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Abstract: One of the major drawbacks of the Genetic Algorithm (GA) is the computational 
complexity due to the random process at each step. A new initial population scheme integrated 
with a new crossover operator strategy is proposed to overcome this drawback. Before 
employing the crossover operation, permissible paths based on the c-obstacle concept were 
generated. To accelerate the convergence, the initial population was divided into two parents, 
i.e., the parent's chromosome containing the initial and goal positions and the parents composed 
of nodes from each extracted c-obstacle. Before applying the crossover operator, a filtering 
algorithm was performed to remove the uncorrelated offspring. A further c-obstacle inclusion 
made it more efficient; thus, only possible hoping nodes were considered. The random 
populations and random operations could be reduced efficiently using these steps. Finally, the 
numerical study method was tested. It is seen that the modified GA is faster and can reduce the 
total generation, and significantly yields an adaptive generation number.  
Keywords: Robot path planning, obstacle avoidance, genetic algorithm, initial population 
algorithm, crossover operator 
 
1. Introduction 
 Research on autonomous vehicles to assist human beings in daily activities is getting more 
accessible and advanced recently. One of the implications is the rapid development of 
autonomous vehicles as well as their hardware and software. In selecting appropriate supporting 
hardware, nano and micro-material technologies are developed to compensate for the size 
limitation with high performance [1]. On the other hand, software compatibility is inseparable 
from a hardware device. A control and intelligence system must be provided for this autonomous 
vehicle system.  
 Path planning is one of the intelligence system parts guiding the robot to find a path from the 
start to the goal point. The main issues of path planning are its feasibility, computational 
complexity, global optima, and adaptability. Adaptability relates to dynamic and static 
environments. 
 Many researchers used a specific approach to solve the path-planning problem. The main 
problem is the solution for collision-free path computation in dynamic environments [1]. The 
first approach is a grid-based algorithm. Some methods of the grid-based algorithm are the A* 
and the Greedy algorithms [2]. The approach employed for these methods was the global method 
to find feasible paths in the workspace [3]. Although the algorithm constructed a feasible path, 
it had a long computation time [4]. Therefore, normally, the approaches deal with the static 
environment. 
 The Artificial Potential Field is one of the well-known approaches based on obstacles as 
repelling force sources and the goals as attracting force sources [5]. The algorithm is appropriate 
for real-time implementation, for it only requires local gradient information without global 
information.  
 The main disadvantage of the potential field method is the local optima obtained from the 
total potential of repulsive and attractive forces. The superposition result cannot ensure the shape 
and direction of the total potential field [6]. A new approach to this algorithm is a superquadric 
artificial potential  function proposed  by Volpe and Khosla, applicable only to two obstacles at  
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most [6]. Another proposed method, which is based on a probabilistic path planner (PPP) with 
artificial potential fields (APF), can validate the theoretical concepts into simulations using fuzzy 
rules for obstacle avoidance [7]. However, the solution requires a few moments of computation 
time. 
 Evolutionary computation is another solution to the path planning problem. One of the 
examples is particle swarm optimization (PSO). It is inspired by the social behavior of flocking 
birds seeking food; the solutions to the optimization problem are the birds seeking out food, 
called particles. The process is as the particle's progressive moves while seeking out food. Each 
particle has its velocity and is computed by a fitness function. All particles would move until the 
optimal or near-optimal solutions are obtained. Although the traditional PSO can solve the 
optimization problem, it encounters some disadvantages, such as premature convergence and 
stochastic stagnation [5]. Another approach to evolutionary computation is ant colony 
optimization (ACO) [7][8][9]. The idea underlying this method is the ant's behavior within its 
pheromones for seeking out food. In the initial stages of the absence of pheromone guidelines, 
the path is in random search where ants would have the same probability to all paths. Regarding 
the path distance, the shortest path would have higher concentrations on the pheromone than the 
longest. On the other hand, this algorithm has been modified in submarine path planning [8] and 
hair-insertion robot arm path planning [9]. However, due to the vast search space, each individual 
in the ACO can converge on the local best solution, and ACO needs a lengthy search time to 
solve a problem [10]. 
 The research conducted by Ali has found the effectiveness of genetic algorithms (GAs) in 
the study of collision-free path planning compared to a conventional A*[11]. The result indicates 
that GA has a better performance both in the distance traveled and in computation time. Chen 
and Zalzala compared the GA with the modified A* in mobile robot path planning. The result 
shows that the modified A* method obtains less time complexity than the GA but falls into some 
local optima [10]. On the other hand, the probabilistic optimization approach based on GA 
always generates global optimum or near global optimum solutions [11]. Long has modified the 
Genetic Algorithm into the simulation of path planning for an unmanned surface vehicle by 
manipulating fitness function, crossover probability, and mutation probability to make the 
convergence in the algorithm [12]. However, due to the random selection of populations and 
operators, GA lacks disadvantages, i.e., computationally expensive, requires large memory 
spaces when dealing with dynamic and large-sized environments, and is time-consuming [13].  
Another work done by Kwaśniewski et al. [14] proposed GA with obstacle avoidance. Because 
they worked for space exploration, the obstacle has to be arbitrary. However, it needs a lot of 
computing power due to the nature of the GA and the necessity for high-level decision-making. 
Mane et al. [15] claimed to develop a better GA Algorithm. However, their methods lack the 
theoretical concept and proof of their effectiveness. Finally, Rahmaniar and Rakhmania [16] 
proposed another method based on GA for a dynamic environment. Apart from their method, 
which lacks a proven concept, the methods used much computing power by dividing their 
scenario into several steps, i.e., local search, local optimization, smoothing, etc.  
 Thus, this research aims to reduce the GA random process to reduce the computation time 
and complexity. In order to elaborate the proposed method, the environment modeling, including 
GA representation and the main contribution of GA improvement, is derived and presented in 
the second section. The next part discusses how to prove the concept and how the results can be 
obtained. The comparison with the previous method is tested as well. The last section gives a 
conclusion and opportunity for future work. 
 
2. Proposed Method 
 This work focuses on making the path planning algorithm that converges to a static goal 
while considering safety and distance factors. In brief, the proposed path planning algorithm is 
built to construct a feasible path while recursively choosing the shortest path and avoiding 
obstacles during movement toward the goal point. 
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A. Environment Representation 
 In this paper, the environment representation was established by using a grid-based model. 
This representation is easy to calculate, especially when the distance or position is needed 
instantly. This scheme has been used extensively using many works, such as in [3]. In literature, 
the grid-based representation can be represented in two ways, i.e., by an orderly numbered or by 
a coordinates system. These choices should consider how many parameters are needed to model 
the robot and environment uniquely. For instance, in two dimensions of space, the grid-based 
environment is divided into the x and y axis only, and it neglects the information about the robot's 
orientation. 
 In this work, the grids were generated for later use when determining the feasible paths so 
that the numbering carried the coordinate information and served as a flag for obstacles. For that 
reason, the algorithm was constructed as follows: 
 

Algorithm 1 (Grid generation) 
Step 1: determine the number of grids in the horizontal and vertical directions: =(m,n)  
Step 2: compute the distance between the grid in the horizontal and vertical directions: 
=(d_x/m, d_y/n) 
Step 3: compute the center of each grid as follows 
 For i=1 to m 
 
 
 For j=1 to n 
 
 
 
 C_x(i,j) = d_x/(2m)+ (d_x/n)*i 
 
 
 
 C_y(i,j) = d_y/(2n)+ (d_y/n)*j 
Step 4: generate the grid. The grids are square whose centers are (C_x(i,j) , C_yi,j)) 
∀𝑖𝑖 ∈ {1,⋯𝑚𝑚}, 𝑗𝑗 ∈ {1,⋯ ,𝑛𝑛}  
Step 5: number the grid as follows 
 For i=0 to n 
 
 
 For j=0 to m-1 
 
 
 
 N(i,j)=i+j 
It would generate the number 0 for the grid in the upper left corner to the number n+m-
1 in the grid in the lower right corner. 

 
 The illustration of Algorithm 1 when m=n=10 is presented in Fig. 1a and 1b. In Fig. 1a, the 
robot is assumed to be able to move in all directions, either x or y. The robot's position could be 
determined by its grid number. In the figure, the robot's initial and goal coordinates have been 
set to be the first the last grids. Moreover, obstacles in the environment are denoted by darker 
grids. The robot was equipped with sensors to detect obstacles as it traversed the environment 
between the initial and the goal positions. This work focuses on offline path planning; thus, the 
robot has been given prior knowledge of the environment model.  
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Figure 1. Example model of the environment 
 
 The following algorithms were proposed to determine the grid occupied by obstacles and the 
permissible cell to explore. 
 
Definition 1. For current robot position 𝑝𝑝 ∈ {0,⋯ (𝑚𝑚 + 𝑛𝑛 − 1)} , the surrounding cells are 
defined as 𝑝𝑝𝑠𝑠 = {𝑝𝑝 − 𝑚𝑚 − 1, 𝑝𝑝 − 𝑚𝑚, 𝑝𝑝 − 𝑚𝑚 + 1, 𝑝𝑝 − 1, 𝑝𝑝 + 1, 𝑝𝑝 + 𝑚𝑚 − 1, 𝑝𝑝 + 𝑚𝑚, 𝑝𝑝 + 𝑚𝑚 + 1}.  
It should be noted that the surrounding cells for 𝑝𝑝 < 𝑚𝑚 robot position were less than eight cells 
because some cells might lie outside the environment.  
 

Algorithm 2 (Obstacle flag) 
Step 1: Determine the initial position of the robot in the environment 𝑝𝑝 ∈
{0,⋯ (𝑚𝑚 + 𝑛𝑛 − 1)} 
Step 2: Mark the grid with the obstacle  
 For i=p to (m+n-1) 
 
 
 If Grid(i) has the obstacle 
 
 
 Flag(p)=1;  

 
Definition 2. The surrounding cell is considered free if and only if it does not belong to the 
obstacle, i.e., the flag is zero.  
 The algorithm was developed from Definitions 1 and 2 to mark all permissible flags. Later, 
this algorithm was used to choose the offspring to efficiently reduce the computational burden.  
 
B. Path optimization using Genetic Algorithm 
 In this sub-section, the main components of GA, i.e., GA formalism of the solution space, 
GA operator to generate a new and possibly better solution from solution space, and fitness 
function, were applied to evaluate the solution domain to obtain better offspring. The main 
components are explained as follows. The binary coded chromosome, as used by literature such 
as in [17], [18], was not used. 
 
Definition 3. Chromosome type 1 contains an initial cell, at most one hoping cell, and a goal cell. 
The chromosome is coded in number as mentioned in Algorithm 1, step 5. The hoping cell is 
used as a waypoint between the initial and goal nodes necessarily included in the path.  
 
Definition 4. Chromosome type 2 contains obstacle positions. 
An example of the parents' chromosome that contains the initial position and the goal node is 
shown in Figure 2. 
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Fig. 2a. shows an example of the parent's chromosome that contains 0 as the initial position and 
99 as the goal position, categorized as a type 1 chromosome. It still belongs to type 1 but has 75 
as the hoping point, as shown in Fig. 2b. In Fig. 2c.; the obstacle information addition can be 
added as supplementary genes. The other is seen that the obstacles appear at the positions of 2, 
4, 6, 8, and 10. 
 

 
Figure 2. The example of a parent's chromosome 

 
C. Population Initialization 
 Normally, the population is generated randomly. However, in this research, the proposed 
method was generated differently using a deterministic method for population initialization. The 
population was initiated by two individuals as parents. It differs from the conventional GA, 
where the population is used as the parent itself. Therefore, it means that the population was 
generated without selecting parents.  
 

Algorithm 3 (population initialization) 
Step 0: initialization p=0, initial time t=tinit, maximum 
time=tmax, determine start position s and goal position g, 
set a single initial population𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 as seen in Fig. 2a. 
Step 1: Determine the initial position of the robot in the 
environment 𝑝𝑝 ∈ {0,⋯ (𝑚𝑚 + 𝑛𝑛 − 1)} 
Step 2: for p=0 to (m+n -1) 
 If 𝑠𝑠 = 𝑔𝑔 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,  
 if flag(p)=0 then grows typ 3e 1 individual as next 
hoping genes by adding p into the original chromosome 
 else grows type 2 individual by adding p as the next 
obstacle gene 
 Add a new individual into�𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� 
 �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� = �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� 
Step 3: jump to step 2 until t=tmax 

 
The used set notation denoted as {⋅} means the collection of individuals.  
 
 Algorithm 3 can generate all possible individuals with the type 1 chromosome as the initial 
population and those with the type 2 chromosome as a set of possible obstacles. However, some 
type 1 individuals are not suitable to be chosen as the path. It is the challenge of the developed 
algorithm to choose the proper ones and to decide the best path.  
In Algorithm 3, �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� is a set of parent's members while�𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� is a set of population's members. 
Initially, it only has one population, as presented in Fig 2a. As computation occurs, the 
population number grows until the maximum allowable time is reached.  
For practical consideration, when the robots and obstacles dimension is the matter and when the 
robot's maneuverability cannot be neglected, the concepts of c-obstacle and filtering are 
introduced in the following sections. 
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D. Adoption of C-obstacle for safe path generation 
 The c-obstacles concept is used in literature to make the abstraction of point mass robots 
possible. It enables them to concentrate the work on path planning design. Considering the 
degree of the robot's freedom, the safety nodes surrounding the obstacle are generated to ensure 
the robot's safety for not hitting the obstacles. For curious readers, please refer to other works 
such as in [19], [20]. The safety node was obtained by considering the two dimensions of the 
robot, such as adding the robot dimension radius to the obstacle. The robot would be safe if the 
distance between the robot and the obstacle is equal to or bigger than the radius. In order to 
generate the c-obstacle, the outer nodes of the obstacle had to expand at a certain distance.  
 
Definition 5. Surrounding cells are considered the c-obstacle if at least one flag in Algorithm 2 
contains an obstacle flag.  
 
The construction of c-obstacles is shown in Algorithm 4.  
Fig. 3 shows an example of the determination of the c-obstacle. If n is the obstacle, the 
surrounding cells are considered c-obstacle if at least 1 cell contains 1 valued flag. 
 

Algorithm 4 (Construction of c-obstacles) 
Step 1: Position of obstacle in the environment 𝑜𝑜 ∈ {0,⋯ (𝑚𝑚 + 𝑛𝑛 − 1)} 
Step 2:  For i in 8 surrounding cells 
 
 If Grid(i) has an obstacle 
  
 Flag(i)=1;  
  
 surrounding cells are c-obstacle 
 
 Else surrounding cells are not an obstacle 

 

 
Figure 3. C-obstacle construction 

 
 When a c-obstacle was applied, a parent with a type 2 chromosome would grow in size. The 
example of the calculation can be explained as follows. For instance, if n=11 and the axis value 
is 9 in Fig. 1, by using (4), then n1=1, n2=2, n3=3, n4=10, n5=12, n6=19, n7=20, and n8=21. 
The c-obstacle operation yielded an expanded node for each gene. Therefore, the chromosome 
of the supporting parent would be combined with the original node and expanded node. The 
process is illustrated in Fig. 4. 
 Fig. 4a is an example of the supporting parent's original chromosome filled with nodes 12 
and 13. After the c-obstacle operation, the result in Fig. 4b obtains a chromosome fulfilling the 
original and extended nodes. The generated c-obstacle was obtained from Algorithm 3.  
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Figure 4. Original node (a) Expanded node (b) 

 
E. Filtering 
 The filtering method is the main part to eliminate the possibility of obtaining the infeasible 
path before GA operations, i.e., crossovers and mutation, as explained later. Before the crossover 
process, the proposed GA would ensure that the supporting parents' candidates have the only 
gene that avoids an obstacle. As explained later, this would enable the fitness function to be 
applied efficiently. After filtering is performed, several individuals can be removed. Thus, only 
the ones with the best genes are valid for crossover and mutation operations. The filtering is 
described as a mathematical equation as follows 
 𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−1 ± (cos(𝛼𝛼) ∗ 𝑘𝑘) 
 𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 ± (sin(𝛼𝛼) ∗ 𝑘𝑘). (1) 
 
where k is a constant determining the desired distance in a specific time, and alpha is derived 
from (4). It is shown that if the extrapolation node equals to one of the points of the obstacle, the 
node is not the gene candidate. Otherwise, if the node is not a member of an obstacle, then the 
value is one of the candidate genes that the crossover operator would apply. The filtering method 
would reduce candidate genes significantly. The possibly chosen genes would have a probability 
of 1, and the genes with a probability equal to 0 would not be selected. 
After going through processes, the last task of GA is a mutation which refers to [3]. The result 
is a new offspring used as one of the temporary parents, which iterates until reaching the goal 
position. The operation details are described in the next sections. 
 
F. GA Operators 
 A roulette wheel was used to select parents from a population to enable the formal operation 
used in the GA. This method is conventional but powerful as also demonstrated in [21]. In a 
roulette wheel, each individual was represented by a space proportionally corresponding to its 
fitness. By repeatedly spinning the roulette wheel, individuals were chosen using stochastic 
sampling, and the one with the bigger fitness function would be selected more. The random 
process of the population obtained two possible conditions, i.e., feasible and infeasible solutions. 
The feasible and infeasible solutions could be improved by using a GA operator. For the 
infeasible solution, sometimes the solution was far from the global optimum, and then it would 
spend more time finding the optimum solution [22] [23]. On the other hand, the wide range of 
solution space would make the random process reduces the performance of GA to find the global 
optimum solution. One of the contributions of this research is a new parent selection by 
narrowing the solution space to enable the random process to become efficient. Fig. 5 is an 
example of a crossover gene and operator. 
 
Crossover and mutation operator: The idea behind the crossover operator is the combination of 
two parents to obtain two sets of offspring. Normally, the crossover probability is a crisp set, i.e., 
a set with an occurrence probability of either 0 or 1 [21]. This study applied single-node 
crossover, which swapped the genes of two chromosomes, as seen in Fig. 5. It should be noted 
that the crossover operation is only for one parent. As mentioned before, the crossover operator 
is applied after filtering is applied. It would reduce the possibility of obtaining a worse result 
than the parents by omitting one or more chromosome genes with an infeasible path. 
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Figure 5. The example of crossover gene (a) The result of crossover operator (b) 

 
1. Crossover operator 
The crossover operator is necessary for any GA approach. In this work, the main parent 
chromosome with the candidate genes in supporting parents. The crossover is operated when the 
airspace is against obstacles. 
  

Algorithm 5 (Crossover operator) 
Step 1: parent Initialization, let 𝑖𝑖 = 1, i-th parent 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) ∈ �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝�, k=number of populations 
Step 2: remove non-feasible individuals using Filtering 
 For i=1 to k 
 If Filter (𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)) = 1, �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� = �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� − 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) 
Step 3:  For i=1 to k 
 For j=1 to k 
  If 
𝑖𝑖 ≠ 𝑗𝑗 
 
 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖, 𝑗𝑗) = {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 || 𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) } 
 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖, 𝑗𝑗) 
 {𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛} = �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� − 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) − 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗) + 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 
In Algorithm 5 the selected gene is obtained by calculating the fitness function of each expanded 
node. The best fitness value of a particular gene would be selected as the hoping node in the 
offspring nodes. 
 
2. Mutation operator: Usually, the mutation operator has less computational burden than the 
crossover operator. Thus, the common method is implemented in the literature. This method can 
be seen, for example, in [2].  
 

Algorithm 6 (Mutation operator) 
Step 1: parent Initialization, let 𝑖𝑖 = 1, i-th parent 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) ∈
�𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝�, k=number of populations 
Step 2: For i=random number from 1 to k 
 For j in surround cells 
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 || max �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑛𝑛𝑗𝑗�� 

         {𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛} = �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� − 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) − 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗) + 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
 
 It is seen that the mutation operator takes the best offspring by comparing the mutated cells 
with the best fitness of surrounding cells. The proposed mutation strategy considers all the free 
nodes adjacent to the mutation node instead of randomly selecting a node one by one. It indicates 
that this proposed method neglects the node far away from the mutation node. The concept is to 
avoid the divergent method at the global optimum and to increase the computational cost due to 
unselected random nodes. The mutation method evaluates the node according to the fitness value 
of the total path instead of the movement direction through the mutated node. 
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Generally, the mutation is a process of random small changes in a gene. Mutation has a smaller 
probability than crossover to avoid obtaining a change of individual significantly.  
Regarding the mutation operator, in this research, only one parent in the total population is 
possible for the mutation operation. As the mutation aims to obtain a better individual, a proper 
fitness function is vital to speed up the convergence.  
 
G. Fitness Function and offspring selection 
 As mentioned before, the fitness function is the success key for the GA to find the optimum 
solution of path planning from the start to the target node. In this work, the optimal path is defined 
to be the shortest and the safest path. This approach is very common in the path planning 
problem. The proposed fitness function is as follows 
 

 𝑓𝑓(𝑝𝑝) = �
∑ 𝑑𝑑(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖+1)𝑛𝑛−1
𝑖𝑖=1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠    

∑ 𝑑𝑑(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖+1)𝑛𝑛−1
𝑖𝑖=1 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (2) 

 
where 𝑝𝑝 ∈ �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝�.  
The flowchart of the modified GA is presented in Fig. 6. 

 
Figure 6. Flowchart of modified GA 

 
 The penalty added to the fitness function must be greater than the maximum path length of 
the environment. If this condition is met, the algorithm would be run iteratively until the penalty 
is omitted by searching for an appropriate chromosome. In the above function, the distance 
between nodes is formulated as 
 𝑑𝑑(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖+1) = �(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2 (3) 
where pi is the ith genes of the chromosome, n is the length of the chromosome, d is the distance 
between two points, xi and yi are the robot's current pose in the x and y axis, xi+1 and yi+1 are the 
next robot pose in x and y-axis. The robot's direction can be obtained by using the following 
formula 
 𝛼𝛼 = tan−1 �𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑦𝑦𝑖𝑖

𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑥𝑥𝑖𝑖
� (4) 
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 The pose of ygoal and xgoal is the destination position. It is shown in (3) that the objective 
function is defined as the sum of distances between each node in a path. The shortest distance 
path with obstacle avoidance is the best individual for global optima solution. 
 
H. Complete GA algorithm 
 The complete block diagram of the proposed path planning approach using GA is shown in 
Fig. 6. Generally, it is very similar to common GA.  However, each block has unique features 
that enable efficient computation and guarantee convergence.  
 The algorithm started by initializing the population containing individuals with type 1 or type 
2 chromosomes. Among those individuals, using c-obstacle and filtering, only a few were 
selected as eligible parents. It would enable efficient computational burden as well as speed up 
the convergence. Finally, the algorithm would undergo a similar process as common GA, such 
as crossovers, mutations, etc.  
 
3. Results and Discussion 
 Some experiments were conducted to test the performance of the proposed GA. For 
simplicity, the parameter k is set to 1 unit. The experiment is divided into two scenarios according 
to the environment typ. First, the method was applied to a non-obstacle environment. Second, 
the environment that was similar to the previous improved GA proposed by Ali et al. was used 
as the benchmark. In the first setting, the robot moved from the initial to the final destination 
with no obstacle in between. Despite the simple and trivial solution, it shows that the algorithm 
functions well, as seen in Fig. 7. 

 
Figure 7. The proposed method for a non-obstacle environment 

 
 For the non-obstacle environment, since the global optimum solution of a non-obstacle 
environment was just a line path and the main parents could solve it, the modified GA only 
needed one generation to solve the global optimal problem. In Fig. 7, the parents contain gene 1 
and 100, which indicates the initial and goal position, respectively. 
 Fig. 8. shows the 16x16 grid environment with the obstacles depicted in shaded areas. The 
initial node is set to 0 and the goal node is set to 15. GA runs with the proposed filtering and 
crossover operator. The experiments give results as shown in Fig. 8a and 8b. In Fig. 8a, the 
method approached using global methods to find feasible paths in the workspace is applied. As 
shown in Fig 8b, the proposed method yields a different path from the previous research. The 
path length is 28.35, which is longer than the one with 27.82 in the previous research. Despite 
the path length, the generation results differently from the previous method.  
 The comparison is shown in Table I, which proves that the modified GA reduces the average 
generation number significantly. So, the proposed modified GA is even better than the method 
proposed by Tuncer and Yildirim in reducing the average generation number. On the other hand, 
the proposed method gives more stable results according to a 100 percent optimal solution. 
Moreover, it minimizes the computation used in GA and improves precision.  
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Table 1. Experimental Result in Fig. 8. 

 
  
 Although the proposed method can solve the global optimum problem, it neglects non-
holonomic constraints. Fig. 8 shows that the result is in a sharp pattern, and cannot be 
implemented for the non-holonomic robot. Thus, the method continues with a smoothing curve 
algorithm such as a B-spline curve. On the other hand, the proposed method based on a grid 
environment merely solves a discrete problem. The real problems are that all the systems must 
be computed continuously. 
 

 
Figure 8. The proposed method for a non-obstacle environment 

 
 Fig. 9 shows the generation number of optimal solutions against the total of the obstacle 
avoidance. It can be concluded that the generation number is affected by the number of obstacles 
the robot passes. The generation number merely depends on the obstacles that should be passed 
instead of the obstacle number in the environment. Compared to other methods, the modified 
GA has an adaptive generation number until it converges to an optimal solution. 

 
Figure 9. Total generation vs. total obstacle avoidance 

 
 One of the drawbacks arising in Fig. 9 is that the method would have a high computational 
cost when the robot encounters a large obstacle number. Otherwise, this method is very effective 
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for a small obstacle number. Therefore, the method has an opportunity to be used in the real-
time system platform. 
 
4. Conclusion 
 This research has three contributions related to the modified GA. The first is the population 
initialization, the second is the filtering method, and the third is the crossover operator. The initial 
population is divided into two individuals, i.e., the chromosome filled with the initial and goal 
nodes and the chromosome containing coordinates surrounding the obstacles. The coordinates 
surrounding the obstacles are based on the c-obstacle to compensate for the robot's dimension. 
Then filtering is used to choose only the feasible path. After that, the supporting parents would 
be added as a hoping node with the gene to obtain the optimum path. The proposed method in 
this work is that the supporting parents need a constant gene in the chromosome, but the main 
parent would change in length based on the generated hoping node.  
 The mutation is set using the efficient roulette algorithm combined with the c-obstacle 
concept that checks all the free nodes surrounding the mutation node. The method compares all 
the fitness function values and chooses the best solution. The node that has the highest fitness 
function is selected. In order to prove the concept, the simulation experiment is conducted using 
Matlab software with two kinds of environments: The environment that is non-obstacle and the 
environment similar to the previous improved GA studies in the literature. For a non-obstacle 
environment, the method meets optimum results due to the linear path. The result with the 
obstacle environment obtains a longer path for the environment than the previous GA. However, 
the total generation number of the modified GA is less than the previous method. The total 
generation number is influenced by the number of obstacles the robot should pass. If the total 
number of obstacles the robot passes is increased, then the total generation number would also 
increase.  The GA has an adaptive generation number based on the total obstacles in this paper.  
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