𝑠
∗ – 𝑃𝑠 ) and 

e4 ( 𝑄𝑠) = ( 𝑄𝑠
∗ – 𝑄𝑠). 

 

 

 

 

  

 

 

 

 
 

         a. The inputs       b. The output 
Figure 5. The membership functions of inputs and output variables. 

 

5. Application 

 The proposed technique of control based on hybrid SOSMC and FLC is applied to a high 

wind energy conversion system use a double fed indication generator. The overall structure of 

this system is shown in Figure 6. 

 The parameters of the adopted double fed indication generator are given in the following 

table.  

Table 1. The machine parameters. 

 

 

Parameters Units Value 

The nominal power  [MW] 1.5 

The stator voltage  [V] 690       

The stator frequency  [Hz] 50          

The number of poles pairs   [ ] 2            

The stator resistance  [Ω] 0.012      

The rotor resistance  [Ω] 0.021     

The stator inductance  [H] 0.0137   

The rotor inductance  [H] 0.0136   

The mutual inductance  [H] 0.0135   

The inertia  [Kg.m²] 1000      

The friction coefficient [N.m.s/rad] 0.0024 
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Figure 6.  The schematic diagram of the proposed SOSMC and FLC for a grid connected to 

a DFIG. 

 

The parameters of the selected wind turbine are given in Table 2 

 

Table 2. The wind turbine parameters. 

 

6. Simulation Results 

  Dynamical performances of the system are obtained when we propose the change of the 

step in wind speed as shown in Figure 7.  

 Simulations realized under Matlab software have been done with the main parameters of 

the DFIG simulation model and are presented in Table I. Table II gives the wind turbine 

parameters.  

 The simulations results are obtained with a stator reactive power equal to zero (Qs = 0 

VAR). 

 The figures below show the simulations results of the system control considered firstly with 

classic PI controllers then with the proposed fuzzy logic and the second order sliding mode 

control technique. 

 The evolution of the quadrature component of rotor current iqr, shown in Figure 8.a, 

reaches its referential value in a negligible response time and equal to 0.001s when compared 

to the 0.4s obtained for the response time with a classic PI controllers given in Figure 8. b. 

Thus, the evolution of iqr is sensitive to the wind speed variations between t = 5s and t = 14s. 

Parameters Units Value  Value 

The tip speed ratio max  𝜆(𝐶𝑃 𝑚𝑎𝑥) [ ] 9
 

The power coefficient 𝐶𝑃 𝑚𝑎𝑥  [ ]
 

0.5 

The radius of the wind [m] 35.25 

The gain multiplier  [ ] 90 

The air density  [kg/m
3
] 1.225 
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  In opposite to that, Figure 8.a, shows well the robustness of the rotor current face to the 

wind speed variations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The wind speed applied to wind turbine 
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b.  In PI controllers case. 

Figure 8. The quadrature component of the rotor currents 

V
 [

m
/s

] 

0 2 4 6 8 10 12 14 16 18
-2500

-2000

-1500

-1000

-500

0

500

14 14.5 15
-2000

-1500

-1000

-500

5 5.5 6 6.5
-2000

-1000

0

i q
r[

A
] 

0 0.2 0.4 0.6
-1000

-500

0

0 2 4 6 8 10 12 14 16 18
-2500

-2000

-1500

-1000

-500

0

500

14 14.5 15
-2000

-1500

-1000

-500

5 5.5 6 6.5
-2000

-1000

0

0 0.2 0.4 0.6
-1000

-500

0

An Hybrid Control Based on Fuzzy Logic and a Second Order Sliding

719



 
 

 
 

0 2 4 6 8 10 12 14 16 18
-14

-12

-10

-8

-6

-4

-2

0

2

4

x 10
5

5 5.5 6 6.5 7
-12

-10

-8

-6

-4
x 10

5

14 14.5 15
-12

-10

-8

-6

x 10
5

0 0.05 0.1 0.15 0.2
-20

-10

0

x 10
5

0 2 4 6 8 10 12 14 16 18
-14

-12

-10

-8

-6

-4

-2

0

2

4

x 10
5

 The simulation results in Figure 9.a and Figure 10.a show that the active and the reactive 

generated powers track almost perfectly their references when using the fuzzy and the SOSM 

controllers, contrary to the PI regulators case. Where the coupling effect between the two axes 

appears clearly in Figure 9.b and in Figure 10.b. We deduct that the fuzzy and the SOSM 

controllers ensure a perfect decoupling between the two axes. 

 Also, Figure 9.a and Figure 10.a, show that the stator active and the reactive powers follow 

the reference value with zero steady state error, contrary to the PI regulators case where the 

coupling effect between the two axes appears clearly. This result proves that the fuzzy and the 

SOSM controllers are more robust.  

 These results show also the regulation performance using the fuzzy and the SOSM 

controllers.  

 The evolution of the stator active power, presented in Figure 9.a, shows that the power 

reaches its reference value in a negligible time. And Figure 9.b confirm that the response is 

faster compared to the classical PI controllers witch gives a response time equal to 1.2s. The 

stator active power variation, presented in Figure 9.b, shows that it is sensitive to the wind 

speed variation.  However, Figure 9.a, shows that the robustness of the fuzzy and the SOSM 

controllers of the stator active power towards wind speed variation. 
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a.  In Fuzzy and  SOSMC case. 
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b. In PI controllers case. 

Figure 9. The stator active power as a function of time 
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a. In Fuzzy and SOSMC case. 
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b. In PI controllers case. 

Figure 10. The stator ractive power as a function of time. 

Figure 11 shows that the rotor currents took their sinusoidal shape. Their temporary profiles 

are perfectly adapted to the rotor speed variation and therefore to rotor frequency as they 

directly depend on the rotational speed of the wind while switching from hypo-synchronous to 

hyper-synchronous mode. 

 Our results confirm that "the Power coefficient" presented in Figure 12 and "the tip speed 

ratio" presented in Figure 13, not change remarkably and their values remain almost equal to 

their optimal reference values, respectively, equal to 𝐶𝑃 = 0.5 and 𝜆 = 9.  
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In Fuzzy and SOSMC case 
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b.  In PI controllers case. 

Figure 11. The rotor currents as a function of time. 
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Figure 12. The power coefficient 𝐶𝑃. 
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Figure 13. The tip speed ratio 𝜆. 

  Figure 14 shows that the mechanical speed follows its optimal reference indicating that the 

"maximum point tracking" is achieved.   
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Figure 14. The mechanical speed and its reference. 
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Figure 15. The DC–link voltage. 

7. Conclusion 

 In order to control the active and the reactive powers exchanged between the doubly fed 

induction generator and the electrical grid used in wind energy conversion system, an hybrid 

control is proposed. 

 The proposed control is composed by a coupled model based on fuzzy logic and a second 

order sliding mode controllers, applied to a doubly fed induction generator. This model used to 

control the rotor currents. The system performance are compared to the conventional PI 

controllers.       

 Simulation results obtained confirm that stability and the precision of our hybrid control. 

The results demonstrate the independent control of the active and the reactive powers and 

improve the response time of the combined system: Wind Turbine-DFIG. The obtained results 

show also that the proposed control ensures a perfect decoupling between the two axes 

comparatively to the PI regulators and where the coupling effect is appears clearly. The same 

results confirm also that the proposed fuzzy and the second order sliding mode controllers are 

more robust towards wind speed variations.  
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