
 International Journal on Electrical Engineering and Informatics - Volume 15, Number 3, September 2023

Safe Robot Path Planning and Obstacle Avoidance
using Efficient Genetic Algorithm

Oyas Wahyunggoro1, Hendri Himawan Triharminto2 and Adha Imam Cahyadi3

1.3Department of Electrical Engineering and Information Technology, Faculty of Engineering,
Universitas Gadjah Mada, Jl. Grafika No 2 Yogyakarta 55281, Indonesia 2Indonesian Airforce

Academy, Jalan Solo-Yogyakarta 55281, Indonesia
oyas@ugm.ac.id, adha.imam@ugm.ac.id, hendri@aau.mil.id

Abstract: One of the major drawbacks of the Genetic Algorithm (GA) is the computational
complexity due to the random process at each step. A new initial population scheme integrated
with a new crossover operator strategy is proposed to overcome this drawback. Before
employing the crossover operation, permissible paths based on the c-obstacle concept were
generated. To accelerate the convergence, the initial population was divided into two parents,
i.e., the parent's chromosome containing the initial and goal positions and the parents composed
of nodes from each extracted c-obstacle. Before applying the crossover operator, a filtering
algorithm was performed to remove the uncorrelated offspring. A further c-obstacle inclusion
made it more efficient; thus, only possible hoping nodes were considered. The random
populations and random operations could be reduced efficiently using these steps. Finally, the
numerical study method was tested. It is seen that the modified GA is faster and can reduce the
total generation, and significantly yields an adaptive generation number.
Keywords: Robot path planning, obstacle avoidance, genetic algorithm, initial population
algorithm, crossover operator

1. Introduction
 Research on autonomous vehicles to assist human beings in daily activities is getting more
accessible and advanced recently. One of the implications is the rapid development of
autonomous vehicles as well as their hardware and software. In selecting appropriate supporting
hardware, nano and micro-material technologies are developed to compensate for the size
limitation with high performance [1]. On the other hand, software compatibility is inseparable
from a hardware device. A control and intelligence system must be provided for this autonomous
vehicle system.
 Path planning is one of the intelligence system parts guiding the robot to find a path from the
start to the goal point. The main issues of path planning are its feasibility, computational
complexity, global optima, and adaptability. Adaptability relates to dynamic and static
environments.
 Many researchers used a specific approach to solve the path-planning problem. The main
problem is the solution for collision-free path computation in dynamic environments [1]. The
first approach is a grid-based algorithm. Some methods of the grid-based algorithm are the A*
and the Greedy algorithms [2]. The approach employed for these methods was the global method
to find feasible paths in the workspace [3]. Although the algorithm constructed a feasible path,
it had a long computation time [4]. Therefore, normally, the approaches deal with the static
environment.
 The Artificial Potential Field is one of the well-known approaches based on obstacles as
repelling force sources and the goals as attracting force sources [5]. The algorithm is appropriate
for real-time implementation, for it only requires local gradient information without global
information.
 The main disadvantage of the potential field method is the local optima obtained from the
total potential of repulsive and attractive forces. The superposition result cannot ensure the shape
and direction of the total potential field [6]. A new approach to this algorithm is a superquadric
artificial potential function proposed by Volpe and Khosla, applicable only to two obstacles at

 Received: February 1st, 2022. Accepted: August 29th, 2023
 DOI: 10.15676/ijeei.2023.15.3.2

387

mailto:oyas@ugm.ac.id
mailto:adha.imam@ugm.ac.id
mailto:hendri@aau.mil.id

most [6]. Another proposed method, which is based on a probabilistic path planner (PPP) with
artificial potential fields (APF), can validate the theoretical concepts into simulations using fuzzy
rules for obstacle avoidance [7]. However, the solution requires a few moments of computation
time.
 Evolutionary computation is another solution to the path planning problem. One of the
examples is particle swarm optimization (PSO). It is inspired by the social behavior of flocking
birds seeking food; the solutions to the optimization problem are the birds seeking out food,
called particles. The process is as the particle's progressive moves while seeking out food. Each
particle has its velocity and is computed by a fitness function. All particles would move until the
optimal or near-optimal solutions are obtained. Although the traditional PSO can solve the
optimization problem, it encounters some disadvantages, such as premature convergence and
stochastic stagnation [5]. Another approach to evolutionary computation is ant colony
optimization (ACO) [7][8][9]. The idea underlying this method is the ant's behavior within its
pheromones for seeking out food. In the initial stages of the absence of pheromone guidelines,
the path is in random search where ants would have the same probability to all paths. Regarding
the path distance, the shortest path would have higher concentrations on the pheromone than the
longest. On the other hand, this algorithm has been modified in submarine path planning [8] and
hair-insertion robot arm path planning [9]. However, due to the vast search space, each individual
in the ACO can converge on the local best solution, and ACO needs a lengthy search time to
solve a problem [10].
 The research conducted by Ali has found the effectiveness of genetic algorithms (GAs) in
the study of collision-free path planning compared to a conventional A*[11]. The result indicates
that GA has a better performance both in the distance traveled and in computation time. Chen
and Zalzala compared the GA with the modified A* in mobile robot path planning. The result
shows that the modified A* method obtains less time complexity than the GA but falls into some
local optima [10]. On the other hand, the probabilistic optimization approach based on GA
always generates global optimum or near global optimum solutions [11]. Long has modified the
Genetic Algorithm into the simulation of path planning for an unmanned surface vehicle by
manipulating fitness function, crossover probability, and mutation probability to make the
convergence in the algorithm [12]. However, due to the random selection of populations and
operators, GA lacks disadvantages, i.e., computationally expensive, requires large memory
spaces when dealing with dynamic and large-sized environments, and is time-consuming [13].
Another work done by Kwaśniewski et al. [14] proposed GA with obstacle avoidance. Because
they worked for space exploration, the obstacle has to be arbitrary. However, it needs a lot of
computing power due to the nature of the GA and the necessity for high-level decision-making.
Mane et al. [15] claimed to develop a better GA Algorithm. However, their methods lack the
theoretical concept and proof of their effectiveness. Finally, Rahmaniar and Rakhmania [16]
proposed another method based on GA for a dynamic environment. Apart from their method,
which lacks a proven concept, the methods used much computing power by dividing their
scenario into several steps, i.e., local search, local optimization, smoothing, etc.
 Thus, this research aims to reduce the GA random process to reduce the computation time
and complexity. In order to elaborate the proposed method, the environment modeling, including
GA representation and the main contribution of GA improvement, is derived and presented in
the second section. The next part discusses how to prove the concept and how the results can be
obtained. The comparison with the previous method is tested as well. The last section gives a
conclusion and opportunity for future work.

2. Proposed Method
 This work focuses on making the path planning algorithm that converges to a static goal
while considering safety and distance factors. In brief, the proposed path planning algorithm is
built to construct a feasible path while recursively choosing the shortest path and avoiding
obstacles during movement toward the goal point.

Oyas WahyunggoroOyas Wahyunggoro, et al.

388

A. Environment Representation
 In this paper, the environment representation was established by using a grid-based model.
This representation is easy to calculate, especially when the distance or position is needed
instantly. This scheme has been used extensively using many works, such as in [3]. In literature,
the grid-based representation can be represented in two ways, i.e., by an orderly numbered or by
a coordinates system. These choices should consider how many parameters are needed to model
the robot and environment uniquely. For instance, in two dimensions of space, the grid-based
environment is divided into the x and y axis only, and it neglects the information about the robot's
orientation.
 In this work, the grids were generated for later use when determining the feasible paths so
that the numbering carried the coordinate information and served as a flag for obstacles. For that
reason, the algorithm was constructed as follows:

Algorithm 1 (Grid generation)
Step 1: determine the number of grids in the horizontal and vertical directions: =(m,n)
Step 2: compute the distance between the grid in the horizontal and vertical directions:
=(d_x/m, d_y/n)
Step 3: compute the center of each grid as follows
 For i=1 to m

 For j=1 to n

 C_x(i,j) = d_x/(2m)+ (d_x/n)*i

 C_y(i,j) = d_y/(2n)+ (d_y/n)*j
Step 4: generate the grid. The grids are square whose centers are (C_x(i,j) , C_yi,j))
∀𝑖𝑖 ∈ {1,⋯𝑚𝑚}, 𝑗𝑗 ∈ {1,⋯ ,𝑛𝑛}
Step 5: number the grid as follows
 For i=0 to n

 For j=0 to m-1

 N(i,j)=i+j
It would generate the number 0 for the grid in the upper left corner to the number n+m-
1 in the grid in the lower right corner.

 The illustration of Algorithm 1 when m=n=10 is presented in Fig. 1a and 1b. In Fig. 1a, the
robot is assumed to be able to move in all directions, either x or y. The robot's position could be
determined by its grid number. In the figure, the robot's initial and goal coordinates have been
set to be the first the last grids. Moreover, obstacles in the environment are denoted by darker
grids. The robot was equipped with sensors to detect obstacles as it traversed the environment
between the initial and the goal positions. This work focuses on offline path planning; thus, the
robot has been given prior knowledge of the environment model.

Safe Robot Path Planning and Obstacle Avoidance

389

(a) (b)

Figure 1. Example model of the environment

 The following algorithms were proposed to determine the grid occupied by obstacles and the
permissible cell to explore.

Definition 1. For current robot position 𝑝𝑝 ∈ {0,⋯ (𝑚𝑚 + 𝑛𝑛 − 1)} , the surrounding cells are
defined as 𝑝𝑝𝑠𝑠 = {𝑝𝑝 − 𝑚𝑚 − 1, 𝑝𝑝 − 𝑚𝑚, 𝑝𝑝 − 𝑚𝑚 + 1, 𝑝𝑝 − 1, 𝑝𝑝 + 1, 𝑝𝑝 + 𝑚𝑚 − 1, 𝑝𝑝 + 𝑚𝑚, 𝑝𝑝 + 𝑚𝑚 + 1}.
It should be noted that the surrounding cells for 𝑝𝑝 < 𝑚𝑚 robot position were less than eight cells
because some cells might lie outside the environment.

Algorithm 2 (Obstacle flag)
Step 1: Determine the initial position of the robot in the environment 𝑝𝑝 ∈
{0,⋯ (𝑚𝑚 + 𝑛𝑛 − 1)}
Step 2: Mark the grid with the obstacle
 For i=p to (m+n-1)

 If Grid(i) has the obstacle

 Flag(p)=1;

Definition 2. The surrounding cell is considered free if and only if it does not belong to the
obstacle, i.e., the flag is zero.
 The algorithm was developed from Definitions 1 and 2 to mark all permissible flags. Later,
this algorithm was used to choose the offspring to efficiently reduce the computational burden.

B. Path optimization using Genetic Algorithm
 In this sub-section, the main components of GA, i.e., GA formalism of the solution space,
GA operator to generate a new and possibly better solution from solution space, and fitness
function, were applied to evaluate the solution domain to obtain better offspring. The main
components are explained as follows. The binary coded chromosome, as used by literature such
as in [17], [18], was not used.

Definition 3. Chromosome type 1 contains an initial cell, at most one hoping cell, and a goal cell.
The chromosome is coded in number as mentioned in Algorithm 1, step 5. The hoping cell is
used as a waypoint between the initial and goal nodes necessarily included in the path.

Definition 4. Chromosome type 2 contains obstacle positions.
An example of the parents' chromosome that contains the initial position and the goal node is
shown in Figure 2.

Oyas WahyunggoroOyas Wahyunggoro, et al.

390

Fig. 2a. shows an example of the parent's chromosome that contains 0 as the initial position and
99 as the goal position, categorized as a type 1 chromosome. It still belongs to type 1 but has 75
as the hoping point, as shown in Fig. 2b. In Fig. 2c.; the obstacle information addition can be
added as supplementary genes. The other is seen that the obstacles appear at the positions of 2,
4, 6, 8, and 10.

Figure 2. The example of a parent's chromosome

C. Population Initialization
 Normally, the population is generated randomly. However, in this research, the proposed
method was generated differently using a deterministic method for population initialization. The
population was initiated by two individuals as parents. It differs from the conventional GA,
where the population is used as the parent itself. Therefore, it means that the population was
generated without selecting parents.

Algorithm 3 (population initialization)
Step 0: initialization p=0, initial time t=tinit, maximum
time=tmax, determine start position s and goal position g,
set a single initial population𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 as seen in Fig. 2a.
Step 1: Determine the initial position of the robot in the
environment 𝑝𝑝 ∈ {0,⋯ (𝑚𝑚 + 𝑛𝑛 − 1)}
Step 2: for p=0 to (m+n -1)
 If 𝑠𝑠 = 𝑔𝑔 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,
 if flag(p)=0 then grows typ 3e 1 individual as next
hoping genes by adding p into the original chromosome
 else grows type 2 individual by adding p as the next
obstacle gene
 Add a new individual into�𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝�
 �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� = �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝�
Step 3: jump to step 2 until t=tmax

The used set notation denoted as {⋅} means the collection of individuals.

 Algorithm 3 can generate all possible individuals with the type 1 chromosome as the initial
population and those with the type 2 chromosome as a set of possible obstacles. However, some
type 1 individuals are not suitable to be chosen as the path. It is the challenge of the developed
algorithm to choose the proper ones and to decide the best path.
In Algorithm 3, �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� is a set of parent's members while�𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� is a set of population's members.
Initially, it only has one population, as presented in Fig 2a. As computation occurs, the
population number grows until the maximum allowable time is reached.
For practical consideration, when the robots and obstacles dimension is the matter and when the
robot's maneuverability cannot be neglected, the concepts of c-obstacle and filtering are
introduced in the following sections.

Safe Robot Path Planning and Obstacle Avoidance

391

D. Adoption of C-obstacle for safe path generation
 The c-obstacles concept is used in literature to make the abstraction of point mass robots
possible. It enables them to concentrate the work on path planning design. Considering the
degree of the robot's freedom, the safety nodes surrounding the obstacle are generated to ensure
the robot's safety for not hitting the obstacles. For curious readers, please refer to other works
such as in [19], [20]. The safety node was obtained by considering the two dimensions of the
robot, such as adding the robot dimension radius to the obstacle. The robot would be safe if the
distance between the robot and the obstacle is equal to or bigger than the radius. In order to
generate the c-obstacle, the outer nodes of the obstacle had to expand at a certain distance.

Definition 5. Surrounding cells are considered the c-obstacle if at least one flag in Algorithm 2
contains an obstacle flag.

The construction of c-obstacles is shown in Algorithm 4.
Fig. 3 shows an example of the determination of the c-obstacle. If n is the obstacle, the
surrounding cells are considered c-obstacle if at least 1 cell contains 1 valued flag.

Algorithm 4 (Construction of c-obstacles)
Step 1: Position of obstacle in the environment 𝑜𝑜 ∈ {0,⋯ (𝑚𝑚 + 𝑛𝑛 − 1)}
Step 2: For i in 8 surrounding cells

 If Grid(i) has an obstacle

 Flag(i)=1;

 surrounding cells are c-obstacle

 Else surrounding cells are not an obstacle

Figure 3. C-obstacle construction

 When a c-obstacle was applied, a parent with a type 2 chromosome would grow in size. The
example of the calculation can be explained as follows. For instance, if n=11 and the axis value
is 9 in Fig. 1, by using (4), then n1=1, n2=2, n3=3, n4=10, n5=12, n6=19, n7=20, and n8=21.
The c-obstacle operation yielded an expanded node for each gene. Therefore, the chromosome
of the supporting parent would be combined with the original node and expanded node. The
process is illustrated in Fig. 4.
 Fig. 4a is an example of the supporting parent's original chromosome filled with nodes 12
and 13. After the c-obstacle operation, the result in Fig. 4b obtains a chromosome fulfilling the
original and extended nodes. The generated c-obstacle was obtained from Algorithm 3.

Oyas WahyunggoroOyas Wahyunggoro, et al.

392

Figure 4. Original node (a) Expanded node (b)

E. Filtering
 The filtering method is the main part to eliminate the possibility of obtaining the infeasible
path before GA operations, i.e., crossovers and mutation, as explained later. Before the crossover
process, the proposed GA would ensure that the supporting parents' candidates have the only
gene that avoids an obstacle. As explained later, this would enable the fitness function to be
applied efficiently. After filtering is performed, several individuals can be removed. Thus, only
the ones with the best genes are valid for crossover and mutation operations. The filtering is
described as a mathematical equation as follows
 𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−1 ± (cos(𝛼𝛼) ∗ 𝑘𝑘)
 𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 ± (sin(𝛼𝛼) ∗ 𝑘𝑘). (1)

where k is a constant determining the desired distance in a specific time, and alpha is derived
from (4). It is shown that if the extrapolation node equals to one of the points of the obstacle, the
node is not the gene candidate. Otherwise, if the node is not a member of an obstacle, then the
value is one of the candidate genes that the crossover operator would apply. The filtering method
would reduce candidate genes significantly. The possibly chosen genes would have a probability
of 1, and the genes with a probability equal to 0 would not be selected.
After going through processes, the last task of GA is a mutation which refers to [3]. The result
is a new offspring used as one of the temporary parents, which iterates until reaching the goal
position. The operation details are described in the next sections.

F. GA Operators
 A roulette wheel was used to select parents from a population to enable the formal operation
used in the GA. This method is conventional but powerful as also demonstrated in [21]. In a
roulette wheel, each individual was represented by a space proportionally corresponding to its
fitness. By repeatedly spinning the roulette wheel, individuals were chosen using stochastic
sampling, and the one with the bigger fitness function would be selected more. The random
process of the population obtained two possible conditions, i.e., feasible and infeasible solutions.
The feasible and infeasible solutions could be improved by using a GA operator. For the
infeasible solution, sometimes the solution was far from the global optimum, and then it would
spend more time finding the optimum solution [22] [23]. On the other hand, the wide range of
solution space would make the random process reduces the performance of GA to find the global
optimum solution. One of the contributions of this research is a new parent selection by
narrowing the solution space to enable the random process to become efficient. Fig. 5 is an
example of a crossover gene and operator.

Crossover and mutation operator: The idea behind the crossover operator is the combination of
two parents to obtain two sets of offspring. Normally, the crossover probability is a crisp set, i.e.,
a set with an occurrence probability of either 0 or 1 [21]. This study applied single-node
crossover, which swapped the genes of two chromosomes, as seen in Fig. 5. It should be noted
that the crossover operation is only for one parent. As mentioned before, the crossover operator
is applied after filtering is applied. It would reduce the possibility of obtaining a worse result
than the parents by omitting one or more chromosome genes with an infeasible path.

Safe Robot Path Planning and Obstacle Avoidance

393

Figure 5. The example of crossover gene (a) The result of crossover operator (b)

1. Crossover operator
The crossover operator is necessary for any GA approach. In this work, the main parent
chromosome with the candidate genes in supporting parents. The crossover is operated when the
airspace is against obstacles.

Algorithm 5 (Crossover operator)
Step 1: parent Initialization, let 𝑖𝑖 = 1, i-th parent 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) ∈ �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝�, k=number of populations
Step 2: remove non-feasible individuals using Filtering
 For i=1 to k
 If Filter (𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)) = 1, �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� = �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� − 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)
Step 3: For i=1 to k
 For j=1 to k
 If
𝑖𝑖 ≠ 𝑗𝑗

 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖, 𝑗𝑗) = {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 || 𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) }
 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖, 𝑗𝑗)
 {𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛} = �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� − 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) − 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗) + 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

In Algorithm 5 the selected gene is obtained by calculating the fitness function of each expanded
node. The best fitness value of a particular gene would be selected as the hoping node in the
offspring nodes.

2. Mutation operator: Usually, the mutation operator has less computational burden than the
crossover operator. Thus, the common method is implemented in the literature. This method can
be seen, for example, in [2].

Algorithm 6 (Mutation operator)
Step 1: parent Initialization, let 𝑖𝑖 = 1, i-th parent 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) ∈
�𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝�, k=number of populations
Step 2: For i=random number from 1 to k
 For j in surround cells
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 || max �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑛𝑛𝑗𝑗��

 {𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛} = �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝� − 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) − 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗) + 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 It is seen that the mutation operator takes the best offspring by comparing the mutated cells
with the best fitness of surrounding cells. The proposed mutation strategy considers all the free
nodes adjacent to the mutation node instead of randomly selecting a node one by one. It indicates
that this proposed method neglects the node far away from the mutation node. The concept is to
avoid the divergent method at the global optimum and to increase the computational cost due to
unselected random nodes. The mutation method evaluates the node according to the fitness value
of the total path instead of the movement direction through the mutated node.

Oyas WahyunggoroOyas Wahyunggoro, et al.

394

Generally, the mutation is a process of random small changes in a gene. Mutation has a smaller
probability than crossover to avoid obtaining a change of individual significantly.
Regarding the mutation operator, in this research, only one parent in the total population is
possible for the mutation operation. As the mutation aims to obtain a better individual, a proper
fitness function is vital to speed up the convergence.

G. Fitness Function and offspring selection
 As mentioned before, the fitness function is the success key for the GA to find the optimum
solution of path planning from the start to the target node. In this work, the optimal path is defined
to be the shortest and the safest path. This approach is very common in the path planning
problem. The proposed fitness function is as follows

 𝑓𝑓(𝑝𝑝) = �
∑ 𝑑𝑑(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖+1)𝑛𝑛−1
𝑖𝑖=1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠

∑ 𝑑𝑑(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖+1)𝑛𝑛−1
𝑖𝑖=1 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (2)

where 𝑝𝑝 ∈ �𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝�.
The flowchart of the modified GA is presented in Fig. 6.

Figure 6. Flowchart of modified GA

 The penalty added to the fitness function must be greater than the maximum path length of
the environment. If this condition is met, the algorithm would be run iteratively until the penalty
is omitted by searching for an appropriate chromosome. In the above function, the distance
between nodes is formulated as
 𝑑𝑑(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖+1) = �(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2 (3)
where pi is the ith genes of the chromosome, n is the length of the chromosome, d is the distance
between two points, xi and yi are the robot's current pose in the x and y axis, xi+1 and yi+1 are the
next robot pose in x and y-axis. The robot's direction can be obtained by using the following
formula
 𝛼𝛼 = tan−1 �𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑦𝑦𝑖𝑖

𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑥𝑥𝑖𝑖
� (4)

Safe Robot Path Planning and Obstacle Avoidance

395

 The pose of ygoal and xgoal is the destination position. It is shown in (3) that the objective
function is defined as the sum of distances between each node in a path. The shortest distance
path with obstacle avoidance is the best individual for global optima solution.

H. Complete GA algorithm
 The complete block diagram of the proposed path planning approach using GA is shown in
Fig. 6. Generally, it is very similar to common GA. However, each block has unique features
that enable efficient computation and guarantee convergence.
 The algorithm started by initializing the population containing individuals with type 1 or type
2 chromosomes. Among those individuals, using c-obstacle and filtering, only a few were
selected as eligible parents. It would enable efficient computational burden as well as speed up
the convergence. Finally, the algorithm would undergo a similar process as common GA, such
as crossovers, mutations, etc.

3. Results and Discussion
 Some experiments were conducted to test the performance of the proposed GA. For
simplicity, the parameter k is set to 1 unit. The experiment is divided into two scenarios according
to the environment typ. First, the method was applied to a non-obstacle environment. Second,
the environment that was similar to the previous improved GA proposed by Ali et al. was used
as the benchmark. In the first setting, the robot moved from the initial to the final destination
with no obstacle in between. Despite the simple and trivial solution, it shows that the algorithm
functions well, as seen in Fig. 7.

Figure 7. The proposed method for a non-obstacle environment

 For the non-obstacle environment, since the global optimum solution of a non-obstacle
environment was just a line path and the main parents could solve it, the modified GA only
needed one generation to solve the global optimal problem. In Fig. 7, the parents contain gene 1
and 100, which indicates the initial and goal position, respectively.
 Fig. 8. shows the 16x16 grid environment with the obstacles depicted in shaded areas. The
initial node is set to 0 and the goal node is set to 15. GA runs with the proposed filtering and
crossover operator. The experiments give results as shown in Fig. 8a and 8b. In Fig. 8a, the
method approached using global methods to find feasible paths in the workspace is applied. As
shown in Fig 8b, the proposed method yields a different path from the previous research. The
path length is 28.35, which is longer than the one with 27.82 in the previous research. Despite
the path length, the generation results differently from the previous method.
 The comparison is shown in Table I, which proves that the modified GA reduces the average
generation number significantly. So, the proposed modified GA is even better than the method
proposed by Tuncer and Yildirim in reducing the average generation number. On the other hand,
the proposed method gives more stable results according to a 100 percent optimal solution.
Moreover, it minimizes the computation used in GA and improves precision.

Oyas WahyunggoroOyas Wahyunggoro, et al.

396

Table 1. Experimental Result in Fig. 8.

 Although the proposed method can solve the global optimum problem, it neglects non-
holonomic constraints. Fig. 8 shows that the result is in a sharp pattern, and cannot be
implemented for the non-holonomic robot. Thus, the method continues with a smoothing curve
algorithm such as a B-spline curve. On the other hand, the proposed method based on a grid
environment merely solves a discrete problem. The real problems are that all the systems must
be computed continuously.

Figure 8. The proposed method for a non-obstacle environment

 Fig. 9 shows the generation number of optimal solutions against the total of the obstacle
avoidance. It can be concluded that the generation number is affected by the number of obstacles
the robot passes. The generation number merely depends on the obstacles that should be passed
instead of the obstacle number in the environment. Compared to other methods, the modified
GA has an adaptive generation number until it converges to an optimal solution.

Figure 9. Total generation vs. total obstacle avoidance

 One of the drawbacks arising in Fig. 9 is that the method would have a high computational
cost when the robot encounters a large obstacle number. Otherwise, this method is very effective

Safe Robot Path Planning and Obstacle Avoidance

397

for a small obstacle number. Therefore, the method has an opportunity to be used in the real-
time system platform.

4. Conclusion
 This research has three contributions related to the modified GA. The first is the population
initialization, the second is the filtering method, and the third is the crossover operator. The initial
population is divided into two individuals, i.e., the chromosome filled with the initial and goal
nodes and the chromosome containing coordinates surrounding the obstacles. The coordinates
surrounding the obstacles are based on the c-obstacle to compensate for the robot's dimension.
Then filtering is used to choose only the feasible path. After that, the supporting parents would
be added as a hoping node with the gene to obtain the optimum path. The proposed method in
this work is that the supporting parents need a constant gene in the chromosome, but the main
parent would change in length based on the generated hoping node.
 The mutation is set using the efficient roulette algorithm combined with the c-obstacle
concept that checks all the free nodes surrounding the mutation node. The method compares all
the fitness function values and chooses the best solution. The node that has the highest fitness
function is selected. In order to prove the concept, the simulation experiment is conducted using
Matlab software with two kinds of environments: The environment that is non-obstacle and the
environment similar to the previous improved GA studies in the literature. For a non-obstacle
environment, the method meets optimum results due to the linear path. The result with the
obstacle environment obtains a longer path for the environment than the previous GA. However,
the total generation number of the modified GA is less than the previous method. The total
generation number is influenced by the number of obstacles the robot should pass. If the total
number of obstacles the robot passes is increased, then the total generation number would also
increase. The GA has an adaptive generation number based on the total obstacles in this paper.

5. References
[1]. H. SHIN and J. CHAE, "A Performance Review of Collision-Free Path Planning

Algorithms", Electronics, 9(2), 316. 2020.
[2]. J.M. Font and J. Kovecses, "Dynamics of Heel Strike in Bipedal Systems with Circular

Feet", Proceedings of EUCOMES08, 2009. pp. 455-462.
[3]. A. Tuncer and M. Yildirim, "Dynamic Path Planning of Mobile Robots with Improved

Genetic Algorithm", Comput. Electr. Eng., Vol. 38, No. 6, pp. 1564-1572. 2012.
[4]. R. Kala, A. Shukla, and R. Tiwari, "Robotic Path Planning in Static Environment Using

Hierarchical Multi-Neuron Heuristic Search and Probability Based Fitness",
Neurocomputing, Vol. 74, No. 14-15, pp. 2314-2335, 2011.

[5]. S. Hassan and J. Yoon, "Haptic Assisted Aircraft Optimal Assembly Path Planning Scheme
Based on Swarming and Artificial Potential Field Approach", Adv. Eng. Softw., Vol. 69,
pp. 18-25. 2014.

[6]. R. Volpe and P. Khosla, "Manipulator Control with Superquadric Artificial Potential
Functions: Theory and Experiments", IEEE Trans Syst Man Cybern, 20(6), pp. 1423-1436,
1990.

[7]. W. Wu, Z. Q. Sen, J. B. Mbede, and H. Xinhan. “Research on Path Planning for Mobile
Robot Among Dynamic Obstacles”, Proceedings Joint 9th IFSA World Congress and 20th
NAFIPS International Conference (Cat. No. 01TH8569), Vancouver, BC, Canada, Vol 2,
2001, pp. 763-767.

[8]. Y. Shan, “Study on Submarine Path Planning Based on Modified Ant Colony Optimization
Algorithm”, 2018 IEEE International Conference on Mechatronics and Automation
(ICMA), Changchun, 2018, pp. 288-292.

[9]. Y. Huang, Y. Gu and Z. Zheng, “Research on the Path Planning of Hair-Insertion Robot
Arm Based on Ant Colony Optimization”, 2018 37th Chinese Control Conference (CCC),
Wuhan, 2018, pp. 5191-5195.

Oyas WahyunggoroOyas Wahyunggoro, et al.

398

[10]. Y. Long, Y. Su, H. Zhang and M. Li, “Application of Improved Genetic Algorithm to
Unmanned Surface Vehicle Path Planning”, 2018 IEEE 7th Data Driven Control and
Learning Systems Conference (DDCLS), Enshi, 2018, pp. 209-212.

[11]. M. S. A. D. Ali, N. R. Babu, and K. Varghese, "Collision Free Path Planning of Cooperative
Crane Manipulators Using Genetic Algorithm". J.Comput. Civ. Eng., Vol. 19, 182-193,
2005.

[12]. M. Chen and A. Zalzala, "Safety Considerations in the Optimization of Paths for Mobile
Robot Using Genetic Algorithms", IEEE Int. Conf. Genet. Algorithms Eng. Syst. Innov.
Appl., pp. 299-306, 1995.

[13]. R. Soltani, H. Tawfik, J. Y. Goulermas, and T. Fernando, "Path Planning in Construction
Sites: Performance Evaluation of the Dijkstra A* and GA Search Algorithms", Adv. Eng.
Informatics, Vol. 16, pp. 291-303, 2002.

[14]. K.K. Kwaśniewski, and Z. Gosiewski. “Genetic Algorithm for Mobile Robot Route
Planning with Obstacle Avoidance”. Acta Mechanica et Automatica, 12.2, pp. 151-159,
June 2018.

[15]. S.B. Mane and S. Vhanale. “Genetic Algorithm Approach for Obstacle Avoidance and Path
Optimization of Mobile Robot", Computing, Communication and Signal Processing,
Springer, Singapore, 2019, pp. 649-659.

[16]. W. Rahmaniar and A.E. Rakhmania. “Mobile Robot Path Planning in a Trajectory with
Multiple Obstacles Using Genetic Algorithms”, Journal of Robotics and Control (JRC),
3.1, pp. 1-7, 2022.

[17]. A.T. Ismail, A. Sheta, and M. Al-Weshah, "A Mobile Robot Path Planning Using Genetic
Algorithm in Static Environment", J. Comput. Sci., Vol. 4, pp. 341-344, 2008.

[18]. W. Jenkins, "A Decimal-coded Evolutionary Algorithm for Constrained Optimization",
Comput. Struct., Vol. 80, pp. 471-480, 2002.

[19]. J. H. Li, M. J. Lee, S. H. Park, and J. G. Kim, "Real Time Path Planning for A Class of
Torpedo-type AUVs in Unknown Environment", IEEE/OES Auton. Underw. Veh.
AUV2012, 2012, pp. 0-5.

[20]. Q. Li, W. Zhang, Y. Yin, Z. Wang, and G. Liu, "An Improved Genetic Algorithm of
Optimum Path Planning for Mobile Robots, Sixth Int. Conf. Intell. Syst. Des. Appl., Vol. 2,
2006, pp. 637-642.

[21]. D. Whitley, "A Genetic Algorithm Tutorial", Statistics and Computing, 4, Springer-Link,
pp. 65-85, 1994.

[22]. Z. Y. Z. Yao and L. M. L. Ma, "A Static Environment-based Path Planning Method by
Using Genetic Algorithm", Comput. Control Ind. Eng. (CCIE), 2010 Int. Conf., Vol.2,
2010, pp. 405-407.

[23]. H. Qu, K. Xing, and T. Alexander, "An Improved Genetic Algorithm with Co-evolutionary
Strategy for Global Path planning of Multiple Mobile Robots", Neurocomputing, Vol. 120,
pp. 509-517, 2013.

Safe Robot Path Planning and Obstacle Avoidance

399

Oyas Wahyunggoro was born in Yogyakarta, Indonesia. He received his
undergraduate degree (Ir.) in electrical engineering from Universitas Gadjah
Mada (UGM), Indonesia, Feb 1993, a master's degree (MT) in electrical
engineering from Universitas Gadjah Mada (UGM), Yogyakarta, May 2001,
and a Ph.D. degree in automation and control system from Universiti
Teknologi PETRONAS, Malaysia, Oct 2011. Currently, he is an Associate
Professor in the Department of Electrical and Information Engineering,
Engineering Faculty, Universitas Gadjah Mada, Indonesia. His research

focuses are BMS, applying intelligent systems on automation and control systems, and
biomedical signal processing. His expertise group is Signal-System-Control.

Hendri Himawan Triharminto received a B. Eng. in Electrical Engineering
from Naval Science Institute and Technology. He completed master's and
doctoral degrees in Electrical Engineering and Information Technology from
Gadjah Mada University in 2017. His current research is robotic, especially
control systems, path planning, image processing, and Simultaneous
Localization and Mapping.

Adha Imam Cahyadi received his B.Eng. from the Department of Electrical
Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia, in
2002, a master's degree in Control Engineering from King Mongkut's Institute
of Technology Ladkrabang, Thailand, in 2005, Thailand, and Doctor of
Engineering from Tokai University, Japan in 2008. He currently serves as
chairman for the bachelor program in Electrical Engineering at the Department
of Electrical Engineering and Information Technology, Universitas Gadjah
Mada, Indonesia. His research interests are mechanical control systems,

telemanipulation systems, as well as Unmanned Aerial Vehicles and Battery Management
Systems.

Oyas WahyunggoroOyas Wahyunggoro, et al.

400

