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Abstract: Speech emotion recognition has been investigated widely in the field of human-
machine interaction. Efforts to develop recognition systems have been reported. Some of them 
focused on features, and others focused on classifiers. However, most of them segmented the 
speech signal into fixed-length frames and took the features from them. The scheme contradicts 
the physiological and psychological studies that emotion information is contained in long 
continuous voice parts of the speech signals. This study proposes a combination of Discrete 
Wavelet Transform (DWT) decomposition, voice part segmentation, a scheme to determine a 
fixed number of segments, and prosodic and spectral features to build an emotion recognition 
system. The voice part segmentation is adopted to accommodate the above studies, and the DWT 
decomposition allows the selection of the best system performance. The system has been 
validated with the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) 
dataset at several DWT decomposition levels, using prosodic features (zero-crossing rate, 
energy, peak), spectral features (Fourier coefficients, cepstrum), and a Multi-Layer Perceptron 
Neural Network as a classifier. The result shows that the best performance of this system to 
classify eight categories of emotion (neutral, calm, happy, sad, angry, fear, disgust, and 
surprised) is 98% accuracy on level 6 of DWT decomposition. 
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1.  Introduction  

Over the last decade, the interest in speech emotion recognition has increased in speech and 
language processing [1], [2]. Speech Emotion Recognition (SER) is particularly useful in 
specific applications such as tutoring systems that detect the learner's state, call-center systems 
for detecting consumer's states, and enhancing the service quality. Although recognition of 
emotions has benefits, there are still problems in developing a method to recognize emotion from 
the speech signal because the speaking styles of the speakers are different from person to person 
[3], [4]. Physiological studies show that expressing emotion has a beginning, a rising side, a 
peak, and a falling side [5], as shown in Figure 1. The speech segment should be long enough to 
capture the possible information.   

Many works of Speech Emotion Recognition have been reported using fixed-length speech 
segments. Xianxin Ke et al. [6] use 33-dimensional feature parameters derived from energy 
characteristics, fundamental frequency characteristics, zero-crossing rate (ZCR), Mel Frequency 
Cepstrum Coefficient (MFCC), and formant from each segment, and use Continuous Hidden 
Markov Model (CHMM) to classify five emotional states: happiness, anger, sadness, fear, and 
calm. They use the Berlin Emotional Speech Library dataset [7] for experiments, conduct several 
configurations, and achieve the best 67.83% average accuracy with Principle Component 
Analysis feature reduction using 33-D features. Gao et al. [8] propose signal segmentation using 
Depth First Search (DFS) algorithm to decide the segment duration and overlap, extracted pitch, 
MFCC,  Line Spectral Pairs  (LSP),  intensity,  and  ZCR from each segment (which they called  
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'local features'), perform smoothing and normalization on them and then compute global features 
using Open-Source Media Interpretation by Large feature-space Extraction (Open SMILE) 
toolkit [9]. They adopt a linear kernel SVM with minimal sequential optimization (SMO) for the 
classifier to classify seven emotions (angry, boredom, disgust, fear, happy, neutral, and sad). 
They validate their method with the Ryerson Audio-Visual Database of Emotional Speech and 
Song (RAVDESS) [10] and Emotional Speech Database (EMODB) [7] datasets and achieve 
79.4% and 87.3% accuracies, respectively. 
 

 
(a)                                                                                          (b)  

 
(c)                                                                                          (d)  

 
(e)                                                                                          (f)  

 
(g)                                                                                          (h)  

Figure 1. Examples of speech signals uttered by one actor speaking a sentence (“Kids are 
talking by the door”) with eight classes of emotion: (a) neutral, (b) calm, (c) happy, (d) sad, (e) 

angry, (f) fearful, (g) disgust, and (h) surprised. Courtesy of the RAVDESS dataset [10]. 
  

Several works adopt currently popular deep learning models to improve emotion 
classification. For example, Mustaqeem et al. [11] propose Deep Stride Convolutional Neural 
Network (CNN) to classify speakers’ emotions. To accommodate 2-D input for the classifier, 
they convert 1-D audio signals into a 2-D spectrogram through STFT. Before conversion, they 
clean the audio signals to remove the background noises, silent portions, and other irrelevant 
information from speech signals using adaptive threshold-based preprocessing. Finally, they 
validate their method with the RAVDESS dataset with four classes of emotions and the 
Interactive emotional dyadic motion capture (IEMOCAP) dataset [12] with eight classes of 
emotions and achieve 79.5% and 81.75% accuracies, respectively. Furthermore, Mustaqeem and 
other authors [13] attempt to improve [11] by proposing Radial Basis Function Network (RBFN) 
similarity measurement to select audio segments in clusters, convert the segments into 
spectrograms, and feed the spectrograms to the Recurrent Neural Network (RNN), which is a 
combination of Resnet-101 Architecture [14] and Bidirectional Long Short-Term Memory 
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(BiLSTM) for the classifier. Their performance achieves 72.25%, 85.57%, and 77.02% accuracy 
for IEMOCAP, EMODB, and RAVDESS, respectively.  

Spectrogram-based audio information is also used by Zeng et al. [15]. They adopt Multi-
Task Learning (MTL) idea and propose a variation of a deep Residual Networks (ResNets) 
model with the addition of a gate mechanism, which they call Gated Residual Neural Networks 
(GResNets). They claim that the MTL approach can have better performance than task-specific 
models. They attempt the various configurations of the model with the RAVDESS dataset to 
classify eight categories of emotion and achieve the best performance of 64.48% accuracy. 

The MTL approach is also adopted by Biqiao et al. [16]. They propose three shared models 
to classify emotions from speech and song inputs simultaneously. Their performance in song 
inputs achieved the highest accuracy of 99% for RAVDESS and 98% for the University of 
Michigan Song and Speech Emotion Dataset (UMSSED) [17]. In a speech category, the highest 
performance was achieved at 98.19% accuracy for RAVDESS using spectral features and at 
95.83% accuracy for UMSSED using Energy and MFCC features. 

All the above works divide input signals into fixed-length segments. It is necessary since the 
classifier needs fixed-size inputs, and it is easy to extract prosodic and spectral features from 
fixed-length segments. However, it is well known that emotion information is contained in voice 
parts of audio signals [18]. Therefore, it is not strategic to fragment the signals into fixed-length 
segments without knowing the start-end position of the emotion information parts. This idea is 
exploited exclusively in [19], where the authors conducted experiments to compare frame-based 
(fixed-length) segments with voiced-based (variable-length) segments on emotion recognition 
and demonstrated that the voiced-based approach performed better than the frame-based one. 
The conclusion motivates us to adopt the approach.  

Another issue establishing the foundation of our method is the adoption of wavelets. Discrete 
time-series signal analysis can be done by either Discrete Fourier Transform (DFT) or Discrete 
Wavelet Transform (DWT), among others. The Fourier-transformed signal gives a frequency 
distribution of the original time-domain signal. However, the characteristics of the transformed 
signal cannot be used to analyze a dynamically changed signal such as speech. The Short-Time 
Fourier Transform (STFT) is an effort to overcome this limitation by segmenting the signal into 
several frames with a fixed-length window, adding the time information of the signal. This idea 
is adopted by [11], [13], and [15] to convert audio signals into spectrograms. However, since 
STFT uses fixed-length window size, it still lacks flexibility. On the other hand, the DWT 
provides flexibility in window size as a function of analyzing frequency. Furthermore, the 
analysis function of DWT can be selected with more freedom. A deep study between DFT and 
DWT can be found in [20].  

Efforts to recognize speech emotion using wavelets have been reported. In [21], they combine 
features from Continuous Morlet Wavelet Transform, prosodic features (LPC, energy, ZCR, 
entropy), and statistic features (maximum, minimum, mean) to form feature vectors. The process 
includes PCA feature reduction, Non-Negative Matrix Factorization, and various SVM 
classification methods. For the experiment, they apply the RAVDESS dataset with eight emotion 
categories. Silent areas at the beginning of audio signals are removed manually. They achieve 
the best performance of 60.1% accuracy using a Quadratic SVM classifier. A similar approach 
is also reported in [22]. They derive Linear Predictive Cepstral Coefficients (LPCC) and MFCC 
features from wavelet coefficients which they call WLPCC and WMFCC, respectively. In an 
experiment, they applied EMODB and Surrey Audio-Visual Expressed Emotion (SAVEE) [23] 
datasets and attempted several combinations of features to classify five emotion categories using 
the Radial Basis Function Network (RBFN) classifier. The best performance of 93.67% average 
accuracy is achieved on a combination of WLPCC and WMFCC with Vector Quantization 
feature reduction.  

  
2. The Proposed Method 

Similar to the above works, our objective is to build Speech Emotion Recognition with high 
accuracy. Our method starts with removing silent parts at the beginning and end of speech 
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signals. The idea is similar to [11] but uses a different method, which is explained in the next 
section. Then, wavelet decomposition through low-frequency filters is performed until the 
allowable level, determined by Nyquist-Shannon Theorem [24]. Unlike [21] and [22], where the 
wavelet was adopted to build features taken from all decomposition levels, we use wavelet to 
achieve several levels of audio signals and perform feature extraction and classifications on each 
level. We hypothesize that the most representative information, including emotion, is not 
contained at all levels but at a certain level. Next, the signals are segmented into voice and un-
voice parts. The basic idea is similar to [19] but different in implementation. First, they used 
different numbers of segments for each class of emotion, which were determined manually. 
Then, they conducted an experiment on each class using ten folds cross-validation scheme and 
a simple linear classifier. Meanwhile, we have developed a scheme to determine the same 
number of voice segments for all classes, extract features, and conduct experiments on all classes 
simultaneously so that the system can run without human intervention. Our proposed scheme is 
illustrated in Figure 2. 

 

 
Figure 2. Block diagram of our proposed speech emotion recognition system. 

 
The contribution of this work can be summarized as follows: 
a. Wavelet decomposition is adopted to obtain filtered signals at several allowable levels, 

extract features at each level, and then perform classification at each level. The level 
providing the best performance is selected to be included in our proposed system (explained 
in subsection B).  

b. Since the classifier requires the same length of feature vectors, we developed a scheme to 
build fixed-length feature vectors automatically, even though the audio signals are varied in 
length and volume (explained in subsection D).  
 
The following sections describe the process of removing silent area, decomposing DWT, 

segmenting voice part, determining the number of voice segments, extracting features, and 
classifying emotion. 

 
A. Removing Silent Area 

The silent areas usually appear at the beginning and end of the speech signals as well as 
among spoken sentences. If the silent parts of the signal are kept, they will degrade the system 
performance [3]. Therefore, only the signal parts containing the actual speech are needed for 
speech emotion recognition.  

This study applies two-step algorithms to remove the silent area (See Algorithms 1 & 2).  
First, the mean and standard deviation of the speech signals are calculated and used as a 
threshold. From statistical literature, assuming a normal distribution, the mean value represents 
the average value of the signal, and also assuming high S/N ratio, the values of the noise signal 
would be far below the mean value. So the threshold needs to be somewhere below the mean 
value. Meanwhile, standard deviation measures the dispersion of the signal, and the signal can 
be said to be distributed ‘inside’ the standard deviation range (not actually, since there would be 
outliers). Therefore, we set the threshold (th) equals (α/standard deviation)*mean, while α, 
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0<α<1 represents our confidence that the noise signals would be below th. In this study, α is 
decided from observation. 

 
Algorithm 1. Identify voice and un-voice segments in speech signal  
Input: speech signal y, length of signal L 
Output : state of samples in signal state 
1 : calculate  meanVal  equals mean of y 
2 : calculate  StDev equals standard deviation of y  
3 : Let th equals α*meanVal /StDev   
4 : for i is 1 to L 
5 :     if abs(y(i)) > th then 
6 :         state(i) to 1 
7 :     else 
8 :          state(i) to 0 
9 :    end if 
10: end for 

 
Algorithm 2. Identify voice frame & discard frames with unvoice state 
Input: samples per frame w and length of y signal L 
Output : voice signal VoicedSignal 
1 : usefulSamples =  L – modulus(L, w) 
2 : FrameCount = usefulSamples/w 
3 : voicedFrameCount = 0 
4 : for i is 1 to FrameCount 
5 :    let cVoiced and cUnvoiced is 0 
6 :    for j=(i-1)*w+1 to (i*w) 
7 :       if state(j) is 1 then 
8 :               cVoiced ++  
9 :       else 
10:               cUnvoiced ++ 
11:       endif 
12:     end for 
13:  
14 :    if cVoiced > cUnvoiced then 
15 :         voicedFrameCount ++ 
16 :         voicedState(i)=1 
17 :    else 
18 :         voicedState(i)=0 
19 :    end if 
20 : end for 
21 : Let k equals 0 
22 : for i is 1 to frameCount 
23 :       if voicedState(i) is 1 then 
24 :             for j=(i-1)*w+1 to i*w 
25 :                       VoicedSignal(k) = y(i) 
26 :                        k ++ 
27:              end for 
28 :       end if 
29 : end for 
 

Next, the signal is segmented into fixed-length frames, and the states of each frame are 
determined, whether it is a voice frame (above th) or an un-voice one. The risk of using fixed-
length frames is that the parts of the voice signals can accidentally be removed at the beginning 
and the end of the signals. However, it is still insignificant compared to the rest of the speech 
signal areas. Figure 3 illustrates the effectiveness of our algorithms. 
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Figure 3. Before (top) and after (bottom) results of removing a silent area. 

 
B. Determining the Level of DWT Signal 

As mentioned, DWT is implemented to decompose the speech signal to several levels, and 
this method is tested on each level. Figure 3 illustrates the decomposition of 2-level DWT using 
a filter bank structure. A signal x[n] is decomposed into two signals through LPF (low-frequency 
part) and HPF (high-frequency part), followed by down-sampling (by a factor of 2). Figure 4 
constitutes a one-level decomposition. Since this study is interested in low-frequency 
components, further decomposition is done on the low-frequency part. 

 

 
Figure 4. A DWT implementation using a filter bank structure (picture courtesy of [25]). 

 
Since this experiment is working on human speech signals, the level of DWT signal 

decomposition is limited by human speech frequency (85-180 Hz for adult males and 165-255 
Hz for adult females [26]) and the sampling frequency (fs). Therefore, the maximum female 
speaker frequency fmax (255 Hz) is selected. Eq. (1) determines the allowable level of DWT 
(DWT).  
 

𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷 = ⌊log2(𝑓𝑓𝑠𝑠/(2 ∗ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚))⌋                                          (1) 
 

where a value of 2 is from Nyquist-Shannon Theorem [24]. Implementing Eq. (1), and setting fs 
= 48k bps, and  fmax = 255 Hz, lDWT can be calculated equals to 6. It means that the DWT 
decomposition for the above case can go from level 1 to level 6.  
 

Decomposition level affects the performance of recognition. Since at each level of 
decomposition, the signal was downsampled through low-frequency part, the high-frequency 
part of the signal (including noise) is removed. Further decomposition will reduce the noise even 
further. Therefore, a signal decomposition from level 4 to level 6 is selected because it provided 
better signal information and better noise reduction. In this study, db4 is used for wavelet scaling 
function [27], [28]. 
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C. Segmenting Voice Parts 
As discussed above, emotion information is contained in voiced segments [19]. As illustrated 

in Figure 5, the voice segments have high amplitudes while the un-voice ones have low ones. 
These features are exploited to select the voice segments. First, to remove noisy spikes, the signal 
is smoothened using Hamming LPF. Then, the threshold th is determined as a function of the 
mean and standard deviation of the signal. The idea is similar to determining a threshold for 
removing the silent area, but here it is used to collect the voiced segments. The detailed codes 
for the Voice Segmentation process are described in Algorithms 3. Since some features require 
a minimal amount of samples, codes are added to check the length of the segments. 
 

 
Figure 5. Example illustration of voice segmentation. 

 
Algorithm 3 Voice Segmentation 
Input: decomposed DWT signal s and its length L 
Output : voice signal voice_s(seg_no, sample_no) 
1 : Let h is Hamming LPF filter 
2 : Let p is allowed length % to be used for discarding short segments   
3 : calculate temp equals s^2 
4 : energy is temp convolved with h 
5 : calculate  meanVal equals mean of  energy 
6 : calculate  StDev equals standar deviation of energy  
7 : Let th equals β*meanVal /StDev 
8 :  for i is 0 to L 
9 :       if energy > th then 
10 :            set voiced(i) = 1 
11 :      else 
12 :            set voiced(i) = 0 
13 :      endif 
14 : endfor 
15 : seg_no = 0, sample_no = 0 
16 : for i is 0 to L       
17 :       if voiced(i) = 1 & voiced(i+1) =1 do 
18 :               voice_s(seg_no, sample_no) = s(i) 
19 :               sample_no++ 
20 :       elseif voiced(i) = 0 & voiced(i+1) =1  
21 :               seg_no++ 
22 :               sample_no = 0 
23 :       endif 

 voiced segment unvoiced 
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24 : endfor 
25 : % discarding short segments 
27 : for i is 0 to seg_no 
28 :       if sample_no on voice_s(i, sample_no) < p    
29 :               remove voice_s(i, sample_no) 
30 :      endif 
31 : endfor 
32 : reorder seg_no on voice_s(seg_no, sample_no) 
 
D. Determining the Number of Voice Segments 

Note that the number of voice segments (seg_no on Algorithm 3) and the number of samples 
on each segment (sample_no) on each voice signal (voice_s) varies because the duration of the 
individual uttering a sentence varies widely. Meanwhile, the classifier requires a fixed size of 
input vectors. Therefore, a fixed number of segments is set to accommodate this requirement by 
finding a maximum number of segments (seg_max) among all voice signals in the dataset, 
expressed by Eq. (2). 

 
𝑠𝑠𝑠𝑠𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚 = max

0≤𝑖𝑖≤𝑁𝑁
(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖(𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛))                                        (2) 

 
where N is the number of voice signals in a dataset. If the original signal has a number of 
segments less than seg_max, the remaining segments on that signal are added cyclically with the 
original ones. In this work, the necessary segments are added using modulo operation as 
expressed in Eq. (3) 
 

𝑛𝑛_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠_𝑠𝑠𝑖𝑖(𝑘𝑘, 𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑙𝑙𝑠𝑠_𝑛𝑛𝑣𝑣) =  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠_𝑠𝑠𝑖𝑖(𝑚𝑚𝑣𝑣𝑚𝑚(𝑘𝑘, 𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑣𝑣), 𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑙𝑙𝑠𝑠_𝑛𝑛𝑣𝑣)                       (3) 
𝑘𝑘 =  0, 1, … , 𝑠𝑠𝑠𝑠𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚 

 
where n_voice_si(seg_max, sample_no), is the voice signal at index i with the same number of 
segments seg_max.  
 
E. Extracting Features 

Features extraction plays a crucial role in the overall performance of the speech recognition 
system [29]. This study applies four existing features (ZCR, Energy, Fourier Coefficients, and 
Cepstrum) and one new feature (Peaks). The following sections discusses the detailed 
descriptions of the most common features in the field of speech emotion recognition [4], [29], 
[30], [31], [32], [33]. 

 
1. Zero-Crossing Rate (ZCR) 
 ZCR of a signal is defined as the rate at which the signal changes from positive to negative 
or vice versa [4], [29], [34]. It identifies the small changes in the amplitude of a signal to find 
whether human speech is present in the speech sample or not. Eq. (4) provides the formula of 
zero-crossing rate: 
 

 (4) 
where sk is the signal’s sample at position k, M is the length of the signal, and 
 

 
 
 

𝑍𝑍 =
1
2
�|sign(𝑠𝑠[𝑘𝑘]) − sign(𝑠𝑠[𝑘𝑘 − 1])|
𝑀𝑀

𝑘𝑘=1

                                       

sign(𝑠𝑠[𝑘𝑘]) = � 1 𝑠𝑠[𝑘𝑘] > 0
−1 𝑠𝑠[𝑘𝑘] < 0  
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2. Energy (E) 
The energy signal is calculated using Eq. (5). 
 

𝐸𝐸 =  1
𝑁𝑁
∑ 𝑇𝑇𝑇𝑇𝑖𝑖𝑁𝑁
𝑖𝑖=1                                                                             (5) 

 
where i: 1…N, TRi: trapezoid area between 2 consecutive samples. 

𝑇𝑇𝑇𝑇𝑖𝑖 =  
1
2

(|𝑠𝑠𝑖𝑖| + |𝑠𝑠𝑖𝑖+1|), 𝑣𝑣 = 1,⋯𝑁𝑁 

where sn: samplen 

 
3. Fourier Coefficients (FC) 

The Fourier Coefficient (FC) retrieves the global information of the frequency content of a 
signal by converting a function of time into its frequencies using the Discrete Fourier Transform 
(DFT) [31]. In this study, the Fourier Coefficient is taken from each segment. Eq. (6) is the 
formula for DFT. 

 

 (6) 
 

where s[m]: samples in the segment, m =1⋯ L-1 and |H[k]|: frequency magnitudes, k=0⋯L-1. L: 
the number of samples in the segment (varied depending on the length of the segment). To 
determine Fourier Coefficient (FC) from each segment, max from |H[k]| is selected as described 
in Eq. (7). 
 

𝐹𝐹𝐹𝐹(𝑛𝑛) =  max
0≤𝑘𝑘≤𝐿𝐿−1

[|𝐻𝐻[𝑘𝑘]|]                                                                   (7) 
 
where n = segment number 1 …. N 

 
4. Cepstrum (C) 
 The concept of cepstrum has been used in many applications of speaker fundamental 
frequency and speech analysis [19], [27], [35]. Cepstrum is a tool for investigating periodic 
structures in frequency spectra. It is achieved as a result of computing the Inverse Fourier 
transform (IFT) of the logarithm of the estimated signal spectrum as is shown in Equation (8). 
 

𝐹𝐹 =  |ℱ−1{log(|ℱ{𝑠𝑠(𝑛𝑛)}|2)}|2                                                                 (8) 
 
where ℱ{.} is the Fourier transform, ℱ-1{.} is its inverse, and s(n) is a speech signal. 
 
5. Number of Peak (P) and the Average of Peak (AP) 

A speech signal is characterized by a sequence of peaks that occur periodically at the 
fundamental frequency of the speech signal. Thus, the maximum peak amplitude during an 
analysis interval can serve as a simple indication of the amplitude of the signal and as an aid in 
distinguishing voiced segments from un-voiced ones [35]. 

This study extracts two peak features: the number of peaks (P) is collected from the whole 
signal, and the average peak (AP) is calculated from each segment. Algorithm 4 shows the 
process of calculating the number of peaks (P). 
 
Algorithm 4. Calculate the number of peaks (P) 
Input: voiced-signal s, and its length L 
Output : peak[i], number of peaks P  

|𝐻𝐻(𝑘𝑘)| =  � �𝑠𝑠[𝑚𝑚]𝑠𝑠−
𝑗𝑗2𝜋𝜋𝑘𝑘𝑚𝑚

𝐿𝐿 � ,𝑘𝑘 = 0 ⋯𝐿𝐿 − 1
𝐿𝐿−1

𝑚𝑚=0
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  1: count = 0 
  2: for i = 0 to L 
  3:       if   (𝑠𝑠[𝑣𝑣 − 1] < 𝑠𝑠[𝑣𝑣])  &&   (𝑠𝑠[𝑣𝑣 + 1] < 𝑠𝑠[𝑣𝑣])  then 
  4:                  peak[i] = s[i]  
  5:                  count++ 
  6:       else 
  7:                  peak[i] = 0 
  8:        end if 
  9: end for 
10: P = count   
 

Meanwhile, the average peak (APn) is taken from the voice segments. So, the available 
peak[i], i = 0 to L extracted by Algorithm 4 is averaged within each segment using beginning-
end positions of each segment. The formula is shown in Eq. (9). 
 

𝐴𝐴𝐴𝐴𝑛𝑛 =  1
𝑒𝑒𝑛𝑛−𝑏𝑏𝑛𝑛

∑ 𝑠𝑠𝑠𝑠𝑚𝑚𝑘𝑘[𝑗𝑗]𝑒𝑒𝑛𝑛
𝑗𝑗=𝑏𝑏𝑛𝑛                                                            (9) 

        
where n: segment index number, bn, and en are the beginning and end positions of segment n, 
respectively. 

 
As a resumption, the features are extracted from 2 areas: from each voice segment (energy 

(E), Fourier coefficients (FC), and the average of peak (AP)), and from the whole signal (zero-
crossing (Z), cepstrum (C), and a number of peaks (P)). All the above features build (3*seg_max 
+ 3)-D vector, which is fed to the classifier, with seg_max being the maximum number of voice 
segments (See Eq. (2)). 
 
F. Classifying Emotion 

Since this study focuses on DWT decomposition and voice-part segmentation, it is expected 
that a simple classifier can be used to prove the scheme's effectiveness. This work adopts the 
Multilayer Perceptron Neural Network classifier [36] [37], which is composed of three layers: 
input layer X consists of 3*seg_max + 3 number of features 𝑋𝑋 ∈ ℜ(3∗𝑠𝑠𝑒𝑒𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚+3),  the hidden 
layer consists of three layers with eight (8) neurons 𝐻𝐻 ∈ ℜ38 , and the output layer consists of 
eight (8) neurons 𝑂𝑂 ∈ ℜ8. Eight (8) neurons on hidden and output layers are selected since the 
method is validated using eight (8) classes of emotion. Rectifier Linear Unit(ReLU) is chosen as 
the activation function for the hidden layer and softmax() at the output layer. Figure 6 illustrates 
the architecture of our classifier. 
 

 
Figure 6 MLP Classifier. 
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3. Experiment and Analysis 
The proposed method is evaluated on RAVDESS dataset in English language [10] which is 

also carried out by [8], [11], [13], [15], [16], [21]. The dataset consists of 24 speakers (12 males, 
12 females) speaking two sentences with eight (8) emotions, i.e., neutral (N), calm (C), happy 
(H), sad (S), angry (A), fear (F), disgust (D), and surprised (Su). This study only uses speakers’ 
utterances with normal intensity, and the total data are 768 speech signals. 

The code for feature extraction is written under MATLAB 2017a. Meanwhile, emotion 
classification is written in Python programming language with the sklearn library. The 
experiment is conducted on AMD A8-6410 APU, AMD Radeon, 4.00GB RAM, 64-bit 
workstation. 

As a preprocessing step, all silent parts at the beginning and end of the speech signals are 
removed using the procedures described in Section 2.A, followed by DWT decomposition 
described in Section 2.B. At this step, speech signals are at DWT decomposition levels 4, 5, and 
6. Then, voice-part segmentations, as described in Section 2.C are conducted at all levels of 
speech signals. Next, from the procedure described in Section 2.D, it is found that the maximum 
number of voice segments (seg_max) in DWT decomposition levels 4, 5, and 6 are 18, 12, and 
8, respectively. Therefore, based on this finding, the number of features in each level is shown 
in Table 1. 

Table 1. Number of features in each DWT decomposition level 

Level of DWT decomposition No. of  features 
Level 4 3*18 + 3 = 57 
Level 5 3*12 + 3 = 39 
Level 6 3*8 + 3 = 27 

 
To validate the model, 8-fold cross-validation is applied. The number 8 is chosen since the 

dataset consists of 768 speech signals and is distributed evenly into eight (8) classes of emotions. 
The dataset is divided into eight (8) equal folds, and each fold consists of 3 speakers. In each 
run, seven folds are used for training, while one (1) fold is used for validation. The scheme  is 
conducted eight (8) times, and the average values of eight (8) results are considered the 
performance. The formula for accuracy is shown in Equation (10). 

 
𝐴𝐴𝑣𝑣𝑣𝑣𝐴𝐴𝐴𝐴𝑚𝑚𝑣𝑣𝐴𝐴 (%) = 𝐷𝐷𝑇𝑇

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
                                                                     (10) 

The experiment is conducted at each level of DWT decomposition, using the feature vector 
as shown in Table 1. The result is shown in Table 2, which shows that the system’s performance 
at DWT decomposition level 6 achieves the highest accuracy of 98%. As has been mentioned in 
Section 2.B, decomposition level affects the performance of recognition. At each level of 
decomposition, the noise content is reduced, and the emotion information is better represented 
by the features.    

 

Table 2. Classification result in each level of DWT 

Level of DWT No. of input features Accuracy (%) 
Level 4 3*18 + 3 66 
Level 5 3*12 + 3 92 
Level 6 3*8 + 3 98 

 
Furthermore, Table 3 provides a confusion matrix for emotion recognition at DWT 

decomposition level 6. It shows that some of the calm (C) emotions are misclassified as happy 
(H) and those sad (S) as angry (A). The case of calm-happy misclassification does not pose a 
significant problem since calm and happy emotions are correlated. However, in the case of 
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sadness and anger misclassification can be critical. One possible reason is the confusing nature 
of speech, as the tune of each speaker is almost similar, so it is difficult to identify their emotions. 
Some emotions are often mistaken for others’ since they sound very similar. Emotions could be 
expressed very differently from one individual to the others. It is, therefore, hard to distinguish 
emotions between only a few individuals. 

Table 3. Confusion Matrix for emotion recognition (%) 

Emotion N C H S A F D Su 

N 100 0 0 0 0 0 0 0 

C 0 92 8 0 0 0 0 0 

H 0 0 100 0 0 0 0 0 

S 0 0 0 92 8 0 0 0 

A 0 0 0 0 100 0 0 0 

F 0 0 0 0 0 100 0 0 

D 0 0 0 0 0 0 100 0 

Su 0 0 0 0 0 0 0 100 
 
Table 4 demonstrates a benchmark comparison of this proposed method with different state-

of-the-art SER systems. On the RAVDESS dataset, our system outperforms those of Gao et al. 
[8], Mustaqeem et al. [11][13], Zeng et al. [15], and Shegokar and Sircar [21]. We infer that their 
approaches have some weaknesses. For example, [8], [11], [13], [15] used fixed-length audio 
segments and extracted features from them. This approach has been proven ineffective by the 
work of [19]. In [21], they also adopted wavelet decomposition, but they extracted their wavelet-
derived features from all decomposition levels, which we consider not effective. The highest 
performance was reported by Biqiao et al. [16]. However, their experiment was conducted only 
on six classes of emotion, while the dataset provided eight classes. They reported that they had 
conducted a survey to validate the labels in the dataset and concluded that two (2) classes of 
emotions and one (1) speaker should be eliminated. 

 

Table 4. Comparison of our proposed work with the previous ones 

Paper Classifier Experiment 
Settings Accuracy (%) 

Gao et al. [8] Linear kernel SVM with 
sequential minimal 
optimization 

10-fold cross 
validation 

RAVDESS (6 classes) : 94.5 
(highest) 

EMODB (7 classes): 94.5 
(highest) 

Mustaqeem 
et al. [11] 

Deep Stride CNN 
classifier 

80%  training and 
20%  testing  

RAVDESS (8 classes): 79 
IEMOCAP (4 classes): 81.72  

Mustaqeem 
et al. [13] 

Deep BiLSTM network 80%  training and 
20%  testing 

RAVDESS (8 classes): 
77.02 

IEMOCAP (4 classes): 72.25 
EMODB (7 classes): 85.57 

Zeng et. al. 
[15] 

Gated Residual Networks 
with Multi Task Learning 

5-fold cross-
validation  

RAVDESS (8 classes) 
64.8 

Biqiao et al. 
[16] 

Directed Acyclic Graph 
SVM and Regularized 
Multi-Task SVM 

leave one 
performer and 
sentence out 

RAVDESS (6 classes): 
 98.19 

UMSSED (4 classes):  
95.83  
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Paper Classifier Experiment 
Settings Accuracy (%) 

cross-validation 
(RAVDESS) 
leave-one-
performer-out 
cross validation 
(UMSSED) 

  

Shegokar 
and Sircar 
[21] 

PCA feature reduction, 
and Quadratic SVM 
classifier 

5-fold cross-
validation 

RAVDESS (8 classes) 
60.1 

The 
proposed 
method 

Multilayer Perceptron 8 fold cross-
validation 

 RAVDESS (8 classes):  98 

 
4. Conclusion 

This work proposes the development of a speech emotion recognition system. The proposed 
process consists of DWT decomposition and voice segmentation combined with spectral 
(Fourier Coefficient and Cepstrum) and prosodic features (ZCR, Peak, Energy). Based on the 
experiment, this method achieves a 98% classification rate accuracy on the DWT decomposition 
level 6 for the RAVDESS dataset.  For future work, it is recommended to use genuine emotions 
and speaker datasets under a non-controlled environment to obtain better generality. 
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