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Discharge Inception Probability for Twisted Enameled-Wires 
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Abstract: This paper presents an experimental study on repetitive partial discharge 
inception probability of twisted enameled wires subjected to modified inverter-surges. In 
order to obtain the probability curves as a function of the voltage amplitude, we develop 
an automatic measurement system of partial discharge inception probability for the 
twisted enameled wires subjected to the repetitive pulses with step-by-step increasing in 
the voltage height. Very fast oscillated pulses with or without polarity-reversal and an 
impulse-like pulse without oscillation are used as the modified inverter-surges. In the test 
for the impulse-like voltage, repetitive partial discharge inception voltage (RPDIV) 
decreases with increasing the pulse width. On the other hand, RPDIV for the 
polarity-reversed pulse with a higher oscillation cycle is lower than that for the pulse with 
lower oscillation cycle. The difference of PD inception probability between the voltage 
waveforms will be discussed on the basis of charge dynamics on the wire surfaces. 
Index Terms: modified-inverter-surge, repetitive partial discharge, automatic 
measurement, polarity-reversed pulse, twisted-pair 

 
1. Introduction 
 It is very important to improve the reliability and safety of power drive systems of hybrid and 
electric vehicles from the practical point of view. One of problems is the degradation of motor 
coil insulations subjected to high voltage pulses with high repetition rate. Enameled wires in 
inverter-fed motors are subjected to oscillated pulses which are superimposed on a square 
voltage from a PWM-inverter-circuit, so called inverter-surges [1]. In the last decade, many 
researchers studied partial discharge (PD) phenomena caused by modified inverter surges. 
Impulse-like voltages or square-like voltages are used as a modified inverter surge in many cases 
[2]-[4]. However, actual voltage waveform of the inverter surge is not a simple impulse but a 
very fast damped oscillation with changing its polarity [5]. From this viewpoint, it is very 
important to clarify the influences of voltage waveforms on repetitive partial discharge inception 
voltages (RPDIV) for enameled wires. RPDIV is defined as a critical voltage that the inception 
probability of the partial discharges is up to 50 % [6]. 
 Since 2008 to 2010, a round-robin test for RPDIV measurement was carried out by six 
labolatories in Japan in order to standardize measurement method for RPDIV [7]. Influences of 
experimental conditions, such as humidity and repetition number of measurement, were 
discussed on the basis of the results on RPDIV measurement for a common sample subjected to 
monopolar impulse voltages.  
 There are many studies on influence of voltage waveforms on RPDIV [8]-[11]. However, the 
characteristics of PD inception probability as a function of the applied voltage have not been 
studied in detail. In the present study, PD inception probability for a twisted pare sample 
consisting of two enamelled wires is evaluated in detail by an automatic measurement system for 
various modified inverter surges[4]. The automatic measurement system allows us to obtain not 
only RPDIV but also PD probability curves as a function of the applied voltage. Influences of 
several parameters, pulse width, oscillation cycle and time interval from pulse to pulse, are 
studied by using the automatic measurement system. 
 
2. Experimental procedure 
(1) Automatic measurement system 
 Figure 1 shows a schematic layout of an automatic measurement system for partial discharge  
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inception probability. To obtain PD probability curves, the voltage pulses are repeatedly applied 
to a twisted pare sample with step-by-step increasing in amplitude [5][7]. Ten voltage pulses 
with a same amplitude are applied to the sample at a time interval Tc. The initial applied voltage 
is sufficiently lower than RPDIV. After the ten times application, successive ten pulses slightly 
higher than the previous pulses are applied to the sample. The rise step ∆ܸ is set 10 V in all 
tests. When the amplitude is up to a sufficient high voltage to induce PD, the applied voltage is 
reset to the initial value. This sequence is repeated for ten times with one twisted-pare sample.  
The above procedure is the same as that in the round-robin test to measure RPDIV [7]. One 
difference between the round-robin test and this study is how to strage large amount of partial 
discharge signals. In the round-robin test, a large number of detected signals were stored in a 
digital oscilloscope and then they were observed by naked eye to estimate RPDIV. In this study, 
a discharge light is not only detected but also transformed into a logic pulse signal by a special 
optical sensor of our own making. The sensor consists of a photomultiplier (Hamamatsu 
Photonics Co., H5783-06) and a successive TTL pulse generator. The logic signal of partial 
discharge is automatically stored in a computer. The sequence of the pulse voltage repetition is 
also controlled by the computer, so that statistical data of the probability curve is automatically 
obtained. The schematic diagram of the optical sensor and the control program can be found on 
the Web [12]. 

 
Figure 1. Experimental arrangements. 

 
(2)Voltage waveforms 
 Typical waveforms of the applied voltage are shown in Figure 2(a) for impulse-like voltages 
having various exponential tails and in Figure2(b) for the very fast-oscillated pulses with 
polarity-reversal. The impulse-like voltage with the height V0 can be produced by closing a 
semiconductor switch S3 (Behlke Co. HTS-71-62B) in Figure1 after a capacitor at the front of a 
coaxial cable is charged by a dc voltage source of –V0. To produce the impulse voltage, other 
switches S1 and S2 are kept open. The half width of the voltage pulse can be controlled by a CR 
circuit at the front of the coaxial cable. The influence of the pulse width on RPDIV is studied 
using the impulses with various time constants of the order from 1 μs to 100 μs. If S1 is kept 
close, the very fast voltage oscillation is caused by direct grounding because reciprocation of the 
traveling wave occurs with changing its polarity due to impedance-mismatching between the 
cable (52 Ω) and the grounding end (0 Ω)[13]. When S2 is kept open, the voltage oscillation is 
superimposed on the impulse voltage, so that the voltage is oscillated between 0 to 2V0. On the 
other hand, the voltage is oscillated between –V0 to +V0 as shown in figure 2(b) when S2 is kept 
close. The frequency of the voltage oscillation is proportional to the cable length. In the present 
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study, three kinds of cable lengths, 5 m, 10 m and 50 m are chosen, so that the oscillation cycles 
(Tosc) are set to 100 ns, 200 ns and 1μs respectively. 
 

 
Figure 2. Voltage waveforms for (a) impulse-like pulse and for (b) very fast  

polarity-reversal pulse. 
 
(3)Test sample 
 Figure3 shows a photograph of a test sample. A twisted-pair sample made with 
polyamide-imide enameled wire (AIW, Sumitomo Wintec Co., 0.8 mm in diameter of 
conductor, 33μm in thickness of enamel layer) is used as a test sample. One wire is always 
grounded whereas the other wire is connected to the pulse generator as shown in Figure1. 
Therefore, field intensity at contact points of the twisted wires becomes higher than that at the 
end point of the wire. We confirm that no discharge light is observed at the wire end, whereas 
intense light is observed along the twisted area.    
 It is known that RPDIV strongly depends not only on humidity but also on temperature 
[14]-[18]. Kikuchi et al reported that RPDIV decreased with increasing relative humidity at a 
low temperature, whereas it slightly increased with increasing relative humidity at a high 
temperature[15]. In order to avoid the change in RPDIV due to these environmental factors, the 
sample is suspended in a desiccators filled with dry air at 23 േ 3 oC in atmospheric pressure. 
Characteristics of partial discharge inception probability as a function of the peak to peak value 
of the applied voltage (Vpp) are compared between the various modified inverter surges. 
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Figure 3. Photograph of twisted pair sample 

 
3. Results and discussion 
(1) Effect of polarity reversal 
 Relationships between Vpp and PD inception probability are shown in Figure4 for the very 
fast oscillated pulses (Tosc=100 ns) with and without polarity reversals. Each plot in Figure4 
corresponds to mean value for 1000 measurements (10 pulses ൈ 10cycles ൈ 10 samples).   
Vpp corresponding to RPDIV is 1940 V for the pulse without polarity reversal, whereas it is 
2010V for the pulse with polarity reversal. It should be noted that the voltage across the two 
wires subjected to the pulse with polarity reversal is V0, which corresponds to only the half of 
Vpp. On the other hand, the voltage across the wires subjected to the pulse without polairty 
reversal is 2V0. This fact suggests that pre-charging by dc -V0before the polarity reversal has an 
effect to enhance the field strength between the two wires, so called space charge effect[5][18]. It 
is known that surface residual charges produced by the dc bias enhance the field strength across 
the air gap just after the polarity reversal. The mechanism of the field enhancement by the 
residual charges on the wire surface can be explained as follows. A sectional view of contact area 
of the twisted pair subjected to the polarity reversed pulse from –V0 to +V0 and its equivalent 
circuit are shown in figures 5(a) and 5(b) respectively. During the dc charging by –V0, 
considerable charges must be produced near the contact point of the two wires and then they 
spread along the wire surface. Due to the surface charge accumulation, most part of the applied 
voltage is divided into the two enamel layers before the polarity reversal. When the polarity 
reversal from –V0 to +V0 occurs at , the voltage Vg (t) across the air gap after  can 
be expressed as follows. 

 
Figure 4. Relationships between peak-to-peak voltage and PD inception probability for the 

oscillated pulses with and without polarity-reversal. 

t = 0 t = 0
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Figure 5. Sectional view of the contact point of the twisted pair sample and corresponding 

equivalent circuit. 
 

  (1) 

 
where Cg, Cb and R represent the capacity of the air gap, the capacity of the enamel layer and the 
resistance along the enamel surface respectively. The derivation of Eq. (1) is described in our 
previous paper in detail[19]. 
Eq. (1) indicates that Vg (+0) can be higher than V0. If Cg is much smaller than Cb, Eq. (1) is 
approximated as follows. 

 

 
Figure 6. Relationships between peak-to-peak voltage and PD inception probability for dc 

charging times (Tc, =5, 20 and 200 ms), (a) the oscillated pulse without polarity reversal, (b) the 
oscillated pulse with polarity-reversal. 
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  (2)

   
 Relationships between Vpp and PD inception probability with various pulse repetition rates 
(pps : pulse per second) are shown in Figure6(a) for the oscillated pulse without polarity reversal 
and in Figure6(b) for the oscillated pulse with polarity reversal. The dc charging time (Tc), 
corresponding to the time interval from pulse to pulse, is set to 200 ms by 5 pps repetition and is 
set to 20 ms by 50 pps repetition. The probability curve for the polarity reversed pulse with 
Tc=200 ms shows that the partial discharge occurs at lower voltage. This is because the longer 
charging time is sufficient to produce many surface charges. This fact demonstrates that the 
surface charges on the enameled wire has an important role for the partial discharge propagation 
just after the polarity reversal. 
 

 

 
Figure 7. Relationships between peak-to-peak voltage and PD inception probability for 

(a)impulse-like pulse and for (b) oscillated pulse with polarity reversal. 
 
(2)Effect of pulse width 
 Relationships between Vpp and PD inception probability are shown in figure 7(a) for the 
impulse-like pulse with various half widths (t50) and shown in figure 7(b) for the 
polarity-reversed pulse with various oscillation cycles (Tosc). RPDIV for the impulse-like pulse is 
2270 V for t50=3 μs, 2090 V for t50=18 μs and 1920 V for t50=160 μs respectively. The probability 
curves in figure 7(a) indicate that RPDIV decreases with increasing the pulse width [11][20]. 
The reason why RPDIV for the longer pulse is low can be explained as follows. Probability of 
the initial electron emission per unit time is constant because this phenomenon is based on 
stochastic mechanism. Therefore, propagation probability of an avalanche produced by the 
initial electron must be increased with increasing the pulse width so that RPDIV for the longer 
pulse becomes small. However, RPDIV for the very fast oscillated pulse does not decrease with 
decreasing the oscillation cycle. It should be noted the very fast oscillated pulse with Tosc =100 ns 
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induces the partial discharge at lower voltage though the pulse width is very short as shown in 
figure 7(b). RPDIV is 1800 V for Tosc =100 ns, 1950 V for Tosc =200 ns and 1950 V for Tosc =1 μs 
respectively. One of the reason why RPDIV for the very fast oscillation becomes low is probably 
that the time lag of the discharge initiation increases with increasing the oscillation cycle. The 
time lag is defined as the time from the front of the polarity reversed voltage pulse to the 
discharge initiation. We observed the discharge light signal from the photomultiplier on the 
oscilloscope to measure the time lag. Laue plots of time lag distribution of partial discharge 
caused by the oscillated pulse with polarity reversal for various Vpp are shown in Figure8(a) for 
Tosc =100 ns, in Figure8(b) for Tosc =200 ns and in figure 8(c) for Tosc =1 μs. These plots indicate 
that the mean time lag of the partial discharge propagation for Tosc =100 ns is shorter than that for 
Tosc =200 ns. It is important point that the voltage across the air gap Vg (t) is up to a maximum 
value just after the polarity reversal ( ) and then it decrease exponentially as shown in 
Eq.(1) and Eq.(2). Therefore, RPDIV for the very fast oscillated pulse depends on the oscillation 
cycle. 

 

 
Figure 8. Laue plots of time-lag of the discharge initiation caused by the polarity-reversed pulses 

for (a) Tosc =100 ns, for (b) Tosc =200 ns and for (c) Tosc =1 μs respectively. 
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4. Conclusions 
 Influences of the voltage shape of the modified inverter surges on RPDIV were studied for 
the twisted enameled wires. In order to obtain PD probability curves as a function of the applied 
voltage, we made an automatic measurement system. Results were obtained as follows. 
 The PD inception probability for the oscillated pulse with polarity reversal from –V0 to +V0 
was compared with that the pulse without polarity reversal from 0 to +2V0. Voltage across the 
two enameled wires to cause PD for the pulse with polarity reversal was almost the half of that 
for the pulse without polarity reversal. This was because the field strength at the air gap between 
the enameled wires are enhanced by the residual surface charges produced by the dc charging 
before the polarity reversal.  
 To examine the influence of pulse width on RPDIV, the impulse-like voltages with various 
widths were repeatedly applied to the sample. Results showed that RPDIV for the impulse-like 
voltage strongly depended on the pulse width. RPDIV decreased with increasing the pulse width. 
To examine the effect of the very fast oscillation of the polarty-reversed pulse on RPDIV, the 
polarity reversed pulses with various oscillation cycles were repeatedly applied to the sample. 
RPDIV for the pulse with 100 ns of the oscillation cycle became lower than the other pulses with 
longer cycles. 
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