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Abstract: Energy consumption conservation is a hot topic in a wireless sensor network (WSN). 
The popular algorithm to solve the problem involves reducing communication range using the 
cluster method, and the low energy adaptive clustering hierarchy (LEACH) is one of the most 
famous techniques. The cluster based wireless sensor network experiences a heavy intra cluster 
interference caused of imperfect power control, which can deteriorate the network lifetime. The 
existing power control technique applies a distance-based power control to select transmission 
power, which cannot adapt to environmental changes; that is why the network failed to control 
the interference and calling for a new method to improve the existing power control. The research 
evaluates the reinforcement learning (RL) based power control that can bring the sensor to select 
the lowest transmission power while keeping the signal and interference to noise ratio (SINR) of 
sensor in cluster head (CH) above the threshold. To improve the RL-based power control, the 
author proposes a dual policy technique with SINR as a control metric. Finally, the simulation 
exhibits the proposed algorithm's effectiveness and performance improvement over the original 
one that is network lifetime, packet delivered, and average energy consumption per round.  
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1. Introduction
Clustering is a leading method to control interference and energy expenditure in a wireless

sensor network. The method reduces the transmission distance between the sensors and the sink 
by inserting one node. The elected sensor behaves as an intermediate node that received data 
from the cluster's member and sends it into the sink. The most popular technique is the low 
energy adaptive clustering hierarchy (LEACH) [1][2]. The sensors run the LEACH algorithm to 
select CH and join with the closest CH. After cluster formation, the sensors begin to send data 
into the cluster head. However, the algorithm does not have a specific method to control the 
transmission power, and they use a distant estimation as a basis to select transmission power. 
The technique has a weakness in that it cannot adjust the power when the CH's signal quality is 
low and need to increase the sensor's power level [3][4]. Then the cluster-based sensor network 
experiences a heavy intra cluster interference coming from neighbor nodes[5]. The interference 
is caused by non-adaptive power control used by the nodes. 

Zheng et al. [6] has proposed adaptive transmission power control (ATPC) which the 
objective is to select the minimum transmission power based on the power distance between 
sender and receiver. The idea is to find the shortest path between the sender and receiver and 
allocate the transmission power Ptx ∈ {Pshort-range, Pdefault-range, Plong-range}. The sensor will create a 
multi-hop routing table following the minimum power distance, which can be solved by the 
Dijkstra algorithm. The ATPC benefit is achieved through two conditions: 

a. The short-range communication selection
Figure 1 shows three areas of transmission that is short-range, default-range, and long-range.

The method will guide the sensor to choose short-range transmission power when sending the 
data into Receiver1 rather than default-range. The selection will reduce the transmission power 
by 62.9% compare with the default setting. 
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Figure 1. Transmission range for different power level[6] 

 
b. The long-range communication selection 

 The second case if the sensor sends the data into Receiver3, which is longer than the default 
range. The sensor can choose another sensor as a relay sensor or increase the power to cover the 
long-range. Comparing the long-range power distance and the sum of the multi-hop power 
distance is the primary consideration. Indeed, the long-range selection can reduce the 
transmission power by 40% after the optimization and decrease one hop. Both selections in 
wireless sensor networks generate a power reduction of around 30-40% compared to the default 
setting. The adaptive transmission power control method has similarity with the proposed 
method which apply variable power control to meet the neighborhood link quality by selecting 
minimum transmission power. However, the method does not adapt to channel changes and 
interference from other nodes that can decrease link quality. 
 Masood et al. [7] have introduced an adaptive on-demand transmission power control 
(AODTPC) algorithm, the revised version of ODTPC (on demand transmission power control) 
[8]. The main idea is to apply the Kalman Filter to generate the predictive RSSI (receive signal 
strength indicator); then, the RSSI will guide the sensor to select appropriate transmission power 
to overcome the varying channel. The sensor uses the method to track the channel condition, 
estimate the next RSSI, and respond to it with increased or decreased transmission power based 
on comparing the next RSSI with the threshold. The method has been evaluated and exhibits 
superior performance compared with ATPC and ODTPC, reducing energy consumption by 53%.   
 

 
 Figure 2. AODTPC system model[7] 

 
 Figure 2 shows the AODTPC system model that enhances the ODTPC method with the 
Kalman filter. The AODTPC is like the proposed method in that it tracks the control metric in 
the receiver, generates the prediction, and selects the power. However, the proposed method uses 
different control metrics, SINR rather than RSSI, which is powerful in evaluating the channel 
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condition due to fading and interference. Another difference is the prediction method. The 
proposed method uses reinforcement learning to learn the environment changes and estimate the 
future based on the previous state. The system creates a Q table that contains previous 
experience. 
 In adaptive and robust topology control (ART), Chincoli et al. [9] have applied control metric 
PRR (packet received ratio) as guidance for selecting transmission power. The sensor calculates 
PRR as a ratio of the ACK message from receiver over L number of transmitted packets within 
a window W. Then, PRR will be compared to two thresholds Thl and Thh; if PRR is higher than 
Thh, the sensor decreases the power by one level; otherwise, if PRR is below Thl, the sensor 
increases the power level. In any other case, Ptx stays constant. After window W ended, then the 
calculation starts again. The author has verified the method using simulation and compares it 
with the MaxPow method. ART has shown better performance compared to MaxPow in latency 
and throughput indicators. The method has similarities with the proposed method, in which both 
methods use the variable transmission power with different control metrics. However, PRR 
selection has generated instability where PRR near the threshold and the simulation do not 
consider transmission interference directly.  
 Another transmission power research has been conducted by Chincoli. In self-learning power 
control, Chincoli et al. [10] evaluated reinforcement learning (RL) method in power control to 
overcome the weakness of the previous method. The method has been categorized as a learning 
technique using the past event to generate a learning table and use it to optimize the transmission 
power selection. The author has simulated the method using a small sensor network and 
considers interference from adjacent nodes. The method utilizes Clear Channel Assessment 
(CCA) and number of retransmissions as a control metric to identify if interference happens in 
the receiver. The states of the nodes are determined based on a combination of CCA and 
retransmission within windows W. The power selection effect will be valued using a reward 
system based on PRR and power level; the higher PRR with lower power transmission will be 
rewarded with a high reward score. This reward will be accounted for Q table calculation, a table 
that represents a good or bad power selection. After the system converges, the node can utilize 
the Q table as guidance to select the next transmission power. The RL-based power control is 
more advanced than other methods that provide a smart capability to adapt to channel fading, 
interference, and other environmental changes. The method applies RL-based power control, like 
the proposed method. However, it utilizes CCA and PRR as control metrics to measure the 
interference effect and use the information to create a Q table. The technique has been tested in 
a few numbers of sensors and shows outstanding performance. 
 In power control based on multi-agent deep Q network, Gengtian et al. [11] have proposed 
RL-based power control in the Device to Device (D2D) communication with Q value 
approximator using neural network. The system uses SINR as a control metric to maintain the 
signal quality above the threshold. When the system trains, it applies a deep Q network to 
minimize the loss function in every episode. The action, state, and reward will be stored in the 
memory as an input of the next process. The author has simulated the system and shows that the 
system has a superior performance compared with open-loop power control and MaxPower 
Control in terms of system throughput. 
 The previous work on power control can be categorized into four groups, namely proactive 
(ATPC), reactive (ODTPC and ART), predictive (AODTPC), and learning (RL) methods. The 
proactive method has estimated the transmission power based on the network model; however, 
this method cannot adapt to the environmental changes and lead to wrong action that degrades 
the performance. In the reactive method, the sensor monitors link quality (RSSI) continuously 
and compares it to the threshold. If the quality falls below the threshold, the sensor will adjust 
transmission power to overcome the situation. The method does not consider past events as part 
of the prediction and leads to oscillation as the environment varies every time. The predictive 
method has generated the next value and compared it with the threshold. If the next value is 
higher than the threshold, then the sensor will lower the transmission power and vice versa. 
However, the predictive system has considered the previous value only, and it has no memory 

Transmission Power Management of LEACH Wireless Sensor Network

568



 
 

of the best action taken in the past. The situation will lead to the wrong action, and the system 
will enter a competition which can bring the sensor applies high transmission power. The latest 
research on this area has led to a smart capability by utilizing past events to create a table 
representing good or bad selection history. After the table converges, the node uses it as guidance 
to select new power. However, the previous RL power control research applies in a small 
network or D2D communication, opening the research in a vastly complex network.  
  Our work studies the RL-based power control in a large-scale LEACH network to reduce 
interference and energy consumption with the main contribution are two folds: 
a. System model and algorithm which control interference with collaboration between the nodes 

in one cluster to achieve an equilibrium, then every node sends the data.    
b. Improving the RL algorithm with the introduction of the dual policy in the testing stage, 

which replace e-greedy policy 
The following section discusses the system model for wireless sensor network power control, 

section 3 introduces the simulation design, section 4 discusses the results and performance, and 
the last chapter discusses the conclusion. 

      
2. System Modelling  

The research applies LEACH cluster based wireless sensor network as a model. LEACH is 
an eminent high-performance topology control algorithm that splits WSN into two-layer and 
transmitting the data in two hops. It is a distributed clustering scheme proposed for uniform 
distribution of energy consumption among all the nodes in WSN. The algorithm groups the 
sensor nodes in WSN into CH and the member sensors. The member sensors sense, collect data, 
and send it into CH. The CH performs processing operations (such as de-redundancy and data 
fusion) and delivers the data packets to the base station (BS) [12][1][13].  

The LEACH method executes in rounds, and each round runs two phases: setup phase and 
stable state phase. In the setup phase, WSN specify pch% of n sensor nodes as CH. The sensor i 
generates a random number between 0 and 1 and compares it with the threshold value T(i) as 
follows[14]: 

𝑇𝑇(𝑖𝑖) = �
𝑝𝑝𝑝𝑝ℎ

1−𝑝𝑝𝑝𝑝ℎ∗(𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 1
𝑝𝑝𝑝𝑝ℎ)

, 𝑖𝑖𝑖𝑖 𝑖𝑖 ∈  𝐺𝐺

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
                                                                                      (1)                                                                                  

where pch is the desired number of CH, r is the current round, and G is the set of those nodes 
which are non-CHs in the last 1/pch rounds. If the random value is below the threshold, then the 
sensor becomes CH. After the CH election, the non-CH sensors will join to the nearest power 
distance CH. In the stable state phase, the members transmit the sensed data using Time Division 
Multiple Access (TDMA) scheme to the CH. The CH performs the information fusion over all 
the nodes in the cluster and then transmits it to the BS.  

We assume N sensor nodes are randomly distributed in A × A area to form the WSN. The 
analysis made several assumptions. Firstly, channel communication is modeled by free-space 
loss, and the two-ray ground propagation model depends on the node and CH distance [15]. The 
base station (or sink) is in the center of the area and has enough power to cover it. The nodes are 
stationary, homogeneous, and have a variable transmission power adjusted to reach the CH. The 
research uses the energy model shown in Figure 3 to analyze energy consumption. We adopt the 
first-order radio model to describe the energy consumption [16]. If the distance is less than the 
threshold d0 [16], which is calculated using Equation (2), then the free space model is used; 
otherwise, the two-ray ground propagation is used [15][17].  

𝑑𝑑0 = �𝜖𝜖𝑓𝑓𝑓𝑓/𝜖𝜖𝑀𝑀𝑀𝑀                                (2)                                                                                          
where 𝜖𝜖𝑓𝑓𝑓𝑓 is free space propagation model (pJ/bit/m2) and 𝜖𝜖𝑀𝑀𝑀𝑀 is multipath propagation model 
(pJ/bit/m4). 
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Figure 3. Energy Model[4] 
 
We assume that Eelect is the dissipated energy per bit, and d is the distance between the 

transmitting node and the receiving node. Therefore, the energy consumption of transmitting L-
bits (ETX) is computed as [16][18]: 

𝐸𝐸𝑇𝑇𝑇𝑇(𝐿𝐿,𝑑𝑑) = �
𝐿𝐿𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐿𝐿𝜖𝜖𝑓𝑓𝑓𝑓𝑑𝑑2, 𝑖𝑖𝑖𝑖 𝑑𝑑 < 𝑑𝑑0
𝐿𝐿𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐿𝐿𝜖𝜖𝑀𝑀𝑀𝑀𝑑𝑑4, 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 𝑑𝑑0

                                           (3)                                                                                                                

where L is the length of the transmitting data package, d0 is the threshold of the free space 
propagation model, generally about 80 m. The energy consumption of receiving L-bits (ERX) is 
computed as [16][18] 

𝐸𝐸𝑅𝑅𝑅𝑅(𝐿𝐿) = 2𝐿𝐿𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                                                            (4)                                                                                                                   
LEACH algorithm applies a distant based transmission power control method. The sensors 

send advertisement message with maximum transmission power in the setup phase. The sensors 
estimate the distance between them and its adjacent node utilizing the received signal strength. 
Next, every sensor will decide itself as CH or sensor member with compare a random number 
and the threshold as Equation (1). If sensor i become cluster member, then it will join with nearest 
CH and calculates transmission power (PTX,i) as follows [15]: 

𝑃𝑃𝑇𝑇𝑇𝑇,𝑖𝑖 = �

𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖
𝐶𝐶𝑓𝑓

𝑑𝑑𝑖𝑖−𝐶𝐶𝐶𝐶2 ,  𝑑𝑑𝑖𝑖−𝐶𝐶𝐶𝐶 ≤ 𝑑𝑑0
𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖
𝐶𝐶𝑓𝑓

𝑑𝑑𝑖𝑖−𝐶𝐶𝐶𝐶4 ,  𝑑𝑑𝑖𝑖−𝐶𝐶𝐶𝐶 > 𝑑𝑑0
                                               (5)                                      

where Cf is a transceiver characteristic number, Prx,i is received power of sensor i in CH, di-CH is 
the distance sensor i to CH. The transmission power PTX,i will be used to send the information 
from the sensor i to CH in a particular round. If a new round begins, then the sensor will re-
evaluate the transmission power according to the new cluster formation. 
 The RL-based power control is one of the adaptive power controls that can track a specific 
control metric and set up an insight. The sensor will use the insight to decide a new transmission 
power that is suitable for the environment. Figure 4 shows the block diagram of the RL-based 
power control. There is two-component that interact to achieve a target, namely the sensor and 
CH. The RL-based power control embedded in the LEACH method considers the SINR as a 
metric as follows: 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖

∑ 𝑃𝑃𝑟𝑟𝑟𝑟,𝑘𝑘∉𝐶𝐶𝐶𝐶+𝑁𝑁0𝐶𝐶
𝑘𝑘=1,𝑘𝑘≠𝑖𝑖

                   (6)                                

where C is the number of cluster member, i is the cluster member, and No is gaussian noise. 
 The sensor starts to send the data into CH with a selected power level. Then, CH evaluates 
the SINR of the received signal interfered with by other members and noise, as in Equation (6), 
and sends SINR information back to the sensor. Based on it and transmission power level, the 
sensor creates a Q table to memorize the action and chooses the appropriate power level to send 
the data in the next round. However, the sensor should not choose a high-power level that can 
decrease the other sensor quality and generate action from other sensors. The sensors collaborate 
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indirectly to maintain the SINR through adjusting the power level until their SINR>threshold. 
The collaboration utilizes the learning process guided by the reinforcement learning method. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 4. RL-based LEACH Power Control Block Diagram 
 
 The RL-based power control method consists of the reward system, Q value update, and 
action selection. The method applies three cycles of activities, namely select an action, reward 
the action based on the response of environment and value the new state. The cycles will continue 
until the system converges to the target. 
 
A. Reinforcement Learning Method 
 Figure 5 shows the generic model for multi-agent reinforcement learning. The model consists 
of many agents that interact with the environment. The agent takes an action ak that is select a 
power level and transmits data into the cluster head at a time steps k. The environment responds 
to the agent's action by giving a reward that represents how well the action is taken. When the 
agent does an action, it expects something good to happen in the environment. However, if the 
environment behaves otherwise, then the agent will get a low reward. After the environment 
gives a response, at time k+1 the agent enters new state sk+1∈ {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3}. In this research the 
states are s1 (SINR<Thlow), s2 (SINR between Thlow and Thhigh) and s3 (SINR>Thhigh). The SINR 
transition is driven by the transmission power of the agent and interference. The objective is to 
accumulate the reward as much as possible until the state terminates (return of the system); the 
sensor updates Q value function based on current action and state Q(sk,ak). There are three 
components in Q value that are current Q value, reward number, and the gap of current Q value 
and the best of Q value at the next state. The sensor will try to close the gap with select the right 
action. The next action selection will be guided by a policy πk, where πk(s,a) is the probability 
that ak=a if sk=s. The policy maps the states into the probability of selecting an action. In this 
research, the policy uses the Q value as guidance to select the next action selection that generates 
the maximum return. The system involves many agents that collaborate to achieve a common 
objective. In the research, the objective is to minimize energy consumption Et in the network, 
which comprises energy sensor to transmit L bits (ETX) and energy CH to receive and transmit 
data into the base station (ECH). 

𝐸𝐸𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚�∑ 𝐸𝐸𝑇𝑇𝑇𝑇,𝑖𝑖
𝑁𝑁
𝑖𝑖=1,𝑖𝑖∉𝐶𝐶𝐶𝐶 + ∑ 𝐸𝐸𝐶𝐶𝐶𝐶,𝑘𝑘∈𝐶𝐶𝐶𝐶

𝑀𝑀
𝑘𝑘=1 �                                                      (7)                        

with the constraint: 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝐶𝐶𝐶𝐶 ≥ 𝑇𝑇ℎ𝑙𝑙𝑙𝑙𝑙𝑙                                                                                                               (8)        

 

Dwi Widodo Heru Kurniawan, et al.

571



 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝐶𝐶𝐶𝐶 < 𝑇𝑇ℎℎ𝑖𝑖𝑖𝑖ℎ                                        (9)                                                                      
𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖 < 𝑃𝑃𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (10) 

where N is the number of nodes, M is the number of clusters, ECH is receiving and transmission 
energy of CH, 𝑇𝑇ℎ𝑙𝑙𝑙𝑙𝑙𝑙  is the minimum SINR, 𝑇𝑇ℎℎ𝑖𝑖𝑖𝑖ℎ is the maximum SINR, and Pthreshold is the 
maximum transmission power. 

 
 
 

 
 
 
 
 

Figure 5. Multi-Agents Reinforcement Learning Method 
 
B. Reward System 
The reward system applies a positive reward that is the sensor will get a high reward if the 
environment's response close to the target and a low reward if the response is far from the target. 
The author uses the positive reward to drive the system to move to the target as fast as possible. 
The reward (re) is calculated as follows: 

𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �
1 − �𝑇𝑇ℎ−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�
𝑝𝑝

, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑇𝑇ℎ𝑙𝑙𝑙𝑙𝑙𝑙

1 − �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑇𝑇ℎ
∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

�
𝑝𝑝

, 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅 > 𝑇𝑇ℎℎ𝑖𝑖𝑖𝑖ℎ
 (11)                                                                           

𝑟𝑟𝑟𝑟𝑎𝑎 = 1 − �𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
∆𝑎𝑎

�
𝑝𝑝
                                               (12)                                                             

𝑟𝑟𝑟𝑟𝑘𝑘+1 = 𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑎𝑎                                                         (13)                                                           
 

with Th is the SINR's threshold, p is a coefficient reward, amax and amin are maximum and 
minimum power level, ∆SINR is the range of SINR, and ∆a is the range of power level. The 
component of the SINR reward value is determined by its distance from the threshold number 
(Th). The closer to threshold Th, the higher the reward, conversely the farther away from 
threshold Th, the smaller it is. Figure 6 displays the reward value curve that use value 0<p<1 to 
implement a positive reward. The target is distance = zero, and we can see that the velocity is 
faster when the system approaching the target zero distance.     
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Figure 6. The Reward Values of Normalized the SINR's Distance 
 

C. Q Value 
 The Q value represents how well the action selection through evaluation of the reward and 
the difference between Q value at k and discounted maximum Q value at k+1 as follows [10]: 
𝑄𝑄𝑘𝑘+1 = 𝑄𝑄𝑘𝑘(𝑠𝑠𝑘𝑘 , 𝑎𝑎𝑘𝑘) + 𝑏𝑏(𝑟𝑟𝑘𝑘+1 + 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑄𝑄𝑎𝑎(𝑠𝑠𝑘𝑘+1, 𝑎𝑎𝑘𝑘) − 𝑄𝑄𝑘𝑘(𝑠𝑠𝑘𝑘 , 𝑎𝑎𝑘𝑘)                                                  (14) 
with b is learning factor and y is discounted factor. 
 The equation (14) is the Bellman equation, which is a simple value iteration update, using 
the weighted average of the previous value and the current data. The learning factor or step size 
determines how fast the system converges. If b is 0, then the agent ignores the future value (the 
agent exploits the prior knowledge), and if b=1, the agent considers the importance of the new 
value. The discounted factor determines the importance of the future value, if y=0 means the 
agent only considers the current value and y=1 means the agent strives for the long-term future 
value. 
 
D. Action Selection 

The agent will refer to the Q value in a specific state to guide an action selection. The action 
selection applies e-greedy method which use the exploration and exploitation phase. The agent 
generates random value z in each step and compare it with a predefined number e. If e is close 
to 1, then the agent enters exploration phase and if e is close to 0, the agent enters exploitation 
phase. The action selection policy is as follows [10]: 

𝑎𝑎𝑘𝑘 = � 𝑈𝑈(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚), 𝑧𝑧 ≤ 𝑒𝑒
𝐴𝐴𝐴𝐴𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄𝑘𝑘(𝑠𝑠𝑘𝑘 , 𝑎𝑎𝑘𝑘), 𝑧𝑧 > 𝑒𝑒                                                                                     (15) 

The agent applies the policy in Equation (15) at learning period until the system is converged, 
however after the converged states is achieved, the sensor will follow the new state policy as 
follows:    

𝑎𝑎𝑡𝑡+1 = �
𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄𝑘𝑘�𝑠𝑠1,𝑡𝑡+1, 𝑎𝑎�, 𝑖𝑖𝑖𝑖 𝑠𝑠𝑡𝑡+1 = 𝑠𝑠3
𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄𝑘𝑘�𝑠𝑠2,𝑡𝑡+1, 𝑎𝑎�, 𝑖𝑖𝑖𝑖 𝑠𝑠𝑡𝑡+1 = 𝑠𝑠1

 (16)   

with s1 is SINR<Thlow, s2 is 8<SINR<10, and s3 is SINR>Thhigh.  
 When the state is converged, the system will follow the best Q value to select the power level. 
However, this raises the situation that the system cannot change to a lower power level when it 
is in s3 or conversely the system cannot change to a higher power level when it is in s1 because 
the system is already in a balanced environment. The author adopts the dual policy (Equation 
15) to solve the situation.   
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E. Proposed Algorithm 
Figure 7 exhibits the algorithm to run RL-based power control which is embedded in LEACH 

algorithm. At time the new round starts, the sensors execute LEACH method to select CH and 
form the clusters, then the RL-based power control algorithm is run.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. RL Power Control Algorithm 
 
 

Figure 7. The System Flowchart 
 
Algorithm 1 Reinforcement Learning Based Power Control 
1. Initialize max_round, e, s , amin, amax; 
2. Create LEACH cluster 
3. for round=1:max_round --> round iteration 
4. if all node dead 
5.  break 
6. end 
7. for cl=1: number of cluster --> RL iteration 
8. for i=1: number of iterations 
9. Training session (learning and convergence) 
10. for zz=2: cluster member 
11.  set z=random 
12.  if z<e 
13.  select action random (amin,amax) 
14.  else if i in testing stage 
15.  if s=s3 
16.  Find a which max Q(s1:) 
17.  else if s=s1 
18.  Find a which max Q(s3:) 
19.  else 
20.  Find a which max Q(s2) 
21.  else  
22.  Find a which max Q(s:) 
23.  end 
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24. Convert a into power PTX=-24+(a-1) 
25. Set transmision power PTX= p=-24+(a-1) 
26. if d>d0 
27.  Calculate received power Prx=PTX/d^4 
28. else 
29.  Calculate received power Prx=PTX/d^2 
30. end 
31. Calculate SINR 
32. Calculate reward re 
33. Calculate Q(s,a,re) 
34. Update Table Q(s,a) 
35. end 
36. end 
37. Transmit data 
38. end  
 
F. System Parameter 

The simulation is run using MATLAB with the parameters shown in Table 1. There are three 
group parameters, namely LEACH network parameters, RL parameters, and sensor parameters. 
The simulation covers sensing area 100x100 m2 involving 100 sensors where 60 sensors have 
initial energy E0, 20 sensors 1.5E0, and 20 sensors 1.75E0. The network applies the LEACH 
method to create clusters with LEACH predefined number d and round numbers 500. The RL-
based power control uses the e-greedy factor (e), learning factor (b), and discounted factors (y). 
The rest is sensor parameters, namely data rate, packet length, and output power level. 

 
Table 1. Simulation Parameters 

Parameter Value Unit 
Sensing area 100 x 100 m2 

Number of sensor (N) 100 sensor 
Initial energy (E0) 0.1 Joule 

Threshold (Th) 8-10 dB 
𝜖𝜖𝑓𝑓𝑓𝑓 10-12 pJ/bit/m2 
𝜖𝜖𝑀𝑀𝑀𝑀 0.0013x10-13 pJ/bit/m4 
Eelect 50x10-9 Joule 
EDA 50x10-9 Joule 

Round (r) 500  
Distance (d) 0.1  

E-greedy factor (e) 0.7, 0.5, 0.1, 0.01  
Learning factor (b)  0.9, 0.5, 0.01  

Discounted factor (y) 0.8  
Data rate (Rb) 250  Kbps 

Packet length (L) 4,000 Bits 
Output power 

(programmable 8 step) -24 sd 0 dBm 
 
 
3. Results and Performance Evaluation 
 The proposed method is simulated to verify the performance. First, the convergence process 
will be discussed, then the system performance comparison with original LEACH will be 
presented.  
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A. Convergence Process and Dual Policy Impact 
 The first simulation is to evaluate the epsilon factor (e) variation in convergence process. The 
Figure 8 shows the simulation results which uses factor e = 0.7, 0.5, 0.1 and 0.01. The factor e 
= 0.7 generates 70% of transmission power selection randomly and only 30% selection is guided 
by Q table, the system oscillates around 1.2. The factor e=0.5 generates similar graphic with 
e=0.7 but smaller deviation, and finally the simulation converges to 1.4 in e=0.1 and 0.01. Why 
this happen can be explained like this: the system uses factor e=0.7 to learn the response of the 
environment and record it as Q value in the Q table, and then 30% selection will use the Q table 
to choose the power. This leads to a random graphic in Learning 1 with high deviation. However, 
the graphic is more stable in e=0.5 as more power selections use the Q table. The broad variation 
is impacted by the variation of Q(sk+1, ak)-Q(sk,ak); it is called the temporal difference learning. 
The system tries to achieve convergent value by minimizing the difference.      
 
 
 
 
 
 
 
 
 

 
 

Figure 8. The Convergence Process 
 

The second simulation is to evaluate the learning factor (b) variation in convergence. Figure 
9 shows effect of learning factor (b) variation from 0.2, 0.5 dan 0.9. The curve is converging 
faster when b value is greater because it reduces the gap between maximum Q value and current 
Q value. Otherwise, if the b value is small then the system needs more action to achieve 
maximum Q value. However, the high b value will generate overshoot situation and take a time 
to converge. That is why for the simulation, the author selects b=0.5 as learning factor for 
stability reason.     
 

 
 
 
 
 
 
 

 
 

 

Figure 9. The Learning Factor Effect 
 

 Next, the system simulates the dual policy that is the policy when the system is converged 
and starts to send the data. The simulation compares if the system utilizes the e-greedy method 
only and if the system applies the dual policy (e-greedy method and new state policy method). 
Table 2 displays the result comparison where 71% of SINR of the single policy > Th, and 82% 
of SINR of the dual policy >Th; the dual policy has increased 11% of the signal quality (SINR).  
The dual policy has improved the system performance by choosing a power level from the lower 
state (s1) if the SINR>Th (s3), and vice versa.  
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Table 2. Comparison of single and dual policy 
 Single Policy Dual Policy 

SINR>Th 71% 82% 
SINR<Th 29% 18% 

 
B. Performance Comparison 
 The author compares the proposed algorithm with the original LEACH to prove the 
improvement. The performance indicators are network lifetime (first node death/FND, half node 
death/HND, and all nodes death/AND), packet delivered, and average energy consumption per 
round. Figure 10 shows the network lifetime of both methods, where the original LEACH 
terminates in round 35 and the RL-based power control terminates in round 85. The graphic of 
both methods shows different patterns where the original one follows a staging pattern, and the 
proposed method displays a smoother one. The staging pattern comes from an equal energy 
consumption rate in CH that making a group of sensors death together. It makes the sensor is 
getting rarer and lengthen the distance between sensors. This drives sensor transmits with higher 
power and accelerates the whole sensor die. Otherwise, the proposed method will increase the 
LEACH capability to track SINR changes in CH and drive the sensors to lower the transmission 
power. It makes the energy consumption rate is not the same and generates a smoother graphic. 
  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 10. Network Lifetime Comparison 
 

Figure 11 displays FND, HND, and AND indicators comparison with the proposed method 
is 35%, 52%, and 72% higher than the original method. The gap is increasing, which shows the 
energy saving of the proposed method better than the original method. The RL-based LEACH 
can track SINR changes in CH and adjust the next transmission power to keep SINR close to the 
threshold, leading to better energy saving and an impact on the lifetime of the sensor.  

Figure 12a displays the delivered packet indicator, where the proposed method has increased 
by 162% compared to the original one. From the analysis in Figure 11, energy-saving resulting 
from minimum transmission power selection has lengthened the network lifetime by 72% 
compared with the original LEACH and reduces many sensors die every round. More sensors 
can transmit data into CH will increase the number of packets delivered in the proposed method. 
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Figure 11. Sensor Lifetime Comparison 
Figure 11. Sensor Lifetime Comparison 

 
 Figure 12b. compares the average energy consumption per round in both methods that show 
significant savings. The RL-based LEACH can reduce 55% energy spending compared to 
LEACH. The saving is caused by lower transmission power selection from a clever decision 
made by the sensor based on SINR observation. When the sensor goes to a new round, it creates 
a Q table which is updated in the learning and testing phase and guides on selecting a 
transmission power.   
 
  
 
 
 
 
 
 
 
 

 
 

Figure 12a. Delivered Packets, b. Average Energy Consumption per Round  
     
4. Conclusion 
 The RL-based LEACH has been evaluated to mitigate the interference and the sensor power 
consumption in a wireless sensor network under free space and ray-ground propagation. The RL-
based power control simulation shows performance better than static power control in the 
LEACH cluster. The system has increased the low transmission power in the sensors by 11% 
and longer the network lifetime. We have shown that to reduce power consumption while 
maintaining the signal quality in CH, RL-based power control using SINR as a control metric is 
effective to lower transmission power and lengthen the network lifetime. The proposed method 
can track the interference changes and adjust the transmission power to anticipate the SINR 
degradation. The dual policy power control shows a better performance than that of the single 
policy in the steady-state situation. The system will lock to a certain transmission power even if 
the interference is degrading due to the small Q value variation. The dual policy enforces the 
power control to move to lower state and drives the system to change the transmission power. In 
this paper, we have shown the effectiveness of LEACH with double policy multi-agent 
reinforcement power control to mitigate the interference. However, we use a fixed SINR 
threshold to maintain the signal quality. In the future, the system can apply a dynamic threshold 
to fulfill the different types of data transfer in the network. The RL-based power control has 
increased the processing complexity and will burden the sensor as the number of sensors is 
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increasing. This situation opens a new research area that can decrease the complexity while 
maintaining the SINR. 
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