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Abstract: In this research, three sequential methods are used to solve the problem of robot 
manipulator control. The sequentials are the feedback linearization technique, the control 
approach by Taylor truncation, and the data-driven robust adaptive control method. The 
properties of the robot manipulator are highly nonlinear, greatly time-varying, and strongly 
coupled. There are many uncertainties in the robot manipulator control system, such as parameter 
variations (e.g., inertia and payload variations), dynamically inherent effects (e.g., complicated 
nonlinear friction), and unmodeled behaviors. The traditional linear controllers face numerous 
constraints when dealing with this issue. To cope with this issue, the sliding mode control 
technique (SMC technique) has been popularly utilized as an accurate and robust method. 
Implementation of classical SMC in a system with nonlinear behavior utilizes the exact feedback 
linearization technique. The geometric differential theory, based on nonlinear cancellation and 
transformation of state variables, is employed to construct an exact linearization of a system 
having nonlinear input-output relations. Therefore, a classical sliding-mode controller for a 
linear system can be synthesized. The exact linearization has major drawbacks, i.e., its 
implementation is difficult. This paper demonstrates the SMC synthesis based on the state 
feedback approximation for controlling a robotic manipulator. The state feedback approximation 
is obtained using feedback with the exact linearization method. Based on the approximate state 
feedback, the sliding mode method is synthesized. The classical sliding mode method has major 
weak points limiting its practical implementation, including the chattering phenomenon and very 
large control input. To solve the issues, the discontinuous parts of the input parts in the classical 
method are substituted by a data-driven controller with a robust adaptive control method. The 
major advantage of this approach is that it ensures system stability without requiring 
understanding about uncertainty. Moreover, the converging properties and transient stability of 
the proposed method were examined using Lyapunov criteria. To verify the efficiency achieved 
by using the designed technique, a practical condition in robotic manipulator control is simulated. 
 
Keywords: robotic manipulator, exact feedback linearization, approximating state feedback, 
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1.  Introduction 
 Due to the ability of the robotic manipulator to pick up, move, and drop objects, manipulate 
objects and tools, and explore three-dimensional space, in the field of material handling 
operations in the manufacturing process, the first choice is to use a robotic manipulator system. 
Modern industrial automation, such as in manufacturing, requires robotic manipulators in the 
fields of material handling, processing operations, as well as assembly and inspection. 
Recently, robotic manipulators have been widely utilized in the automation industry because 
they can replace the function of human arms, which are equipped with artificial intelligence. 
These mechanical devices require high speed and high precision performance; therefore, 
research on better control systems is needed. This high-performance control system usually 
requires a mathematical model of the robotic manipulator to design the controller systematically 
by using a simulation approach [1]. 
 The robot manipulator has high nonlinearity, great coupling, and time-varying 
characteristics. In fact, the mathematical models always contain uncertainties, including external  
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perturbations, unmodeled parameter unpredictability, sensor faults, and others, which ultimately 
lead to instability [2]–[8]. 
 Over the last few decades, various control system design approaches, such as robust control 
method [9],optimal method [10]–[12],adaptive method [13],backstepping method [14], adaptive 
backstepping method [15], adaptive neural backstepping method [16], adaptive RBF neural 
network backstepping method[17],backstepping-based super-twisting sliding mode method [18], 
adaptive backstepping sliding mode method [19], fuzzy logic [20], sliding mode method [6], 
neural network [21], and neural adaptive robust method [22]for robotic manipulator control have 
been submitted. 
 In the last few years, much attention has been paid to the application of data-driven control 
to robotic manipulator control. Fortunately, the digital control of a robotic manipulator can 
produce large amounts of input and output (I/O) measurement data that contain all the state 
information. This shows that a data-driven controller can be developed without the modeling 
process. There are several data-driven control methods that are proposed for use in robotic 
manipulator control, including model predictive control [23]–[26], the Gaussian process 
regression method [13], statistical models [27], neural PID [28], passivity based control [29], 
and unfalsified control [30]. 
 Linearization using feedback is a method for nonlinear control systems that has generated 
many papers in the past few year ([3], [31]–[33]). The main point is to mathematically change 
nonlinear a nonlinear model to a linear model (completely or partially) so that a control system 
can be synthesized using the linear method. In classical exact linearization using feedback, 
coordinate changes and static feedback are used such that the closed-loop form of the system, at 
a given limit, generates a linear a linear system in canonical form. After the linearization form 
of the system is acquired, the synthesis is carried out utilizing linear control techniques to 
accomplish a stable tracking or regulatory system [34], [35]. 
 In exact linearization using the feedback mentioned above, the controller properties have 
nonlinear functions such as the state variables multiplications, polynomial properties, 
trigonometric properties, and others, so it is very difficult to implement the controller in the form 
of electronic devices [36]–[39]. On the contrary, the performance of the controller has been 
proven to be able to maintain a good response even though the approximate feedback 
linearization technique has been utilized [40], [41]. 
 In order to synthesize a nonlinear control system, in the research of Mahayana [3], [42], a 
methodology was developed that makes the realization of a linearization controller more realistic 
without a significant degradation in performance. In the study, the developed controller was not 
based on an exact linearization controller but on the development of an exact linearization 
method in the form of a linear feedback system, which can replace the exact linearization 
controller function. Examination of the stability of the closed-loop control system, which is 
controlled using the proposed controller utilizing Lyapunov's criterion theory. The characteristic 
value shift theorem is used to form the origin condition in the stable region so that as a whole it 
produces an asymptotically stable closed loop control system. As far as we know, no other 
authors have utilized the method to design a controller for a plant. 
 In previous research [3], gravity on the robotic manipulator was ignored; however, the 
presence of gravity produces a non-zero steady-state error and will degrade the performance of 
the control system. Non-zero steady-state error cannot be assured if using controllers based on 
approximate state feedback. To enhance the previous studies, a data-driven, robust adaptive 
control method for controlling a robotic manipulator system was synthesized in two steps. The 
first step is to design approximate state feedback based on an exact linearization method. The 
second step is to synthesize a data-driven controller based on the adaptive proportional integral 
(PI) method to deal with unpredictability in the control system. Accurate tracking capability and 
robust performance are shown in the simulation results. 
 
 
 

Dimitri Mahayana, et al.

244



 
 

2. Dynamics of Robotic Manipulator 
 In this paper, to ease the problem, we use a two-joint robot manipulator as depicted in Figure 
1 [43]. In Figure 1, 𝑚𝑚1 and 𝑚𝑚2 are masses of arm1 and arm2 respectively; 𝑙𝑙1 and 𝑙𝑙2 are lengths 
of arm1 and arm2; 𝑡𝑡1 and 𝑡𝑡2 are torque on arm1 and arm2; 𝜃𝜃1 and 𝜃𝜃2 are positions of arm1 and 
arm2. The dynamical behavior of a two-joint robotic manipulator model can be expressed in the 
form of a mathematical formula as follows: 

𝑴𝑴(𝒒𝒒)�̈�𝒒 + 𝑩𝑩(𝒒𝒒, �̇�𝒒)�̇�𝒒 + 𝑮𝑮(𝒒𝒒) = 𝑻𝑻 (1) 
where 𝒒𝒒 = [𝜃𝜃1 𝜃𝜃2]𝑇𝑇 denotes the joint position vector; 𝑴𝑴(𝒒𝒒) ∈ 𝕽𝕽𝑛𝑛𝑛𝑛𝑛𝑛  stands for the moment of 
inertia; 𝑩𝑩(𝒒𝒒, �̇�𝒒)�̇�𝒒 are matrices indicating the Coriolis and centripetal forces; 𝑮𝑮(𝒒𝒒) contains the 
gravitational forces; 𝑻𝑻 = [𝑡𝑡1 𝑡𝑡2]𝑇𝑇 is the input vector, which is the applied torque. 
 
Let c𝑖𝑖 ≡ 𝑐𝑐𝑐𝑐𝑐𝑐   θ𝑖𝑖 , c𝑖𝑖𝑖𝑖 ≡ 𝑐𝑐𝑐𝑐𝑐𝑐�θ𝑖𝑖 + θ𝑖𝑖�, then 𝑴𝑴,𝑩𝑩,𝑮𝑮  in (1) can be written as follows: 

𝑴𝑴(𝒒𝒒) = �
𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

�, 

(2) 𝑩𝑩(𝒒𝒒, �̇�𝒒) = �𝑏𝑏11 𝑏𝑏12
𝑏𝑏21 𝑏𝑏22

�, 

𝑮𝑮(𝒒𝒒) = �
(𝑚𝑚1 + 𝑚𝑚2)𝑙𝑙1𝑔𝑔𝑐𝑐2 + 𝑚𝑚2𝑙𝑙2𝑔𝑔𝑐𝑐12

𝑚𝑚2𝑙𝑙2𝑔𝑔𝑐𝑐12
�, 

where: 
𝑚𝑚11 = (𝑚𝑚1 + 𝑚𝑚2)𝑙𝑙12 + 𝑚𝑚2𝑙𝑙22 + 2𝑚𝑚2𝑙𝑙1𝑙𝑙2𝑐𝑐2, 
𝑚𝑚12 = 𝑚𝑚21 = 𝑚𝑚2𝑙𝑙22 + 𝑚𝑚2𝑙𝑙1𝑙𝑙2𝑐𝑐2, 
𝑚𝑚22 = 𝑚𝑚2𝑙𝑙22, 
𝑏𝑏11 = −𝑚𝑚2𝑙𝑙1𝑙𝑙2�̇�𝜃2 𝑐𝑐𝑠𝑠𝑠𝑠   𝜃𝜃2, 
𝑏𝑏12 = −𝑚𝑚2𝑙𝑙1𝑙𝑙2(�̇�𝜃1 + �̇�𝜃2) 𝑐𝑐𝑠𝑠𝑠𝑠   𝜃𝜃2, 
𝑏𝑏21 = 𝑚𝑚2𝑙𝑙1𝑙𝑙2�̇�𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠   𝜃𝜃2, 
𝑏𝑏22 = 0. 

 
Figure 1. Structure of Two-Joints Robotic Manipulator 

 
 The robot inertial matrix, 𝑴𝑴(𝒒𝒒), is a symmetric matrix as well as positive definite. The 
boundedness of the robot inertial matrix as a function of 𝒒𝒒 ∶ 𝜇𝜇1𝑰𝑰 ≤ 𝑴𝑴(𝒒𝒒) ≤ 𝜇𝜇2𝑰𝑰, can be proven. 
�̇�𝑴(𝒒𝒒) − 2𝑩𝑩(𝒒𝒒, �̇�𝒒) is a matrix of size 𝑠𝑠 × 𝑠𝑠 and skew-symmetric, that is, with the nonzero vector 
𝒙𝒙 ∈ ℜ𝑛𝑛𝑛𝑛1,𝒙𝒙𝑇𝑇��̇�𝑴(𝒒𝒒) − 2𝑩𝑩(𝒒𝒒, �̇�𝒒)� 𝒙𝒙 = 0 is obtained. 
Let us define the input 𝒖𝒖 = 𝑻𝑻 and the state variable 𝒙𝒙 = [𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4]𝑇𝑇 =
[𝜃𝜃1 �̇�𝜃1 𝜃𝜃2 �̇�𝜃2]𝑇𝑇 . The behavioral equation for the movement of the robot manipulator model 
can be described in the form of a state-space nonlinear mathematical formula as follows: 

 �̇�𝒙 = 𝒇𝒇(𝒙𝒙) + 𝒈𝒈(𝒙𝒙)𝒖𝒖, (3) 
where 𝒇𝒇(𝒙𝒙) is a continuous and nonlinear function having an upper bound formulated as 
|𝒇𝒇(𝒙𝒙)| ≤ 𝒇𝒇,̄  and 𝒈𝒈(𝒙𝒙) is a function describing the gain with a lower bound formulated as 𝒈𝒈, 0 <
𝒈𝒈 < 𝒈𝒈(𝒙𝒙). 
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3. Controller Synthesis 
A. Matrix Norm and Spectral Radius 
Definition 1. [44], [45] If 𝑨𝑨 ∈ 𝑪𝑪𝑛𝑛𝑛𝑛𝑛𝑛 , then the definition of the spectral norm of matrix 𝑨𝑨 is 
represented as follows: 

‖𝑨𝑨‖𝑠𝑠 ≝ 𝒘𝒘 ∈ 𝑪𝑪𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠 ‖𝑨𝑨𝒘𝒘‖2

‖𝒘𝒘‖2
. 

(4) 

Definition 2. [44], [45] The spectral radius of the square matrix 𝑨𝑨 ∈ 𝑪𝑪𝑛𝑛𝑛𝑛𝑛𝑛 , 𝜌𝜌(𝑨𝑨), is described as 
the largest absolute value of the spectral elements of matrix 𝑨𝑨 or its eigenvalues. 
To calculate the values of the spectral square matrix norm, start with Lancaster and Tismenetsky 
[45]: 

‖𝑨𝑨‖𝑠𝑠 = �𝜌𝜌(𝑨𝑨𝑨𝑨∗)�
1
2, 

(5) 

where subscript ∗ denotes the conjugate transpose of a matrix. 
 
B. Lyapunov Theory and Linearization 
Examine the following system, which is nonlinearly structured: 

�̇�𝒙 = 𝒇𝒇(𝒙𝒙), (6) 
with 𝒇𝒇(𝟎𝟎) = 𝟎𝟎, or in another way, the origin of system is the equilibrium point, and the vector 
field 𝒇𝒇 is globally continuous and at the least one-time differentiable with respect to 𝒙𝒙, then a 
linear time-invariant system can be used to approximate a nonlinear system represented as the 
following formula: 

�̇�𝒙 = 𝛹𝛹𝒙𝒙, (7) 

𝛹𝛹 ≝
𝜕𝜕𝒇𝒇
𝜕𝜕𝒙𝒙
�
𝒙𝒙=𝟎𝟎

, 
(8) 

where 𝛹𝛹 ∈ 𝕽𝕽𝑛𝑛𝑛𝑛𝑛𝑛 is a constant matrix. 
 
Theorem 1 [46], [47] If the system (7), which is the result of linearization, has an asymptotically 
stable origin(𝒙𝒙 = 𝟎𝟎), then the nonlinear system in Equation (6) will also have an asymptotically 
stable origin. 
 
C. The Method of Shifting Characteristic Values 
 The derivation of the sufficient conditions so that a closed-loop system using an exact 
controller can produce an asymptotically stable origin will be discussed in this sub-section. Let 
the controller candidate be defined as follows: 

𝒖𝒖𝑎𝑎 ≝ 𝒖𝒖𝑎𝑎(𝒙𝒙), (9) 
and 𝒖𝒖𝑎𝑎(𝒙𝒙) at least one-time differentiable with respect to 𝒙𝒙 and 𝒖𝒖𝑎𝑎(𝟎𝟎) = 𝒖𝒖(𝟎𝟎). 
Between "exact controller" and "controller candidate", there is an error that can be formulated as 
follows: 

𝒆𝒆(𝒙𝒙) = 𝒖𝒖𝑎𝑎(𝒙𝒙) − 𝒖𝒖(𝒙𝒙). (10) 
Assume a notation: 

𝑨𝑨𝑐𝑐 = 𝑨𝑨 + 𝑩𝑩𝑩𝑩, (11) 
with the matrix of a closed-loop system using the exact controller formulated with 𝑨𝑨𝑐𝑐 , and, 
respectively, several variables are also defined as follows: 

𝜐𝜐(𝑨𝑨𝑐𝑐) ≝ 𝑠𝑠𝑠𝑠𝑖𝑖
𝑷𝑷

(‖𝑷𝑷−1‖𝑠𝑠‖𝑷𝑷‖𝑠𝑠), (12) 

𝜺𝜺(𝒙𝒙) ≝ �𝐿𝐿𝒈𝒈𝐿𝐿𝒇𝒇𝑛𝑛−1𝑻𝑻1(𝒙𝒙)� 𝒆𝒆(𝒙𝒙), (13) 

𝜅𝜅 ≝ ���
𝜕𝜕𝜺𝜺(𝒙𝒙)
𝜕𝜕𝒙𝒙

�
𝑇𝑇

�𝛻𝛻𝑻𝑻(𝒙𝒙)�−1�
𝒙𝒙=𝟎𝟎

�
𝑇𝑇

�, (14) 

with a transformation matrix, 𝑷𝑷, which transforms matrix 𝑨𝑨𝑐𝑐 into a diagonal canonical matrix as 
follows: 

𝑷𝑷𝑨𝑨𝑐𝑐𝑷𝑷−1 = 𝑑𝑑𝑠𝑠𝑑𝑑𝑔𝑔(𝜆𝜆1, 𝜆𝜆1,⋯ , 𝜆𝜆𝑛𝑛), (15) 
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with 𝑨𝑨𝑐𝑐 , i.e., a closed-loop matrix using an exact controller, has characteristic values formulated 
with 𝜆𝜆1, 𝜆𝜆1,⋯ , 𝜆𝜆𝑛𝑛, while the shortest distance of the characteristic value to the imaginary axis 
is denoted by 𝜆𝜆𝑐𝑐 (assuming that all characteristic values strictly lie to the left of the imaginary 
axis of the complex plane). 
 The exact linear transformation results in a linear time-invariant (LTI) system, namely the 
matrix pair (𝑨𝑨,𝑩𝑩), which has the Brunovosky canonical form; therefore, the matrix in a closed-
loop system can be designed to have characteristic values that are all different. To realize this, 
Chen [48]used the pole placement technique. It is necessary to take the assumption of different 
values of 𝑨𝑨𝑐𝑐 characteristics so that the transformation of the matrix 𝑨𝑨𝑐𝑐 to a pure diagonal form 
can be carried out [45], [49]. 
 
Theorem 2. If 

𝑅𝑅𝑅𝑅(𝜆𝜆𝑐𝑐) + 𝜅𝜅𝝂𝝂(𝑨𝑨𝑐𝑐) < 0, (16) 
then the nonliner system (3) controlled using 𝒖𝒖𝑎𝑎(𝒙𝒙) will produce an asymptotically stable origin. 
 
Proof. The proof of Theorem 2 requires several stages: first stage, synthesizing the system using 
an exact controller; second stage, proving the existence of candidate controllers; third stage, 
carrying out the process of transforming the system controlled using the candidate controller into 
a new state-space form; fourth stage, proving the stability of the system using Lyapunov criteria; 
and fifth stage, carrying out the process of analyzing the values of the shift characteristic. 
 
D. Construction Under Exact Controller 
 In order for Equation (1) to be linear, it is necessary to choose 𝑻𝑻 exactly. Adopted from 
Slotine and Li [35], the formula for 𝑻𝑻 can be represented as follows: 

𝑻𝑻 = 𝑴𝑴(𝒒𝒒)𝝂𝝂 + 𝑩𝑩(𝒒𝒒, �̇�𝒒)�̇�𝒒 + 𝑮𝑮(𝒒𝒒), (17) 
where 𝝂𝝂 ∈ 𝕽𝕽2𝑛𝑛1 is the system input involving the linearization process, leading to: 

�̈�𝒒 = 𝝂𝝂. (18) 
By describing the selected state variable as 𝒙𝒙 = [𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4]𝑇𝑇 = [𝜃𝜃1 �̇�𝜃1 𝜃𝜃2 �̇�𝜃2]𝑇𝑇 , it 
can be proven that the robotic manipulator control system can be written in the Brunovsky 
canonical formula as follows: 

�̇�𝒙 = �

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

� 𝒙𝒙 + �

0 0
1 0
0 0
0 1

� 𝝂𝝂. (19) 

By defining 𝒛𝒛𝑖𝑖 = �𝜃𝜃𝑖𝑖 �̇�𝜃𝑖𝑖�
𝑇𝑇 , 𝑠𝑠 = 1,2; the distribution of Equation (19) in two subsystems in a linear 

form will be represented as follows: 
�̇�𝒛𝑖𝑖 = �0 1

0 0� 𝒛𝒛𝑖𝑖 + �0
1� 𝑣𝑣𝑖𝑖 . (20) 

 Letting: 
𝑣𝑣𝑖𝑖 = −𝜗𝜗𝑛𝑛,𝑖𝑖

2 𝜍𝜍𝑖𝑖 − 2𝜉𝜉𝑖𝑖𝜗𝜗𝑛𝑛,𝑖𝑖  𝜍𝜍̇𝑖𝑖, (21) 
where 𝜗𝜗𝑛𝑛,𝑖𝑖 ∈ 𝕽𝕽 denotes 𝑠𝑠 − 𝑡𝑡ℎ natural frequency, 𝜉𝜉𝑖𝑖 denotes 𝑠𝑠 − 𝑡𝑡ℎ damping ratio, and 𝑠𝑠 = 1,2. 
 The ITAE performance criterion for a system with a step input can be minimized utilizing 
the pole-placement method so that the overall system has a damping ratio of 𝜉𝜉𝑖𝑖 = 0.707, and the 
𝑠𝑠 − 𝑡𝑡ℎ natural frequency can be designed as follows: 

 𝜗𝜗𝑛𝑛,1 = 15, (22) 𝜗𝜗𝑛𝑛,2 = 16, 
The calculation of the value of the feedback gain, 𝑩𝑩, is done with the following representation: 

𝑩𝑩𝑇𝑇 = �

−225 0
−21.21 0

0 −256
0 −22.624

�. (23) 
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E. Existence of Controller Candidate 
 The transformation, 𝑻𝑻:𝜴𝜴 → 𝑻𝑻(𝜴𝜴) ⊂ 𝕽𝕽𝑛𝑛 , with 𝜴𝜴 being an open set on the domain, 𝕽𝕽𝑛𝑛 , is 
guaranteed to be a dipheomorphism; therefore, it can be concluded that 𝑻𝑻 is smooth. As a result, 
the smoothness of 𝒖𝒖(𝒙𝒙) can be guaranteed. Since 𝒖𝒖(𝒙𝒙) is smooth, the design of the new control 
input, i.e., 𝒖𝒖𝑎𝑎(𝒙𝒙), can be chosen to be continuous, and the function on 𝒖𝒖𝑎𝑎(𝒙𝒙) is at least one-time 
differentiable with respect to 𝒙𝒙, fulfilling 𝒖𝒖𝑎𝑎(𝟎𝟎) = 𝒖𝒖(𝟎𝟎), and it satisfies: 

‖𝒖𝒖𝑎𝑎(𝒙𝒙) − 𝒖𝒖(𝒙𝒙)‖∞ ≤ 𝛿𝛿, (24) 
where 𝛿𝛿 is a positive real constant, over the range 𝝂𝝂 ⊂ 𝜴𝜴 ⊂ 𝕽𝕽𝑛𝑛 , whit 𝝂𝝂 is a closed and bounded 
set. 
 
F. System Transformation under Controller Candidate 
 The representation of a dynamical system that is nonlinear with the manipulated variable, 
𝒖𝒖𝑎𝑎(𝒙𝒙), can be described as follows: 

�̇�𝒙 = 𝒇𝒇(𝒙𝒙) + 𝒈𝒈(𝒙𝒙)𝒖𝒖𝑎𝑎(𝒙𝒙). (25) 
Equation (25) can be arranged as follows: 

�̇�𝒙 = 𝒇𝒇(𝒙𝒙) + 𝒈𝒈(𝒙𝒙){𝒖𝒖(𝒙𝒙) + 𝒆𝒆(𝒙𝒙)}. (26) 
By going through several complicated calculation stages, the representation of Equation (26) can 
be described in the form of a new state variable, 𝒛𝒛, with the following formula: 

�̇�𝒛 = 𝑨𝑨𝑐𝑐𝒛𝒛 + �

0
0
⋮
1

� 𝜺𝜺{𝑻𝑻−1(𝒛𝒛)}. (27) 

The mathematical representation of the overall system using a controller candidate in the form 
of a state-space with new coordinates can be represented by a nonlinear system, which is a 
combination of linear subsystems and nonlinear perturbation subsystems. 
By designing 𝒖𝒖𝑎𝑎(𝒙𝒙) in such a way that it results in 𝒖𝒖𝑎𝑎(𝟎𝟎) = 𝒖𝒖(𝟎𝟎) = 𝟎𝟎, this would imply 𝒆𝒆(𝟎𝟎) =
𝟎𝟎, consequently at  𝒛𝒛 = 𝟎𝟎, 

𝑨𝑨𝑐𝑐𝒛𝒛 + �

0
0
⋮
1

� 𝜺𝜺{𝑻𝑻−1(𝒛𝒛)} = 𝟎𝟎. (28) 

This indicates that the overall system equilibrium point using a controller candidate is the same 
as the overall system equilibrium point using an exact controller. 
 
G. Lyapunov Stability Analysis 
 Equation (27), which is a nonlinear system, can be described using the following formula: 

�̇�𝒛 = 𝒇𝒇𝑐𝑐(𝒛𝒛), (29) 
with 

𝒇𝒇𝑐𝑐(𝒛𝒛) = 𝑨𝑨𝑐𝑐𝒛𝒛 + �

0
0
⋮
1

� 𝜺𝜺{𝑻𝑻−1(𝒛𝒛)}. (30) 

The 𝒇𝒇𝑐𝑐(𝒛𝒛) is a function that is smooth around the origin; therefore, it will produce 𝜕𝜕𝒇𝒇𝑐𝑐(𝒛𝒛)
𝜕𝜕𝒛𝒛

, which 
exists around the origin. Based on Equation (28), it can be proven that the origin is an equilibrium 
point, and this can be expressed in the following formula: 

𝒇𝒇𝑐𝑐(𝟎𝟎) = 𝟎𝟎. (31) 
The system linearization process in Equation (29) around the origin can be described in the form 
of the following formula: 

�̇�𝒛 =
𝜕𝜕𝒇𝒇𝑐𝑐(𝒛𝒛)
𝜕𝜕𝒛𝒛

�
𝒛𝒛=𝟎𝟎

∗ 𝒛𝒛. (32) 
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Equation (32) can be described in the form of the following formula: 

�̇�𝒛 = (𝑨𝑨𝑐𝑐 + 𝑫𝑫)𝒛𝒛, (33) 

with 

𝑫𝑫 =

⎣
⎢
⎢
⎢
⎡

𝑶𝑶(𝑛𝑛−1) ×𝑛𝑛
− − −− − − −− − − − −−

�
𝜕𝜕𝜺𝜺(𝒙𝒙)
𝜕𝜕𝒙𝒙

�
𝑇𝑇

�𝛻𝛻𝑻𝑻(𝒙𝒙)�−1�
𝒙𝒙=𝟎𝟎 ⎦

⎥
⎥
⎥
⎤
. (34) 

 Lyapunov states in his stability theory that if the system origin in Equation (33) can be proven 
to be asymptotically stable, then the origin of the system in Equation (29) which in this case is a 
closed loop system with a newly designed controller, i.e., the controller candidate, 𝒖𝒖𝑎𝑎(𝒙𝒙), can 
also be proven to be asymptotically stable. This system can be proven to be stable if all the 
spectral values or eigenvalues of the matrix, (𝑨𝑨𝑐𝑐 + 𝑫𝑫), are designed to be strictly placed on the 
left of the complex plane. 
 
H. Analysis of Shifting Characteristic Values 
 The representation of the linear system described in Equation (33) can be expressed as the 
sum of two matrices, i.e., the nominal matrix, 𝑨𝑨𝑐𝑐 , and the matrix indicating perturbation, 𝑫𝑫. The 
eigenvalues of the matrix(𝑨𝑨𝑐𝑐 + 𝑫𝑫)are assumed to be 𝜁𝜁1, 𝜁𝜁2, ⋯ , 𝜁𝜁𝑛𝑛 , and further from the 
definition of the eigenvalue [44], [45], the relationship between the matrix and its eigenvalues 
can be represented as the following formula: 

(𝑨𝑨𝑐𝑐 + 𝑫𝑫)𝒚𝒚𝑖𝑖 = 𝜁𝜁𝑖𝑖𝒚𝒚𝑖𝑖, ∃𝒚𝒚𝑖𝑖 ≠ 𝟎𝟎, 𝒚𝒚𝑖𝑖 ∈ 𝑪𝑪𝑛𝑛. (35) 
Assume 𝑨𝑨𝑐𝑐 = 𝑷𝑷𝑨𝑨𝑐𝑐𝐷𝐷𝑷𝑷

−1, with 𝑨𝑨𝑐𝑐𝐷𝐷 = 𝑑𝑑𝑠𝑠𝑑𝑑𝑔𝑔(𝜆𝜆1, 𝜆𝜆2, ⋯ , 𝜆𝜆𝑛𝑛). Equation (35) can be represented 
as the following formula: 

�𝑨𝑨𝑐𝑐𝐷𝐷 + 𝑷𝑷−1𝑫𝑫𝑷𝑷�𝒓𝒓𝑖𝑖 = 𝜁𝜁𝑖𝑖𝒓𝒓𝑖𝑖, (36) 
with 𝒓𝒓𝑖𝑖 = 𝑷𝑷−1𝒚𝒚𝑖𝑖 ≠ 𝟎𝟎. After a little manipulation, it can be found: 

�𝜁𝜁𝑖𝑖𝑰𝑰 − 𝑨𝑨𝑐𝑐𝐷𝐷�𝒓𝒓𝑖𝑖 = 𝑷𝑷−1𝑫𝑫𝑷𝑷. (37) 
After some complicated calculations, we can find: 

��𝜁𝜁𝑖𝑖𝑰𝑰 − 𝑨𝑨𝑐𝑐𝐷𝐷�𝒓𝒓𝑖𝑖�2
 ‖𝒓𝒓𝑖𝑖‖2 

≤ 𝜐𝜐(𝑨𝑨𝑐𝑐)‖𝑫𝑫‖2. (38) 

Since: 

‖𝑫𝑫‖2 = {𝜌𝜌(𝑫𝑫𝑫𝑫∗)}
1
2 = 𝜅𝜅, (39) 

 
then: 

��𝜁𝜁𝑖𝑖𝑰𝑰 − 𝑨𝑨𝑐𝑐𝐷𝐷�𝒓𝒓𝑖𝑖�2
 ‖𝒓𝒓𝑖𝑖‖2 

≤ 𝜐𝜐(𝑨𝑨𝑐𝑐)𝜅𝜅. (40) 

If 𝜆𝜆𝑐𝑐𝑖𝑖 is one of the eigenvalues of matrix 𝑨𝑨𝑐𝑐 whose distance to 𝜁𝜁𝑖𝑖  is assumed to be the shortest, 
then: 

|𝜁𝜁𝑖𝑖 − 𝜆𝜆𝑐𝑐𝑖𝑖| ≤
��𝜁𝜁𝑖𝑖𝑰𝑰 − 𝑨𝑨𝑐𝑐𝐷𝐷�𝒓𝒓𝑖𝑖�2

 ‖𝒓𝒓𝑖𝑖‖2 
≤ 𝜐𝜐(𝑨𝑨𝑐𝑐)𝜅𝜅. (41) 

I. Construction of Controller Candidate 
The robotic manipulator used in this study uses the following parameter values: 𝑚𝑚1 = 4 𝑘𝑘𝑔𝑔, 
𝑚𝑚2 = 2 𝑘𝑘𝑔𝑔, 𝑙𝑙1 = 1 𝑚𝑚, 𝑙𝑙2 = 0.5 𝑚𝑚,  and 𝑔𝑔 = 9.8 𝑁𝑁/𝑘𝑘𝑔𝑔. 
 
The proposed controller candidate can be described using the following formula: 

𝒖𝒖𝑎𝑎(𝒙𝒙) = 𝑳𝑳𝒙𝒙, (42) 
where 𝑳𝑳 ∈ 𝕽𝕽2𝑛𝑛4. 
 From the equations that have been derived, the error between a system controlled using an 
exact controller and a system controlled using an approximating controller can be described 
using the following formula: 

Data-Driven Robust Adaptive Control Based on Synthesis

249



 
 

𝒆𝒆(𝒙𝒙) = −𝜶𝜶(𝒙𝒙) − 𝜷𝜷(𝒙𝒙)𝑩𝑩𝒛𝒛(𝒙𝒙) + 𝑳𝑳𝒙𝒙, (43) 
where: 

𝜶𝜶(𝒙𝒙) = 𝑩𝑩(𝒒𝒒, �̇�𝒒) �̇�𝒒 + 𝑮𝑮(𝒒𝒒), 
𝜷𝜷(𝒙𝒙) = 𝑴𝑴(𝒒𝒒).  

Based on (43). It found: 
𝜺𝜺(𝒙𝒙) = 𝜷𝜷−1(𝒙𝒙)𝒆𝒆(𝒙𝒙). (44) 

After some complicated calculations, we can find: 

𝜺𝜺(𝒙𝒙) = �𝜀𝜀1
(𝒙𝒙)

𝜀𝜀2(𝒙𝒙)�, (45) 

where: 

𝜀𝜀1(𝒙𝒙) =
0.5 + cos  𝑥𝑥3
3 − cos2 𝑥𝑥3

𝛼𝛼2 − 𝑩𝑩1𝒙𝒙 −
0.5

3 − cos2 𝑥𝑥3
(𝛼𝛼11 + 𝛼𝛼12)

+
0.5𝑳𝑳1𝒙𝒙 − (0.5 + cos 𝑥𝑥3)𝑳𝑳2𝒙𝒙

3 − cos2 𝑥𝑥3
, 

(46) 

and: 

𝜀𝜀2(𝑥𝑥) =
0.5 + cos 𝑥𝑥3
3 − cos2 𝑥𝑥3

(𝛼𝛼11 + 𝛼𝛼12) −
6.5 + 2 cos 𝑥𝑥3

3 − cos2 𝑥𝑥3
𝛼𝛼2 − 𝑩𝑩2𝒙𝒙 −

(0.5 + cos 𝑥𝑥3)𝑳𝑳1𝒙𝒙
3 − cos2 𝑥𝑥3

+
(6.5 + 2 cos 𝑥𝑥3)𝑳𝑳2𝒙𝒙

3 − cos2 𝑥𝑥3
, 

(47) 

with: 
𝛼𝛼11 = −2𝑥𝑥2𝑥𝑥4 sin 𝑥𝑥3 − 𝑥𝑥42 sin 𝑥𝑥3, 

(48) 

𝛼𝛼12 = 58.8 cos 𝑥𝑥3 + 9.8 cos( 𝑥𝑥1 + 𝑥𝑥3), 
𝛼𝛼2 = 𝑥𝑥22 sin 𝑥𝑥3 + 9.8 cos( 𝑥𝑥1 + 𝑥𝑥3), 
𝑩𝑩1 = [𝐾𝐾11 𝐾𝐾12 𝐾𝐾13 𝐾𝐾14], 
𝑩𝑩2 = [𝐾𝐾21 𝐾𝐾22 𝐾𝐾23 𝐾𝐾24], 
𝑳𝑳1 = [𝐿𝐿11 𝐿𝐿12 𝐿𝐿13 𝐿𝐿14], 
𝑳𝑳2 = [𝐿𝐿21 𝐿𝐿22 𝐿𝐿23 𝐿𝐿24]. 

 
If we differentiate 𝜺𝜺(𝒙𝒙) with respect to 𝒙𝒙 and assign the value of 𝒙𝒙 = 𝟎𝟎, the following equations 
will result: 
𝜕𝜕𝜀𝜀1
𝜕𝜕𝑥𝑥1

= 225 +
0.5𝐿𝐿11 − 1.5𝐿𝐿21

2
, 

𝜕𝜕𝜀𝜀1
𝜕𝜕𝑥𝑥2

= 21.21 +
0.5𝐿𝐿12 − 1.5𝐿𝐿22

2
, 

𝜕𝜕𝜀𝜀1
𝜕𝜕𝑥𝑥3

=
0.5𝐿𝐿13

3
−

1.5𝐿𝐿23
3

, 

𝜕𝜕𝜀𝜀1
𝜕𝜕𝑥𝑥4

=
0.5𝐿𝐿14 − 1.5𝐿𝐿24

2
, 

𝜕𝜕𝜀𝜀2
𝜕𝜕𝑥𝑥1

=
8.5𝐿𝐿21 − 1.5𝐿𝐿11

2
, 

𝜕𝜕𝜀𝜀2
𝜕𝜕𝑥𝑥2

=
8.5𝐿𝐿22 − 1.5𝐿𝐿12

2
, 

𝜕𝜕𝜀𝜀2
𝜕𝜕𝑥𝑥3

= 256 +
8.5𝐿𝐿23 − 1.5𝐿𝐿13

2
, 

𝜕𝜕𝜀𝜀2
𝜕𝜕𝑥𝑥4

= 22.624 +
8.5𝐿𝐿24 − 1.5𝐿𝐿14

2
. 

(49) 

If we select: 

𝑳𝑳𝑇𝑇 = �

−1912.5 −337.5
−180.285 −31.815
−384 −128

−33.936 −11.312

�, (50) 
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will imply: 
𝜕𝜕𝜺𝜺
𝜕𝜕𝒙𝒙
�
𝒙𝒙=𝟎𝟎

= 𝟎𝟎, (51) 

and furthermore, this will imply: 

𝜅𝜅 = ���
𝜕𝜕𝜺𝜺(𝒙𝒙)
𝜕𝜕𝒙𝒙

�
𝑇𝑇

(𝛻𝛻𝑻𝑻(𝒙𝒙))−1|𝒙𝒙=𝟎𝟎�
𝑇𝑇

� = 0. (52) 

In this case, 𝜅𝜅 = 0, so it can be concluded that Equation (16) is always fulfilled; furthermore, we 
can guarantee that the origin of the closed-loop system (1), which is controlled using controller: 

𝒖𝒖𝑎𝑎(𝒙𝒙) = �

−1912.5 −337.5
−180.285 −31.815
−384 −128

−33.936 −11.312

�

𝑇𝑇

𝒙𝒙, (53) 

𝒖𝒖𝑎𝑎(𝒙𝒙) = �

−1912.5 −337.5
−180.285 −31.815
−384 −128

−33.936 −11.312

�

𝑇𝑇

𝒙𝒙, (54) 

will be asymptotically stable. 
 
J. Data-Driven Robust Adaptive Controller 
 The robotic manipulator system, which is controlled using an approximating state feedback 
controller, has the main disadvantage, i.e., the existence of a steady state error due to gravity. 
The drawbacks that have been discussed previously led to the idea of adding a data-driven robust 
adaptive controller to a system that is controlled using the approximating state feedback method. 
The first step to designing the controller, the definition of the tracking error, is represented as 
follows: 

𝑅𝑅𝑖𝑖 = 𝜃𝜃𝑑𝑑𝑖𝑖 − 𝜃𝜃𝑖𝑖, (55) 
where 𝜃𝜃𝑑𝑑𝑖𝑖 is the desired trajectory of 𝜃𝜃𝑖𝑖 . Furthermore, we define an error metric as follows: 

𝑐𝑐𝑖𝑖 = �̇�𝑅𝑖𝑖 + 𝐾𝐾𝑖𝑖2𝑅𝑅𝑖𝑖 + 𝐾𝐾𝑖𝑖1 � 𝑅𝑅𝑖𝑖𝑑𝑑𝑑𝑑
𝑡𝑡

0
. (56) 

The time derivative description of the error metric is represented in the following formula: 
�̇�𝑐𝑖𝑖 = �̈�𝑅𝑖𝑖 + 𝐾𝐾𝑖𝑖2�̇�𝑅𝑖𝑖 + 𝐾𝐾𝑖𝑖1𝑅𝑅𝑖𝑖. (57) 

 The solution to equation �̇�𝑐𝑖𝑖 = 0, which is a homogeneous linear differential equation, 
describes the behavior of 𝑅𝑅𝑖𝑖(𝑡𝑡) which decays exponentially to zero [35]. Consequently, by 
maintaining this condition, asymptotically perfect tracking can be obtained. 
The system with the controller uses the exact feedback linearization method and then applies 𝑩𝑩, 
i.e., the feedback gain matrix represented in Equation (23), so that the following formula is 
obtained: 

𝑣𝑣𝑖𝑖 = 𝐾𝐾𝑖𝑖2�̇�𝑅𝑖𝑖 + 𝐾𝐾𝑖𝑖1𝑅𝑅𝑖𝑖 (58) 
will imply �̇�𝑐𝑖𝑖 = 0. 
The system with the controller uses the approximating feedback linearization method and then 
applies 𝑳𝑳, i.e., the feedback gain matrix represented in Equation (50), so that the following 
formula is obtained: 
𝑇𝑇1 = 𝐿𝐿11𝑅𝑅1 + 𝐿𝐿12�̇�𝜃1 + 𝐿𝐿13𝜃𝜃2 + 𝐿𝐿14�̇�𝜃2, 
𝑇𝑇2 = 𝐿𝐿21𝜃𝜃1 + 𝐿𝐿22�̇�𝜃1 + 𝐿𝐿23𝑅𝑅2 + 𝐿𝐿24�̇�𝜃2, (58) 

will imply: 
�̇�𝑐𝑖𝑖 = 𝛥𝛥𝑖𝑖 . (59) 

Let us define 𝑑𝑑𝑖𝑖1∗ , 𝑑𝑑𝑖𝑖2∗ , and 𝑏𝑏𝑖𝑖∗ such that: 
�̇�𝑐𝑖𝑖 = 𝑑𝑑𝑖𝑖2∗ �̇�𝑅𝑖𝑖 + 𝑑𝑑𝑖𝑖1∗ 𝑅𝑅𝑖𝑖 + 𝑏𝑏𝑖𝑖∗𝑇𝑇𝑖𝑖 , (60) 

where 𝑑𝑑𝑖𝑖1∗ , 𝑑𝑑𝑖𝑖2∗ , and 𝑏𝑏𝑖𝑖∗ are unknown real positive numbers. 
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Assumption 1 
 The control gain, 𝑏𝑏𝑖𝑖∗, is the globally bounded strictly positive gain, which is the largest limit of 
the control gain, which varies from zero until it reaches an unknown value 𝑏𝑏𝑖𝑖 , such that 𝑏𝑏𝑖𝑖∗ ≥
𝑏𝑏𝑖𝑖 > 0. 
When 𝑑𝑑𝑖𝑖1∗ , 𝑑𝑑𝑖𝑖2∗ , and 𝑏𝑏𝑖𝑖∗ are known exactly, to satisfy control purposes, the proposed control law 
is described using the following formula: 

𝑇𝑇𝑖𝑖 = −
1
𝑏𝑏𝑖𝑖∗

(𝑑𝑑𝑖𝑖2∗ �̇�𝑅𝑖𝑖 + 𝑑𝑑𝑖𝑖1∗ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖∗𝑐𝑐𝑖𝑖), (61) 

𝑇𝑇𝑖𝑖 = −
1
𝑏𝑏𝑖𝑖∗

(𝑑𝑑𝑖𝑖2∗ �̇�𝑅𝑖𝑖 + 𝑑𝑑𝑖𝑖1∗ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖∗𝑐𝑐𝑖𝑖), (62) 

where 𝛼𝛼𝑖𝑖 is a positive constant, which is a design parameter. 
By substituting Equation (61) into Equation (60), we get the following equation: 

�̇�𝑐𝑖𝑖 = −𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖∗𝑐𝑐𝑖𝑖 . (63) 
The candidate for the designed Lyapunov function is formulated as follows: 

𝑉𝑉 =
1
2
𝑐𝑐𝑖𝑖2, (64) 

then: 
�̇�𝑉 = 𝑐𝑐𝑖𝑖�̇�𝑐𝑖𝑖 = −𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖∗𝑐𝑐𝑖𝑖2. (65) 

Utilizing the reality that 𝑏𝑏𝑖𝑖∗ ≥ 𝑏𝑏𝑖𝑖 > 0, we get: 
�̇�𝑉 ≤ −𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖2 ≤ 0. (66) 

 Thus, we can conclude that 𝑐𝑐𝑖𝑖(𝑡𝑡) → 0 as 𝑡𝑡 → ∞, and therefore 𝑅𝑅𝑖𝑖(𝑡𝑡) → 0 as 𝑡𝑡 → ∞ for 𝑠𝑠 =
1,  2. 
 Equation (65) shows that if parameter 𝛼𝛼𝑖𝑖 has a greater value, it will result in an increasingly 
negative value of �̇�𝑉. Therefore, the tracking error convergence rate can be adjusted by varying 
the value of 𝛼𝛼𝑖𝑖 , which is a design parameter. 
 In this research, it is assumed that the values of parameters 𝑑𝑑𝑖𝑖1∗ , 𝑑𝑑𝑖𝑖2∗ , and 𝑏𝑏𝑖𝑖∗ are unknown, so 
it is impossible to obtain the control law (61). By considering this fact, we design a control 
system using an adaptive control method so that the control objectives are met. The 
approximations of the parameters are described using the representations 𝑑𝑑�𝑖𝑖1, 𝑑𝑑�𝑖𝑖2, and 𝑏𝑏�𝑖𝑖 , 
respectively. 
The parameter errors are defined by the following formula: 

𝑑𝑑�𝑖𝑖1 = 𝑑𝑑𝑖𝑖1∗ − 𝑑𝑑�𝑖𝑖1, (67) 
𝑑𝑑�𝑖𝑖2 = 𝑑𝑑𝑖𝑖2∗ − 𝑑𝑑�𝑖𝑖2, (68) 
𝑏𝑏�𝑖𝑖 = 𝑏𝑏𝑖𝑖∗ − 𝑏𝑏�𝑖𝑖 . (69) 

Assume that the system represented in (60) can approximate the uncertainty as the following: 
𝑑𝑑𝑖𝑖1 = 𝑑𝑑𝑖𝑖1∗ + 𝜀𝜀𝑖𝑖1, (70) 
𝑑𝑑𝑖𝑖2 = 𝑑𝑑𝑖𝑖2∗ + 𝜀𝜀𝑖𝑖2, (71) 
𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑖𝑖∗ + 𝜀𝜀𝑏𝑏𝑖𝑖, (72) 

where 𝜀𝜀𝑖𝑖1, 𝜀𝜀𝑖𝑖2, and 𝜀𝜀𝑏𝑏𝑖𝑖 are approximation errors, while 𝑑𝑑𝑖𝑖1∗ , 𝑑𝑑𝑖𝑖2∗ , and 𝑏𝑏𝑖𝑖∗ are the ideal parameters 
that cause the functions |𝜀𝜀𝑖𝑖1|, |𝜀𝜀𝑖𝑖2|, and |𝜀𝜀𝑏𝑏𝑖𝑖| to be minimal, respectively. 
 
Assumption 2 
The reconstruction errors of parameters 𝜀𝜀𝑖𝑖1, 𝜀𝜀𝑖𝑖2, and 𝜀𝜀𝑏𝑏𝑖𝑖 are bounded, i.e., |𝜀𝜀𝑖𝑖1| < 𝜀𝜀�̄�𝑖1, |𝜀𝜀𝑖𝑖2| < 𝜀𝜀�̄�𝑖2, 
and |𝜀𝜀𝑏𝑏𝑖𝑖| < 𝜀𝜀�̄�𝑏𝑖𝑖, where the upper bounds of the parameters are unknown constants, i.e., 𝜀𝜀�̄�𝑖1, 𝜀𝜀�̄�𝑖2, 
and 𝜀𝜀�̄�𝑏𝑖𝑖. 
 
Assumption 3 
The ideal parameters are bounded by known positive values, i.e., |𝑑𝑑𝑖𝑖1| < 𝑀𝑀𝑖𝑖1, |𝑑𝑑𝑖𝑖2| < 𝑀𝑀𝑖𝑖2, and 
|𝑏𝑏𝑖𝑖| < 𝑀𝑀𝑖𝑖 , where |𝑑𝑑𝑖𝑖1| < 𝑀𝑀𝑖𝑖1, 𝑀𝑀𝑖𝑖2, and 𝑀𝑀𝑖𝑖 are given constants. 
Based on the control law represented in Equation (61) and coupled with the parameter estimation 
developed above, the adaptive control law is proposed with the following formula: 
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𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑇𝑇𝑖𝑖𝑟𝑟 . (73) 
The control law represented in Equation (72) is a combination of the nominal control part, 𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛, 
which is an approximation of the control law represented in Equation (61) using the estimated 
nominal uncertainty of the system, and the robustifying control part, 𝑇𝑇𝑖𝑖𝑟𝑟 , which is designed to 
eliminate the effect of perturbation. 
The nominal input control part, 𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛, is described by the following formula: 

𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑏𝑏�𝑖𝑖

𝜀𝜀𝑖𝑖0 + 𝑏𝑏�𝑖𝑖2
�𝑑𝑑�𝑖𝑖1𝑅𝑅𝑖𝑖 + 𝑑𝑑�𝑖𝑖2�̇�𝑅𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑏𝑏�𝑖𝑖𝑐𝑐𝑖𝑖�, (74) 

where 𝜀𝜀𝑖𝑖0 indicates a small positive constant. 
 
Remark 1 
The nominal control law in Equation (73), in order to be well defined when 𝑏𝑏�𝑖𝑖 goes to zero, it is 
necessary to replace the value of 𝑏𝑏�𝑖𝑖−1 with 𝑏𝑏�𝑖𝑖 �𝜀𝜀𝑖𝑖0 + 𝑏𝑏�𝑖𝑖2�,�  in such a way that this formula can be 
considered as a Levenberg–Marquard regularized inverse [50] which was implemented in a 
scalar function. 
The robustifying control part, adopted from Labiod and Boucherit [50], is described as follows: 

𝑇𝑇𝑖𝑖𝑟𝑟 =
𝜓𝜓𝑖𝑖𝑐𝑐𝑖𝑖

|𝑐𝑐𝑖𝑖| + 𝛿𝛿𝑖𝑖2𝑅𝑅𝑥𝑥𝑒𝑒(−𝜓𝜓𝑖𝑖)
, (75) 

where: 
𝜓𝜓𝑖𝑖 = 𝜀𝜀�̂�𝑖 + 𝜀𝜀�̂�𝑏𝑖𝑖|𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖| + 𝜀𝜀�̂�𝑠𝑖𝑖�𝑇𝑇𝑖𝑖0�, (76) 

𝑇𝑇𝑖𝑖0 =
𝜀𝜀𝑖𝑖0

𝜀𝜀𝑖𝑖0 + 𝑏𝑏𝑖𝑖2
�𝑑𝑑�𝑖𝑖1𝑅𝑅𝑖𝑖 + 𝑑𝑑�𝑖𝑖2�̇�𝑅𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑏𝑏�𝑖𝑖𝑐𝑐𝑖𝑖�, (77) 

and 𝜀𝜀î, 𝜀𝜀�̂�𝑏i, and 𝜀𝜀�̂�𝑠i are approximations of the unknown variables 𝜀𝜀i∗ = (𝜀𝜀1̄i + 𝜀𝜀2̄i)/𝑏𝑏𝑖𝑖 , 𝜀𝜀𝑏𝑏i∗ =
𝜀𝜀�̄�𝑏i/𝑏𝑏𝑖𝑖 , and 𝜀𝜀𝑠𝑠i∗ = 1/𝑏𝑏𝑖𝑖 respectively, and 𝛿𝛿i is a variable designed with the time-varying method. 
The adaptation method for the controller parameters is designed with the following formula: 

𝑑𝑑�̇𝑖𝑖1 = −𝜂𝜂𝑖𝑖1𝑅𝑅𝑖𝑖𝑐𝑐𝑖𝑖 − 𝛷𝛷𝑖𝑖1, (78) 
𝑑𝑑�̇𝑖𝑖2 = −𝜂𝜂𝑖𝑖2�̇�𝑅𝑖𝑖𝑐𝑐𝑖𝑖 − 𝛷𝛷𝑖𝑖2, (79) 
𝑏𝑏�̇𝑖𝑖 = −𝜂𝜂𝑖𝑖𝑐𝑐𝑖𝑖(𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖) − 𝛷𝛷𝑖𝑖 , (80) 
𝜀𝜀̂�̇�𝑖 = 𝜂𝜂0|𝜎𝜎|, (81) 
𝜀𝜀̂�̇�𝑏𝑖𝑖 = 𝜂𝜂0|𝜎𝜎||𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛼𝛼𝜎𝜎|, (82) 
𝜀𝜀̂�̇�𝑠 = 𝜂𝜂0|𝜎𝜎|�𝑇𝑇𝑖𝑖0�, (83) 
�̇�𝛿 = −𝜂𝜂0𝛿𝛿, (84) 

where 𝜂𝜂i1 > 0, 𝜂𝜂i2 > 0, 𝜂𝜂i > 0, 𝜂𝜂0 > 0, 𝛿𝛿(0) > 0, Φi1, Φi2, and Φi is defined as follows: 

𝛷𝛷𝑖𝑖1 = �
0     𝑠𝑠𝑖𝑖 |𝑑𝑑𝑖𝑖1| < 𝑀𝑀𝑖𝑖1,

𝜂𝜂𝑖𝑖1𝜌𝜌0
|𝑑𝑑𝑖𝑖1𝑅𝑅𝑖𝑖𝑐𝑐𝑖𝑖|
𝑑𝑑𝑖𝑖1

 𝑐𝑐𝑡𝑡ℎ𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐𝑅𝑅,  (85) 

𝛷𝛷𝑖𝑖2 = �
0     𝑠𝑠𝑖𝑖 |𝑑𝑑𝑖𝑖2| < 𝑀𝑀𝑖𝑖2,

𝜂𝜂𝑖𝑖2𝜌𝜌0
|𝑑𝑑𝑖𝑖2𝑅𝑅𝑖𝑖𝑐𝑐𝑖𝑖|
𝑑𝑑𝑖𝑖2

 𝑐𝑐𝑡𝑡ℎ𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐𝑅𝑅,  (86) 

𝛷𝛷𝑖𝑖 = �
0            𝑠𝑠𝑖𝑖 |𝑏𝑏𝑖𝑖| < 𝑀𝑀𝑖𝑖 ,

𝜂𝜂𝑖𝑖𝜌𝜌0
|𝑐𝑐𝑖𝑖(𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖)|

𝑏𝑏𝑖𝑖
 𝑐𝑐𝑡𝑡ℎ𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐𝑅𝑅,

 (87) 

where 𝜌𝜌0 ≥ 1. 
Next, we will carry out the proof of the theorem discussed below. 
 
Theorem 3 
Examine the control law in Equation (72). If all assumptions in 1-3 can be fulfilled, the system 
uses the control law expressed in Equation (73), that is, the nominal controller, and then, 
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combined with the adaptation law described by the formula in Equations (77)–(83), the result for 
the whole system will be able to guarantee the following properties: 
1) It can be proven that the estimated values of all parameters are bounded and at any time the 

values fulfill |𝑑𝑑𝑖𝑖1| < 𝑀𝑀𝑖𝑖1, |𝑑𝑑𝑖𝑖2| < 𝑀𝑀𝑖𝑖2, and |𝑏𝑏𝑖𝑖| < 𝑀𝑀𝑖𝑖 . 
2) All state variables and the manipulated variable will be bounded, i.e., 𝜃𝜃,  𝑢𝑢 ∈ 𝐿𝐿∞. 
3) Decreasing values for tracking errors and their derivatives will, at least, be asymptotically 

towards zero, i.e., 𝑅𝑅𝑖𝑖(𝑡𝑡) → 0 as 𝑡𝑡 → ∞ for 𝑠𝑠 = 1,  2. 
 
Proof 
To validate that |𝑑𝑑𝑖𝑖1| < 𝑀𝑀𝑖𝑖1, we will define a Lyapunov function as follows: 

𝑉𝑉𝑖𝑖1 =
1
2
𝑑𝑑𝑖𝑖12 . (88) 

Then: 
�̇�𝑉𝑖𝑖1 = 𝑑𝑑𝑖𝑖1�̇�𝑑𝑖𝑖1. (89) 

Implementing the adaptation law in Equation (77) will change Equation (88) to be as follows: 
�̇�𝑉𝑓𝑓 = −𝜂𝜂𝑖𝑖1𝑑𝑑𝑖𝑖1𝑅𝑅𝑖𝑖𝑐𝑐𝑖𝑖 − 𝑑𝑑𝑖𝑖1𝛷𝛷𝑖𝑖1. (90) 

For the case |𝑑𝑑𝑖𝑖1| > 𝑀𝑀𝑖𝑖1 and using (84) one can obtain: 
�̇�𝑉𝑖𝑖1 = −𝜂𝜂𝑖𝑖1𝑑𝑑𝑖𝑖1𝑅𝑅𝑖𝑖𝑐𝑐𝑖𝑖 − 𝜂𝜂𝑖𝑖1𝜌𝜌0|𝑑𝑑𝑖𝑖1𝑅𝑅𝑖𝑖𝑐𝑐𝑖𝑖|, (91) 

which can be simplified to: 
�̇�𝑉𝑖𝑖1 ≤ −𝜂𝜂𝑖𝑖1(𝜌𝜌0 − 1)|𝑑𝑑𝑖𝑖1𝑅𝑅𝑖𝑖𝑐𝑐𝑖𝑖|. (92) 

Because 𝜌𝜌0 ≥ 1 by definition, thus, �̇�𝑉𝑓𝑓 ≤ 0, and one concludes that |𝑑𝑑𝑖𝑖1| < 𝑀𝑀𝑖𝑖1, will always be 
fulfilled for all time if we select ‖𝑑𝑑𝑖𝑖1(0)‖ ≤ 𝑀𝑀𝑖𝑖1. In the same way, one can prove that |𝑑𝑑𝑖𝑖2| <
𝑀𝑀𝑖𝑖2 and |𝑏𝑏𝑖𝑖| < 𝑀𝑀𝑖𝑖 . 
By utilizing the control law stated in (72), Equation (60) can be re-described as follows: 

�̇�𝑐𝑖𝑖 = 𝑑𝑑𝑖𝑖2∗ �̇�𝑅𝑖𝑖 + 𝑑𝑑𝑖𝑖1∗ 𝑅𝑅𝑖𝑖 + 𝑏𝑏𝑖𝑖∗𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑖𝑖∗𝑇𝑇𝑖𝑖𝑟𝑟 , (93) 
which will be described with the following representation: 

�̇�𝑐𝑖𝑖 = 𝑑𝑑𝑖𝑖2∗ �̇�𝑅𝑖𝑖 + 𝑑𝑑𝑖𝑖1∗ 𝑅𝑅𝑖𝑖 + �𝑏𝑏𝑖𝑖∗ − 𝑏𝑏�𝑖𝑖�𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑏𝑏�𝑖𝑖𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑖𝑖∗𝑇𝑇𝑖𝑖𝑟𝑟 . (94) 
By utilizing (73), we represent the following equation: 

�̇�𝑐𝑖𝑖 = (𝑑𝑑𝑖𝑖2∗ − 𝑑𝑑�𝑖𝑖2)�̇�𝑅𝑖𝑖 + (𝑑𝑑𝑖𝑖1∗ − 𝑑𝑑�𝑖𝑖1)𝑅𝑅𝑖𝑖 + �𝑏𝑏𝑖𝑖∗ − 𝑏𝑏�𝑖𝑖�𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑖𝑖∗𝑇𝑇𝑖𝑖𝑟𝑟 − 𝛼𝛼𝑖𝑖𝑏𝑏�𝑖𝑖𝑐𝑐𝑖𝑖 . (95) 
Adding and subtracting 𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖∗𝑐𝑐𝑖𝑖 in (91), we can write: 

�̇�𝑐𝑖𝑖 = −𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖∗𝑐𝑐𝑖𝑖 + (𝑑𝑑𝑖𝑖2∗ − 𝑑𝑑�𝑖𝑖2)�̇�𝑅𝑖𝑖 + (𝑑𝑑𝑖𝑖1∗ − 𝑑𝑑�𝑖𝑖1)𝑅𝑅𝑖𝑖 + �𝑏𝑏𝑖𝑖∗ − 𝑏𝑏�𝑖𝑖�(𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖) + 𝑏𝑏𝑖𝑖∗𝑇𝑇𝑖𝑖𝑟𝑟 . (96) 
With (66)–(68), (95) becomes: 

�̇�𝑐𝑖𝑖 = −𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖∗𝑐𝑐𝑖𝑖 + 𝑑𝑑�𝑖𝑖2�̇�𝑅𝑖𝑖 + 𝑑𝑑�𝑖𝑖1𝑅𝑅𝑖𝑖 + 𝑏𝑏�𝑖𝑖(𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖) + 𝑏𝑏𝑖𝑖∗𝑇𝑇𝑖𝑖𝑟𝑟 . (97) 
And then, to assure the remainder of Theorem 3, we develop the following candidate Lyapunov-
like function: 

𝑉𝑉 =
1
2
𝑐𝑐𝑖𝑖2 +

1
2𝜂𝜂𝑖𝑖1

𝑑𝑑�𝑖𝑖12 +
1

2𝜂𝜂𝑖𝑖2
𝑑𝑑�𝑖𝑖22 +

1
2𝜂𝜂𝑖𝑖

𝑏𝑏�𝑖𝑖2  +
𝑏𝑏𝑖𝑖

2𝜂𝜂0
𝜀𝜀�̃�𝑖2 +

𝑏𝑏𝑖𝑖
2𝜂𝜂0

𝜀𝜀�̃�𝑏𝑖𝑖2 +
𝑏𝑏𝑖𝑖

2𝜂𝜂0
𝜀𝜀�̃�𝑠2 +

𝑏𝑏𝑖𝑖
2𝜂𝜂0

𝛿𝛿2, (98) 

where 𝜀𝜀�̃�𝑖 = 𝜀𝜀𝑖𝑖∗ − 𝜀𝜀�̂�𝑖, 𝜀𝜀�̃�𝑏𝑖𝑖 = 𝜀𝜀𝑏𝑏𝑖𝑖∗ − 𝜀𝜀�̂�𝑏𝑖𝑖, and 𝜀𝜀�̃�𝑠 = 𝜀𝜀𝑠𝑠∗ − 𝜀𝜀�̂�𝑠. 
 
The time derivative of (97) is: 

�̇�𝑉 = 𝑐𝑐𝑖𝑖�̇�𝑐𝑖𝑖 −
1
𝜂𝜂𝑖𝑖1

𝑑𝑑�𝑖𝑖1𝑑𝑑�̇𝑖𝑖1 −
1
𝜂𝜂𝑖𝑖2

𝑑𝑑�𝑖𝑖2𝑑𝑑�̇𝑖𝑖2 −
1
𝜂𝜂𝑖𝑖
𝑏𝑏�𝑖𝑖𝑏𝑏�̇𝑖𝑖 −

𝑏𝑏𝑖𝑖
𝜂𝜂0
𝜀𝜀�̃�𝑖𝜀𝜀̂�̇�𝑖 −

𝑏𝑏𝑖𝑖
𝜂𝜂0
𝜀𝜀�̃�𝑏𝑖𝑖𝜀𝜀̂�̇�𝑏𝑖𝑖 −

𝑏𝑏𝑖𝑖
𝜂𝜂0
𝜀𝜀�̃�𝑠𝜀𝜀̂�̇�𝑠 +

𝑏𝑏𝑖𝑖
𝜂𝜂0
𝛿𝛿�̇�𝛿. (99) 

With (96), (98) becomes: 
�̇�𝑉 = −𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖∗𝑐𝑐𝑖𝑖2 + �̇�𝑉1 + �̇�𝑉2, (100) 

where: 

�̇�𝑉1 = −𝑑𝑑�𝑖𝑖1𝑅𝑅𝑖𝑖𝑐𝑐𝑖𝑖 − 𝑑𝑑�𝑖𝑖2�̇�𝑅𝑖𝑖𝑐𝑐𝑖𝑖 − 𝑏𝑏�𝑖𝑖𝑐𝑐𝑖𝑖(𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖) −
1
𝜂𝜂𝑖𝑖1

𝑑𝑑�𝑖𝑖1𝑑𝑑�̇𝑖𝑖1 −
1
𝜂𝜂𝑖𝑖2

𝑑𝑑�𝑖𝑖2𝑑𝑑�̇𝑖𝑖2 −
1
𝜂𝜂𝑖𝑖
𝑏𝑏�𝑖𝑖𝑏𝑏�̇𝑖𝑖 , (101) 
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�̇�𝑉2 = −𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖∗𝑇𝑇𝑖𝑖𝑟𝑟 + 𝑐𝑐𝑖𝑖𝑇𝑇𝑖𝑖0 − 𝛼𝛼𝑖𝑖𝜀𝜀𝑖𝑖1 − 𝛼𝛼𝑖𝑖𝜀𝜀𝑖𝑖2 − 𝑐𝑐𝑖𝑖𝜀𝜀𝑖𝑖(𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖) −
𝑏𝑏𝑖𝑖
𝜂𝜂0
𝜀𝜀�̃�𝑖𝜀𝜀̂�̇�𝑖 −

𝑏𝑏𝑖𝑖
𝜂𝜂0
𝜀𝜀�̃�𝑏𝑖𝑖𝜀𝜀̂�̇�𝑏𝑖𝑖

−
𝑏𝑏𝑖𝑖
𝜂𝜂0
𝜀𝜀�̃�𝑠𝜀𝜀̂�̇�𝑠 +

𝑏𝑏𝑖𝑖
𝜂𝜂0
𝛿𝛿�̇�𝛿. 

(102) 

Using (77)–(79), (100) becomes: 
�̇�𝑉1 = 𝑑𝑑�𝑖𝑖1𝛷𝛷𝑖𝑖1 + 𝑑𝑑�𝑖𝑖2𝛷𝛷𝑖𝑖2 + 𝑏𝑏�𝑖𝑖𝛷𝛷𝑖𝑖 . (103) 

Let us now prove that 𝑑𝑑�𝑖𝑖1𝛷𝛷𝑖𝑖1 ≤ 0. If |𝑑𝑑�𝑖𝑖1| ≤ 𝑀𝑀𝑖𝑖1, 𝛷𝛷𝑖𝑖1 = 0, the conclusion is trivial. For |𝑑𝑑�𝑖𝑖1| ≥
𝑀𝑀𝑖𝑖1, since |𝑑𝑑𝑖𝑖1∗ | ≤ 𝑀𝑀𝑖𝑖1, one has 2𝑑𝑑�𝑖𝑖1𝑑𝑑�𝑖𝑖1 = |𝑑𝑑𝑖𝑖1∗ |2 − |𝑑𝑑�𝑖𝑖1|2 − |𝑑𝑑𝑖𝑖1∗ − 𝑑𝑑�𝑖𝑖1|2 ≤ 0. Thus 𝑑𝑑�𝑖𝑖1𝛷𝛷𝑖𝑖1 =
𝑑𝑑�𝑖𝑖1

|𝑎𝑎�𝑖𝑖1𝑒𝑒𝑖𝑖𝑠𝑠𝑖𝑖|
𝑎𝑎�𝑖𝑖1

≤ 0. In the same way, we can prove that 𝑑𝑑�𝑖𝑖2𝛷𝛷𝑖𝑖2 ≤ 0 and 𝑏𝑏�𝑖𝑖𝛷𝛷𝑖𝑖 ≤ 0. From the previous 
results, it can be concluded with the following formula: 

�̇�𝑉1 ≤ 0. (104) 
The boundedness of Equation (101) can be represented as follows: 

�̇�𝑉2 ≤ 𝑏𝑏𝑖𝑖|𝑐𝑐𝑖𝑖|{𝜀𝜀𝑠𝑠∗ |𝑢𝑢0| + 𝜀𝜀𝑖𝑖∗ + 𝜀𝜀𝑏𝑏𝑖𝑖∗ |𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖|} − 𝑐𝑐𝑖𝑖𝑏𝑏𝑖𝑖∗𝑇𝑇𝑖𝑖𝑟𝑟 −
𝑏𝑏𝑖𝑖
𝜂𝜂0
𝜀𝜀�̃�𝑖𝜀𝜀̂�̇�𝑖 −

𝑏𝑏𝑖𝑖
𝜂𝜂0
𝜀𝜀�̃�𝑏𝑖𝑖𝜀𝜀̂�̇�𝑏𝑖𝑖 

−
𝑏𝑏𝑖𝑖
𝜂𝜂0
𝜀𝜀�̃�𝑠𝜀𝜀̂�̇�𝑠 +

𝑏𝑏𝑖𝑖
𝜂𝜂0
𝛿𝛿�̇�𝛿. 

(105) 

From (75), (76), (80)–(83), (104) can be bounded as: 

�̇�𝑉2 ≤ 𝑏𝑏𝑖𝑖𝛿𝛿2𝜓𝜓 𝑅𝑅𝑥𝑥𝑒𝑒( − 𝜓𝜓) +
𝑏𝑏𝑖𝑖
𝜂𝜂0
𝛿𝛿�̇�𝛿. (106) 

From (83) and using the fact that 𝜓𝜓 𝑅𝑅𝑥𝑥𝑒𝑒( − 𝜓𝜓) ≤ 1, (105) can be reduced to: 
�̇�𝑉2 ≤ 0. (107) 

From (103), (106), and Assumption 1, (99) becomes: 
�̇�𝑉 ≤ −𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖2. (108) 

Finally, 𝑉𝑉 ∈ 𝐿𝐿∞, which shows the boundedness of the signals 𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑑𝑑�𝑖𝑖1(𝑡𝑡), 𝑑𝑑�𝑖𝑖2(𝑡𝑡), 𝑏𝑏�𝑖𝑖(𝑡𝑡), 𝜀𝜀�̃�𝑖1(𝑡𝑡), 
𝜀𝜀�̃�𝑖2(𝑡𝑡), 𝜀𝜀�̃�𝑏𝑖𝑖(𝑡𝑡), 𝜀𝜀�̃�𝑠(𝑡𝑡), and 𝛿𝛿(𝑡𝑡). The implication of this, in turn, causes the signals 𝜃𝜃𝑖𝑖(𝑡𝑡), 𝑇𝑇𝑖𝑖(𝑡𝑡), 
and �̇�𝑐𝑖𝑖(𝑡𝑡) to be bounded. 
 
4. Simulation Result and Discussion 
 The parameters of the manipulator robot in the simulation process are nominally determined 
as follows:  𝑚𝑚1 = 4 𝑘𝑘𝑔𝑔, 𝑚𝑚2 = 2 𝑘𝑘𝑔𝑔, 𝑙𝑙1 = 1 𝑚𝑚, 𝑙𝑙2 = 0.5 𝑚𝑚,   𝑔𝑔 = 9.8 𝑁𝑁/𝑘𝑘𝑔𝑔. In this paper, the 
robotic manipulator is desired to take the load from position one (𝜃𝜃1 = 0.5 rad and 𝜃𝜃2 = 1 rad) 
to position two (𝜃𝜃1 = 1 rad and 𝜃𝜃2 = 2 rad). In the first stage, the robotic manipulator shifts from 
the initial position to position 1 along a predetermined path for 2 seconds. It stays there for 1 s 
to take the load (𝑚𝑚𝑙𝑙𝑛𝑛𝑎𝑎𝑑𝑑 = 1 𝑘𝑘𝑔𝑔) and starts to shift from position one to position two at 𝑡𝑡 = 3 s. 
In the second stage, a perturbation (𝑡𝑡1 = 𝑡𝑡1 + 1000 𝑁𝑁) is added to link 1 at 𝑡𝑡 = 3.8 s and 
eliminated at 𝑡𝑡 = 4 s. From the explanation above, in total there are three dynamic turnarounds 
in the whole process activated by enlarging the load, entering the perturbation, and returning to 
normal when the perturbation is eliminated. 
 The resulting simulations are depicted in Figures 2–6. As manifested in Figure 2 and Figure 
3, the joint angles follow the prescribed path, and the developed controller forces the robotic 
manipulator to the prescribed position. 
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Figure 2. Tracking of joint 1 with the proposed controller. 

 

 
Figure 3. Tracking of joint 2 with the proposed controller. 

 

 
Figure 4. Control torque of joint 1 with the proposed controller. 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time(s)
jo

in
t 

an
gl

e 
1 

(r
ad

)

 

 
reference
tracking of joint 1

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

time(s)

jo
in

t 
an

gl
e 

2 
(r

ad
)

 

 
reference
tracking of joint 2

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

T
or

qu
e 

of
 li

nk
 1

 (
N

m
)

time(s)

Dimitri Mahayana, et al.

256



 
 

 
Figure 5. Control torque of joint 2 with the proposed controller 

 

 
Figure 6. Tracking error of joint angles with the proposed controller 

 
5. Conclusions 
 The developed controller technique is synthesized in five stages. In the first stage, the exact 
linearization using feedback is developed. In the second stage, the controller candidate designed 
by approximating the exact feedback controller is applied to the plant to replace the exact 
controller. In the third stage, the validation of the Lyapunov stability criteria for the candidate 
controller was carried out. In the fourth stage, the implementation of data-driven, robust adaptive 
control is realized. In the fifth stage, digital simulation is used to realize the candidate controller 
implementation. 
 The advantage of the designed controller is that it can apply well-established theory about 
robust adaptive control and the ease of application of an approximating state feedback controller. 
The developed adaptive control could push the robot manipulator to its prescribed path. The 
effectiveness of the developed adaptive control scheme is verified using digital simulations. 
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