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Abstract: The optimal operation for different states such as normal and contingency cases of a 
power system has a very important role in the operation. Therefore, it is necessary to analyze 
contingencies in the system so as the most severe cases should be considered for integrating into 
the optimal power flow (OPF) problem and the security-constrained optimal power flow 
(SCOPF) becomes an important problem for considering in the power system operation. This 
paper proposes a combined pseudo-gradient based particle swarm optimization with constriction 
factor (PGPSO) and the differential evolution (DE) method for solving the SCOPF problem. The 
PGPSO-DE method is a newly developed method for utilizing the advantages of the pseudo-
gradient guided PSO method with a constriction factor and the DE method. The proposed 
PGPSO-DE has been tested on the IEEE 30 bus system for the normal case and the contingency 
case with two types of the objective function. The results yielded from the proposed method have 
been validated via comparing to those from the conventional PSO, DE, and other methods 
reported in the literature. The comparisons for the results obtained from the proposed PGPSO-
DE method have shown that it is very effective to solve the large-scale and complex SCOPF 
problem. 

Keywords: Constriction factor; differential evolution; particle swarm optimization; hybrid 
method; pseudo gradient; security-constrained optimal power flow. 

1. Introduction
The general problem of the optimal power flow (OPF) has a long time of development since

the first introduction in 1962 [1]. The OPF problem is a very general optimization problem in 
the power system operation with many variables such as power generation outputs, bus voltages, 
switchable capacitor banks and tap changers of transformers and many constraints to be handled 
such as the active and reactive power balance and the upper and lower limits of active and 
reactive power outputs, the voltage at buses, the capacity of capacitor banks and steps of 
transformer taps [2]. Therefore, the OPF is actually a large-scale and complicated optimization 
problem in the power system operation because of many variables and constraints to be handled. 
Besides, OPF is a high non-linear characteristic problem due to the non-linear and non-smooth 
objective function of the power generation cost tightens with the complex system and generators 
constraints. Consequently, with the challenges of the OPF problem brought, over the last half-
century, many researchers have contributed a lot in terms of effort and time to figure out 
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approaches to solve this problem. These methods include the mathematical programming 
methods, meta-heuristic search methods, and hybrid methods.  

Since the OPF problem had been early developed, it attracted several studies using different 
optimization methods from mathematical programming methods to metaheuristic methods. This 
problem has been solved by several mathematical programming methods such as linear 
programming (LP) [3], non-linear programming (NLP) [4], Newton based techniques [5], 
quadratic programming (QP) [6], and interior point (IP) methods [7]. These methods have shown 
that they are effective in solving this problem. However, the OPF problem was solved by these 
methods is simple with basic constraints. Moreover, these methods are only applicable to the 
OPF problems with the theoretical assumption that the problem is differentiable [8]. In fact, the 
OPF problem in modern power systems is always a nonlinear optimization problem and may be 
a non-differentiable one, thus it is an actual challenge for optimization methods for dealing with, 
especially the conventional methods. As a result, the mathematical programming methods may 
have difficulties when solving this problem, especially with large-scale and non-differentiable 
problems. Therefore, the development of a global optimization method for solving the non-
differentiable OPF problems is a vital issue for the operation in modern power systems.  

Due to drawbacks of the conventional methods, meta-heuristic search methods have been 
considered as one alternative promising option for solving the OPF problem with the advantages 
of obtaining near-optimum solutions without considering the problem is whether differentiable 
or not. Some of the mature meta-heuristic search methods which have been applied for dealing 
with the OPF problem such as symbiotic organisms search [9], firefly algorithm [10], 
evolutionary programming (EP) [11], bacteria foraging optimization algorithm (BFOA) [12], 
tabu search (TS) [13], and simulated annealing (SA) [14]. These meta-heuristic algorithms have 
shown they are effective for dealing with this kind of OPF problem. However, these methods 
can still suffer the local optimum solution with long computational time, especially for the large-
scale problems. Therefore, these methods further need to be improved to efficiently deal with 
the complex and large-scale problems. To enhance the search ability of different methods, hybrid 
methods have been also developed enhance their search ability in dealing with the complex OPF 
problem such as a hybrid method of modified imperialist competitive algorithm (MICA) and 
teaching learning algorithm (TLA) in [15], a hybrid method of shuffle frog leaping algorithm 
(SFLA) and simulated annealing (SA) algorithm as in [16], and a hybrid method of particle 
swarm optimization (PSO) and gravitational search algorithm (SA) as in [17]. The advantage of 
the hybrid methods is the ability to reach a good solution quality for complex optimization 
problems. However, the main disadvantage of these hybrid methods is the suitable selection of 
many control parameters from the combined methods since there are many control parameters 
from the combined methods for selection and an inappropriate selection of control parameters 
may lead to a local solution for the considered problem.   

Besides the OPF problem, constraints that represent the operation of the system after 
contingency cases can be also integrated to allow dispatching the system in a defensive manner. 
In this case, the OPF problem has become more complex due to handling all the constraints in 
the normal case and contingency case to guarantee the system operating in an optimal manner. 
Therefore, this problem called a security-constrained OPF (SCOPF) is very complex and also 
important for study in the power system operation to maintain the economy and reliability of 
power systems. Recently, many studies have been proposed solution methods for solving this 
complex problem. A cross-entropy method [18] has been applied for dealing with the SCOPF 
problem, in which the corresponding SCOPF stochastic problem is defined first and the cross-
entropy method is used to solve the new problem. The numerical result for the IEEE 57 bus and 
IEEE 3000 bus systems has shown that the cross-entropy method can find a near-optimum 
solution for the complex SCOPF problem with few solution evaluations. In [19], a method based 
on self-organizing hierarchical particle swarm optimization with time-varying acceleration 
coefficients (SOHPSO-TVAC) has been implemented for solving the complicated SCOPF 
problem. The result of this study has shown that the proposed method was effective in solving 
this problem. A contingency partitioning method based on the preventive-corrective SCOPF 
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computation has been introduced by Xu et al. in [20]. In [21], a modified bacteria foraging 
optimization algorithm (MBFA) was applied to find the optimal operating condition of a power 
system with the purpose of the cost minimization of the wind-thermal generation system and 
reduction of the real power loss while satisfying the secure voltage for the operation. In [22], a 
fuzzy based harmony search algorithm (FHSA) based method has proposed to search for the 
optimal solution for the OPF problem for the security enhancement of power systems. In [23], 
the SCOPF problem was solved by using the adaptive flower pollination algorithm (APFPA) and 
the obtained results from the research have shown that this method has a potential for further 
researches in this direction. In addition, the SCOPF has been also solved by a hybrid canonical 
differential evolutionary particle swarm optimization (hCDEEPSO) method [24]. This method 
has shown its effectiveness via the test on large-scale systems and the comparison of the obtained 
results to those from differential evolutionary particle swarm optimization and mean-variance 
mapping optimization. In general, the SCOPF problem is a very nonlinear and complex one with 
a great challenge for methods to find the optimal solution.   

In this paper, a new hybrid method based on the pseudo-gradient particle swarm optimization 
with a constriction factor and differential evolution (PGPSO-DE) [25] is implemented for 
dealing with the complex SCOPF problem considering the non-smooth fuel cost function 
including the quadratic fuel cost function and the fuel cost function with valve point loading 
effects of thermal generators. The main objective of the proposed method in this study is to 
explore the global search in the problem search space using the PSO with a constriction factor 
method guided by the pseudo-gradient and to exploit the local search in the problem search space 
using the DE method. The key advantage of the proposed approach is its search ability to obtain 
the near optimum-solution for large-scale optimization problems with complicated constraints 
by utilizing the search ability of each method of PGPSO and DE. The proposed PGPSO-DE 
method has been mainly validated on the IEEE 30 bus system and the obtained results from the 
method are verified with those from the conventional PSO, conventional DE, and other methods 
available in the literature. 

The remaining organization of the paper is as follows. Section 2 presents the security-
constrained optimal power problem. Section 3 provides the PGPSO-DE method and its 
application for solving the problem. Section 4 addresses the numerical results. Finally, the 
conclusion is given. 

2. Mathematical Model of the Problem
The SCOPF problem is usually a nonlinear and large-scale and complicated optimization one

where many variables and complicated constraints will be handled. The objective of the SCOPF 
problem is to find an optimal operating point so that the total cost of thermal generating units for 
both normal and contingency cases is minimized satisfying different constraints of the system, 
buses, and generators. In this paper, the constraints considered in the SCOPF include the real 
and reactive power balance at buses, upper and lower limits of real and reactive power outputs 
at generator buses, upper and lower voltage magnitude limits at generator and load buses, upper 
and lower limits of transformer tap settings, reactive power capacity limits of switchable 
capacitor banks, and maximum limit of transmission lines.  

In the general mathematical model, the SCOPF problem is established as follows: 
 Min F(U, X) (1) 

satisfying all the considered constraints of the system in the normal case as: 
h(U, X) = 0 (2) 
g(U, X) ≤ 0 (3) 

and all the considered constraints of the system in the contingency case as: 
h(US, XS) = 0 (4) 
g(US, XS) ≤ 0 (5) 
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where F(.) is the fuel cost function of thermal units; U is vector containing state variables; X is 
a vector containing control variables; h(.) contains the equality constraints, g(.) contains the 
inequality constraints; and S contains the set of outage lines.    

The considered SCOPF problem above is formulated in detail as follows: 

∑
=

=
gN

i
gii PFF 

1
)(Min  (6) 

where Fi(Pgi) whether represents the fuel cost function for thermal generating unit i modeled by 
a quadratic function as 

2)( giigiiigii PcPbaPF ++=   (7) 

or consider the valve point loading effects represented by a non-smooth and non-differentiable 
function as follows:  

|))(sin(|)( min,
2

gigiiigiigiiigii PPfePcPbaPF −××+++=   (8) 

where, Pgi is the power generation output of thermal unit i, Pgi,min is the minimum power 
generation output of thermal unit i, and ai, bi, ci, ei and fi are the fuel cost coefficients. 

The considered constraints of the problem for the normal and contingency cases are described 
as follows: 

- Active and reactive power balance constraints at buses: The balance of active and reactive 
power outputs should be satisfied at every bus in the system as follows: 

∑
=

−−=−
bN

j
ijjijijidigi VYVPP

1
)cos(|||||| θδδ , i = 1, 2, …, Nb (9) 

∑
=

−−=−
bN

j
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1
)sin(|||||| θδδ , i = 1, 2, …, Nb (10) 

where Qgi represents the reactive power output of thermal unit i, Pdi and Qdi represents the 
demand of real and reactive power outputs at bus i, respectively; Nb is the total number of buses 
in the system; |Vi|∠δi and |Vj|∠δj represent the voltage at buses i and j; respectively, and |Yij|∠θij 
is an element in admittance matrix Ybus at row i and column j.  

- Power output limits at generation buses: The real and reactive power outputs at generation 
buses are limited between their lower and upper boundaries. 

max,min, gigigi PPP ≤≤ , i = 1, 2, …, Ng (11) 

max,min, gigigi QQQ ≤≤ , , i = 1, 2, …, Ng (12) 

where Pgi,max is the maximum active power output of thermal unit i, Qgi,max and Qgi,min are the 
maximum and minimum reactive power outputs of the thermal generating unit at bus i, and Ng 
is the total number of generators in the system. 

- Voltage limits at buses: The voltage magnitude at generator and load buses is limited within 
their lower and upper boundaries.  

max,min, gigigi VVV ≤≤ ; i = 1, 2, …, Ng (13) 

max,min, lilili VVV ≤≤ ; i = 1, 2, …, Nd (14) 

where Vgi represents the voltage magnitude at generator bus i; Vli represents the voltage 
magnitude at load bus i; Vgi,min and Vgi,max represent the minimum and maximum voltage 
magnitudes at generator bus i, respectively; Vli,min and Vli,max represent the minimum and 
maximum voltage magnitudes at load bus i, respectively; and Nd is the total number of load 
buses. 

- Capacity limits of switchable capacitor banks: The reactive power capacity for switchable 
capacitor banks is in their lower and upper boundaries. 

max,min, cicici QQQ ≤≤ , i = 1, 2, …, Nc (15) 

where Qci represents the reactive power output generated by switchable capacitor bank connected 
at bus i; Qci,min and Qci,max represent the minimum and maximum reactive power outputs from 
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switchable capacitor banks; and Nc is the total number of buses having connected switchable 
capacitor banks. 

- Tap changer limits of transformers: The transformer tap changers are limited in their 
allowable upper and lower boundaries. 

max,min, kkk TTT ≤≤ , k = 1, 2, …, Nt (16) 

where Tk represents the tap changer of transformer k; Tk,max and Tk,min represent the maximum and 
minimum values of transformer tap changer i, respectively; and Nt is the total number of 
transformers having tap changer. 

- Capacity limit of transmission lines: The transparent power flow in all transmission lines is 
limited by their maximum capacity. 

max,ll SS ≤ , l = 1, 2, …, Nl (17) 

where Sl is the transparent power flow in transmission line l, Sl,max is maximum capacity limit of 
transmission line l, and Nl is the total number of transmission lines in the system. 

In this problem, the control variable vector for the problem is represented as: 
],...,,,,...,,,,...,,,,...,,[ 21212132 tcgg NNccgNgggNgg TTTQQQVVVPPPX =   (18) 

in which, Pg1 is used as the slack bus of the system in this study. 
Also, the state variable vector for the problem is represented as follows: 

],...,,,,...,,,,...,,[ 212121 llg NlllNllgNgg SSSVVVQQQU =   (19) 

3. Application of PGPSO-DE to the Problem 
A. Particle Swarm Optimization Method 

The particle swarm optimization (PSO) method was developed in 1995 [26] for simulating 
the social behavior and a swarm representing the organized movement of a school of fish or a 
flock of birds for their food. The general advantage of the PSO method is very simple and it is 
very easy to implement to several different optimization problems in engineering fields. In the 
PSO algorithm, a swarm (population) includes individuals (particles) typically represented by 
two parameters of position and velocity, in which a particle can move from a position to other 
ones with a certain velocity. However, to guarantee the intake of the swarm, the position and 
velocity of all particles are usually adjusted not to exceed their allowable limits defined the 
considered problem.  

Suppose that a population in a swarm with Np individuals (particles) and each individual d (d 
= 1, 2, …, Np) has a position Xid and a corresponding velocity Vid where i = 1, 2, …, N is the 
dimension of the problem containing in the particle’s position. The position of each individual d 
in the swarm is determined by: 

)()( )(
42

)(
31

)()1( n
id

n
idd

n
id

n
id XGbestrandcXPbestrandcVV −××+−××+×=+ ω  (20) 

and the corresponding velocity of individual d is updated by: 
)()()1( n

id
n

id
n

id VXX +=+  (21) 
where ω is the inertia weight parameter, n is the current iteration, c1 is the individual cognitive 
factor, c2 is the social cognitive factor, Pbestd is the best position of individual d up after n 
iterations, and Gbest is the best individual’s position among the particles in the swarm.  

To enhance the convergence and stability of PSO, a constriction factor has been introduced 
in 1999 by Clerc and Kennedy [27]. For the PSO method with the constriction factor, there is a 
modification of the velocity for particles which are calculated as follows: 

( ))(
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)()1( ()( n
id

n
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n
id

n
id XGbestrandcXPbestrandcVV −××+−××+×=+ ωχ  (22) 

where the constriction factor from the above equation χ is determined by: 

ϕϕϕ
χ

42

2
2 −−−

= ; ϕ = c1 + c2, ϕ > 4    (23) 

On the other hand, the position updating for particles can be enhanced by using a pseudo-
gradient concept [28]. The pseudo-gradient is an alternative manner for determining whether the 

An Efficient Hybrid Method for Solving Security-Constrained Optimal

937



 
 

current movement direction of the individual of the search space in the non-differentiable 
problem is good or not. The pseudo-gradient at a point gp(x) for the minimization a function f(x) 
is determined as follows [29]. Consider a point xk moving to another one xl in the search space 
of the problem, there will be two possibilities happening for this movement: 

i) If f(xk) ≥ f(xl): It indicates that the individual has a right movement and should continue 
to move following this direction. Therefore, the values of pseudo-gradient at the 
considered point l will be set to a non-zero, that means gp(xl) ≠0. 

ii) If f(xk) < f(xl): It indicates that the individual should not continue to move on this way and 
needs to change to another one which may be better. Consequently, the values of pseudo-
gradient at the considered point l will be set to zero, that means gp(xl) = 0. 

The new position of each particle is updated based on the determined pseudo-gradient by the 
equation as follows: 


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≠×+
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+++
+

otherwise
0if||)(

)1()(

)1()1()1()(
)1(
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id
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id
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id

n
idp

n
idn

id VX
)(X gVXgX

X  (24) 

Therefore, the PSO method in this paper is a pseudo-gradient guided PSO with an integrated 
constriction factor is applied for combining in the proposed method. 

 
B. Differential Evolution Method 

The population based DE method is also a simple one developed in 1995 by Storn and Price 
[30] for solving different optimization problems in engineering fields. In the DE method, there 
are generally three steps for generating a new population which are mutation, crossover, and 
selection steps.  

• Mutation step: In this stage, a base individual is added by a difference of other individuals 
to create a new one so as the search space of the problem can be explored. In this research, the 
mutation scheme DE/rand/1 is used as follows: 

)( )(
3

)(
2

)(
1

)(' n
dr

n
dr

n
dr

n
id XXFXX −×+=  (25) 

where r1, r2, and r3 are random numbers differently selected in the range [1,Np]; )(' n
idX is the new 

individual created by other random individuals; and F is the mutation in the range [0,1]. 
• Crossover step: When the mutation stage is completed, this step referred to as the 

recombination one is applied to increase the population diversity by using the perturbed 
individuals. The objective of this step is to mix good individuals from the parent generation 
together with the newly created offspring generation. A trial individual is created as: 



 =≤

=
otherwise

or if
)(

5
)('

)(''
n

id

rand
n

idn
id X

D dCR randX
X  (26) 

where rand5 is a random number with normal distribution in the range [0,1]; Drand is a random 
integer in the range [1,Np]; and CR is the crossover rate value selected in the range [0,1]. 

• Selection step: This step is to decide that whether a new individual can be selected for 
use in the next generation or not based on the comparison between the fitness value from that 
individual and that from the previous generation. The individual with better fitness value is 
chosen for carrying out the next generation.  

 
C. The Proposed Hybrid PGPSO and DE Method 

Although both PGPSO and DE methods are effective methods and widely used for solving 
different optimization problems in different fields, they still suffer some drawbacks when applied 
to complex and large-scale problems such as low solution quality and long computational time. 
The advantage of the PGPSO method is good in the exploration while the advantage of the DE 
method is good in exploitation. Therefore, a hybrid of PGPSO and DE methods is to utilize the 
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advantages of both of them. The proposed PGPSO-DE method is appropriate for dealing with 
large-scale and complicated optimization problems. 

The main steps of the hybrid method are for solving an optimization problem as follows: 
• Initialization: A population with Np individuals is firstly randomly initialized in their 

allowable limits defined by the limits of the considered problem.  
• Generating the first new generation: A new generation is first created using the initialized 

one by application of the mechanism of position update of individuals from the PGPSO 
method and the newly generated population will be evaluated via the fitness function to 
choose the better one for carrying out the next generation.  

• Generating the second new generation: A new generation is created in this stage using 
the three main mechanisms of the DE method and the obtained new population is also 
evaluated using the fitness function to select the better individuals for carrying out the 
next iteration.   
 

D. Application of the Hybrid PGPSO and DE Method 
The steps for application of the proposed PGPSO-DE for solving the SCOPF problem are as 

follows: 
Step 1: Choose the control parameters for PGPSO and DE methods including the population 

size with Np individuals; the maximum allowable number of iterations Nmax; the 
individual coefficient c1 and social cognitive coefficient c2; scale factor R for the 
velocity of individuals in the PGPSO method; and mutation fact F and crossover ratio 
CR applied in the DE method. 

Step 2: Initialize an initial population 
 A population with Np individuals where each individual contains the control variable 

vector is represented by a position Xid, where bus 1 is selected as the reference bus 
with ],...,,,,...,,,,...,,,,...,,[ 21212132 dNdddNdcdcdgNdgdgdgNdgdgid tcgg

TTTQQQVVVPPPX = , 

in which i = 1, 2, …, N with N = 2×Ng + Nc + Nd -1 and d = 1, 2, …, Np. 

 Every individual in the population is firstly initialized as follows: 

)( minmax
1

min)0(
idididid XXrandXX −×+=  (27) 

 On the other hand, the initial velocity of each particle in the swarm is initialized as: 

)( minmax
2

min)0(
idididid VVrandVV −×+=  (28) 

 where Xid
min and Xid

max are the allowable lower and upper limits for position of 
individual d, respectively; Vid

min and Vid
max are the allowable lower and upper velocity 

limits of individual d, respectively; and rand1 and rand2 are the random numbers with 
the normal distribution in the range [0,1].  

 The maximum velocity of each individual d in the population is determined by setting 
to a scale ratio of the difference between the maximum and minimum limits of that 
individual: 

)( minmaxmax
ididid XXRV −×=  (29) 

 and the minimum velocity of each individual d in the population is calculated based 
on the maximum velocity as: 

maxmin
idid VV −=  (30) 

 where R is the common scale factor for the velocity of all individuals. 

Step 3: Evaluation of the initialized population: 
 Find the solution for the power flow problem corresponding to the initialized 

population and the result got from the solved power flow problem is used to evaluate 
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the quality of the initialized population via the fitness calculation including the outage 
case: 

∑
∑∑

∑
∑

∑∑∑

=

==

=

=

===



















−×+−×+

−×+−×
+−×+

−×+−×+−×+=

o

ld

g

l

dgg

N

s
N

l
slls

N

i

s
liliv

N

i

s
gigiq

s
ggpN

l
lls

N

i
liliv

N

i
gigiqggp

N

i
giid

SSKVVK

QQKPPK
SSK

VVKQQKPPKPFFT

1

1

2
max,,

1

2lim,

1

2lim,lim,
11

1

2
max,0

1

2lim
0

1

2lim
0

2lim
110

1

)0(

)()(

)()(
)(

)()()()(

(31) 

 where Kp0, Kq0, Kv0, and Ks0 are the penalty factors for the reactive power output at the 
slack bus, the reactive power output at generator buses, the voltage magnitude at load 
buses, and the transparent power flow in transmission lines for the normal case, 
respectively; Kp, Kq, Kv, and Ks are the penalty factors similar to the normal case 
applied to the contingency case; lim

1gP is the real power limit of the generator connected 

to the slack bus; lim
giQ is the limits of reactive power output at generator buses i, lim

liV is 

the voltage magnitude limit for load bus I; s
gP lim,

1 is the real power limit of the generator 

connected to the slack  bus in the contingency case with line s outage; s
giQ lim,  is the 

reactive power limit at generator bus i in the contingency case with line s outage; 
s

liV lim,  is the voltage magnitude limit for load buses in the contingency case with line 
s outage; and No is the number of outage lines. 

 The limits of the corresponding state variables including the reactive power output at 
the selected slack bus, the reactive power output at generator buses, and the voltage 
magnitude at load buses in both normal and contingency cases are determined as 
follows: 
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 where X represents the real power output of the generation at the slack bus Pg1, 
reactive power output of generation buses Qgi, and voltage at load buses Vli. 

 Set the initialized population to the best position of each individual Pbestd with the 
corresponding best value of the fitness function FTd

best and the best position among 
individuals of the population is set to the best individual Gbest.  

 Set the iterative counter n = 1. 

Step 4: Generation of a new population 
 In this step, the new population is generated using the mechanism of PGPSO. The 

new velocity of each individual is calculated by using (22). If the new obtained 
individual’s velocity violates its limits, a repairing action is performed as follows: 
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 The new generation of the population is updated by using equation (24). If the position of 
any individuals violates its limits, a repairing is carried out: 
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Step 5: Evaluation of the first generated population 
 Solve the power flow problem again for the first newly generated population Xid

(n) and 
the result obtained from the solved power flow problem is applied to calculate the 
fitness function FTd

(n) in equation (31). 

Step 6: Mutation stage 
 The second new population Xid

’(n) in this step is determined based on the generated 
population Xid

 (n) which was created from the PGPSO mechanism by using the 
mutation stage of DE in equation (25).  

 If the new calculated position Xid
’(n) violated its limits, a preparation procedure is 

conducted by using (34). 

Step 7: Crossover stage 
 The crossover stage in the DE method creates a secondly new generation by using 

equation (26).  

Step 8: Evaluation of the secondly new population 
 Solve the power flow problem for the newly obtained population and the solution 

obtained from this problem is used to evaluate the population via calculating the value 
of the fitness function FT’’

d
(n) in equation (31). 

Step 9: Selection stage 
 The selection stage is to choose the new individuals based on the previously generated 

populations is described by:  
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 Update the new fitness function value FTd
new(d) corresponding to Xid

new(n). 

Step 10: Selection of the best population 
 The best position of each particle is updated using the new population and the best 

stored values given by: 
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
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if
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 Update the corresponding best fitness function FTd
best. The best position among the 

best individuals Pbestd is set to Gbest.  

Step 11: Stopping criteria 
 If the current number of iterations is less than the maximum number of iterations n < 

Nmax, increase the iterative counter n = n + 1 and return to Step 4 above. Otherwise, 
stop the algorithm. 

4. Numerical Results 
The proposed PGPSO-DE has been tested on the benchmark IEEE 30 bus system for the two 

cases where the fuel cost with a quadratic function and a function with valve point loading effects 
are considered for the normal and contingency cases. In the contingency case, two subcases are 
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considered with 5 and 9 outage lines. The test system has 30 buses, four transformers, two 
switchable capacitor banks, and 41 transmission lines. For the outage cases, the 5-outage lines 
include 1, 2, 3, 5, and 7 and the 9-outage lines consist of 1, 2, 4, 5, 7, 33, 35, 37, and 38.  

The data of the test system with the fuel cost coefficients for the quadratic function is from 
[4]. The fuel cost coefficients for the case with valve point loading effects and the transmission 
line limit are given in the Appendix. The lower voltage limit of all buses in the system is set to 
0.95 while the upper limit for the slack, generation, and load buses is set to 1.05, 1.10, and 1.05, 
respectively. The lower and upper limits for tap changer of transformers are set to 0.90 and 1.10, 
respectively. The lower limit of switchable capacitor banks is set to zero while their upper limit 
is set to the fixed value in the original data. The lower and upper limits of reactive power output 
at generator buses are selected as in [31]. The power problem in this research is solved by 
Matpower [31] program using the Newton-Raphson method. 

For implementing the proposed method, the control parameters of the proposed PGPSO-DE 
for the test system are selected based on the obtained experiments. The population size is set to 
10, all penalty factors for all cases set to 106, all the cognitive factors of PGPSO set to 2.05, the 
scale factor for the velocity of individuals set to 0.15, the mutation factor set to 0.7, and the 
crossover rate set to 0.5. For the number of iterations, the different number of iterations is used 
for different test cases. The number is set to 150 for the normal case with a quadratic fuel cost 
function, 200 for the normal case for the objective with valve point loading effects, 250 for the 
cases with 5 and 9 outage lines with a quadratic fuel cost function, and 300 for the cases with 5 
and 9 outage lines with valve loading effects. The proposed PGPSO-DE method is coded in 
Matlab and each case is performed 50 independent runs to obtain the best solution. Moreover, 
the PSO and DE methods have been also implemented to solve the same cases with PGPSO-DE 
for result comparison. The control parameters of the conventional PSO and DE methods are 
selected similarly to those selected for the PGPSO-DE method. 
A. Normal case 

For the normal, the proposed PGPSO-DE is applied for solving the normal OPF problem for 
the two cases with the objective of a quadratic function and a function with valve point loading 
effects.  

1. Objective with quadratic function 
In this case, the only PGPSO-DE method is applied to solve the normal OPF problem with a 

quadratic fuel cost function. The obtained results by the proposed method including best cost, 
average cost, worst cost, standard deviation, and computational time are given in Table 1. As 
observed from the table, the average cost closes to the best cost and the standard deviation is 
rather small. Therefore, the solution quality obtained by the proposed method, in this case, is 
high. 

The obtained result from the proposed PGPSO-DE has been compared to that from other 
methods such as tabu search (TS) [13], evolutionary programming (EP) [32], parallel EP [33], 
parallel self-adaptive differential evolution with augmented Lagrange multiplier (pSADE_ALM) 
[34], and PSO methods [19], [35]. The total cost obtained by the proposed method is better than 
that from many other methods except for PSO-TVIW and SOHPSO-TVAC in [6]. Besides, the 
total cost from the proposed PGPSO-DE is also slightly higher than that from PSO-TVIW and 
SOHPSO-TVAC due to the voltage limit on the slack bus. The upper voltage limit at the slack 
bus has an impact on the objective function. For example, the total cost obtained by PGPSO-DE, 
in this case, is $ 802.2484 with the upper voltage limit at the slack bus set to 1.05 pu while the 
total cost from the methods from [19] is obtained at the upper voltage limit of the slack of 1.06 
pu. The higher upper voltage limit at the slack bus is used, the lower total of thermal units is 
obtained. In general, the proposed PGPSO-DE is effective to find the optimal solution for the 
OPF problem in the normal case. The optimal solution provided by the PGPSO-DE method for 
this case is given in the Appendix. 
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Table 1. Obtained result obtained by PGPSO-DE in the normal case with the objective of 
quadratic fuel cost function 

Best total 
cost ($) 

Average total 
cost ($) 

Worst total 
cost ($) 

Standard 
deviation 

Average 
computational 

time (s) 

802.2484 805.8013 840.1040 8.7117 8.719 
 
2. Objective with valve point loading effects 
In this case, the objective function with valve loading effects is considered in the objective 

of the problem. However, the DE method can be able to find a feasible solution with the selected 
parameters as the PGPSO-DE. Therefore, to obtain a feasible solution for the problem, in this 
case, the population for DE is set to 70. The obtained solutions including the best cost, average 
cost, the worst cost, standard deviation, and computational time from PSO, DE, and the proposed 
method are given in Table 3. Among the three methods, the proposed PGPSO-DE can provide 
the best total cost and the DE provides the worst total cost. For computing time, the PSO method 
is the fastest among the applied methods while the DE method takes a longer time than the others 
due to using a large population. The convergence characteristics of PGPSO-DE, PSO, and DE 
methods for this case are shown in Figure 1. As shown in the figure, the PSO method can 
converge in about 30 iterations while DE method can converge in about 100 iterations but the 
obtained solution is not good enough compared to PGPSO-DE method. The proposed method 
can reach a better solution than both PSO and DE after 200 iterations.The optimal solutions 
yielded by the PGPSO-DE, PSO and DE methods are given in the Appendix. 
 

Table 2. Result comparison for the normal case with the objective of quadratic fuel cost 
function 

Methods Best total fuel cost ($) Computational time (s) 

TS [13]  802.29 NA 

EP [32]  802.62 NA 

Parallel EPα [33]  802.51 5.02 

SADE_ALM [34]  802.404 15.934 

pSADE_ALM [34]  802.405 17.295 

Conventional PSO [35] 802.586 28.208 

PSO-TVAC [35] 802.67 11.255 

PG-PSO [35] 802.252 11.416 

BPSO [19] 803.13 35.15 

PSO-TVIW [19] 802.11 33.756 

PSO-TVAC [19] 803.56 35.82 

SOHPSO-TVAC [19] 802.03 29.43 

PGPSO-DE 802.248 9.298 
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Table 3. Obtained result for the normal case with the objective considering valve point loading 
effects 

Method Best total 
cost ($) 

Average 
total cost 

($) 

Worst total 
cost ($) 

Standard 
deviation 

Average 
computational 

time (s) 

PSO 930.3223 974.6577 1042.9890 29.1070 7.750 

DE 970.7400 999.3013 1038.7125 14.4135 39.779 

PGPSO-DE 917.7518 958.5162 1099.4167 23.1749 11.517 

 
Figure 1. Convergence characteristics of PSO, DE and PGPSO-DE for the normal case with 

valve point loading effects. 

B. Contingency case 
For the outage case, two scenarios are considered including 5 and 9 outage lines in the system 

for both cases with the objective with a quadratic function and a function of valve point loading 
effects. 

1. Objective with quadratic function 
• The case with 5-outage lines 
The obtained results including the best cost, average cost, the worst cost, standard deviation, 

and computational time from the PGPSO-DE, PSO, and DE methods, in this case, are given in 
Table 4. As observed from the table, the PGPSO-DE can obtain better cost than the other methods 
in terms of the best total cost, average total cost, the worst total cost, and standard deviation 
while the PSO method is faster than the others. The convergence characteristic of these methods 
for this case is given in Figure 2. As observed, the proposed PGPSO-DE and PSO methods can 
reach an approximate solution while the DE method needs more iterations but the obtained 
solution is not good enough compared to PGPSO-DE and PSO methods. The optimal solutions 
provided by these methods for this case are also given in the Appendix. 
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Table 4. Obtained result for the case of 5-outage lines with the objective of quadratic fuel cost 
function 

Method Best total 
cost ($) 

Average 
total cost 

($) 

Worst total 
cost ($) 

Standard 
deviation 

Average 
computational 

time (s) 

PSO 826.1400 840.5281 904.3178 19.5032 70.675 

DE 833.6628 877.0613 936.0727 24.1500 469.641 

PGPSO-DE 825.3571 834.9393 870.7170 14.5300 99.638 

 
Figure 2. Convergence characteristics of PSO, DE and PGPSO-DE for the case of 5-outage 

lines with the objective of quadratic fuel cost function 

Table 5. Comparison of best result for the case of 5-outage lines with the objective of quadratic 
fuel cost function 

Methods Best total fuel cost ($) Computational time (s) 

SADE_ALM [34]  826.979 46.896 

pSADE_ALM [34]  826.242 119.812 

Conventional PSO [35] 827.186 175.245 

PSO-TVAC [35] 828.012 130.59 

PSO 826.1400 70.675 

DE 833.6628 469.641 

PGPSO-DE 825.3571 99.638 
 
The best cost from the PGPSO-DE, PSO, and DE methods have been compared to those 

obtained from other PSO and DE based methods from the literature as in Table 5. As seen from 
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this table, the proposed method can yield a better total cost than other methods do. The result 
comparison has verified that the proposed PGPSO-DE is effective for dealing with the problem 
in this case with 5-outage lines. 

• The case with 9-outage lines 
In this case, the PGPSO-DE and PSO methods can obtain the optimal solution while the DE 

method cannot find a feasible solution due to violating constraints. The obtained solutions 
including the best total cost, average total cost, the worst total cost, standard deviation, and the 
computational time from the PGPSO-DE and PSO are given in Table 6. The results obtained 
from the proposed PGPSO-DE are all better than those from the PSO method except the 
computational time, especially the best cost from the proposed method is much better than that 
from the PSO method. The convergence characteristic of these methods is shown in Figure 3. In 
this figure, the PGPSO-DE method reaches stable after 250 iterations while the PSO can be 
further improved and DE cannot reach the feasible solution. The optimal solutions by the 
PGPSO-DE, PSO, and DE methods are given in the Appendix. 

The best cost from the PGPSO-DE and PSO methods has been compared to that from other 
methods including DE and PSO based methods as given in Table 7. As shown in the table, the 
total cost from the proposed method is better than the other methods. The result comparison has 
shown that the proposed method is effective for dealing with the problem for the most severe 
case. 

 
Table 6. Obtained result for the case of 9-outage lines with the objective of quadratic fuel cost 

function 

Method Best total 
cost ($) 

Average 
total cost 

($) 

Worst total 
cost ($) 

Standard 
deviation 

Average 
computational 

time (s) 

PSO 834.3601 873.4729 937.0004 24.9403 97.566 

PGPSO-DE 825.4352 849.5369 920.6872 26.2689 144.327 
 

Table 7. Result comparison for the case of 9-outage lines with the objective of quadratic fuel 
cost function 

Methods  Best total fuel cost Computational time (s) 

SADE_ALM [34]  834.547 82.932 

pSADE_ALM [34]  826.978 157.401 

Conventional PSO [35] 833.504 637.528 

PSO-TVAC [35] 837.728 417.145 

PG-PSO [35] 825.993 179.574 

PSO 834.3601 97.566 

PGPSO-DE 825.4352 144.327 
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Figure 3. Convergence characteristics of PSO, DE and PGPSO-DE for the case of 9-outage 

lines with the objective of quadratic fuel cost function 

2. Objective with valve point loading effects 
For the case that the objective with valve pint loading effects, the two scenarios with 5 and 

9-outage lines are also considered.  
• The case with 5-outage lines 
For dealing with the case of 5-outage lines, the DE needs 500 iterations to find the optimal 

solution. The results including the best total cost, average total cost, the worst total cost, standard 
deviation, and computational time obtained by the PGPSO-DE, PSO, and DE methods are given 
in Table 8. As seen from this table, the PGPSO-DE method can obtain better results than other 
methods for all the best total cost, average total cost, the worst total cost, and standard deviation. 
For the computing time, the PSO method is also the fastest method among the applied methods. 
The obtained results have indicated that the proposed PGPSO-DE can be a very effective method 
for dealing with the complex problem in this case. The convergence characteristics of PGPSO-
DE, PSO, and DE are given in Figure 4 and the optimal solution obtained by these methods is 
given in the Appendix.  

 

Table 8. Best result of SCOPF in case of 5-outage lines considering objective with valve point 
loading effects 

Method Best total 
cost ($) 

Average 
total cost 

($) 

Worst total 
cost ($) 

Standard 
deviation 

Average 
computational 

time (s) 

PSO 1036.3883 1051.0038 1145.2705 22.6513 64.796 

DE 1047.5443 1090.9916 1185.9028 31.1450 565.113 

PGPSO-DE 1035.9443 1040.5190 1081.6711 7.3536 117.571 
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Figure 4. Convergence characteristics of PSO, DE, and PGPSO-DE for the case of 5-outage 

lines with the objective of valve point loading effects 

 
Figure 5. Convergence characteristics of PSO, DE, and PGPSO-DE for the case of 9-outage 

lines with the objective of valve point loading effects. 

• The case with 9-outage lines 
For dealing with this case, the number of individuals and the maximum number of iterations 

for the DE method is set to 70 and 1500, respectively. However, DE cannot obtain any feasible 
solution. Therefore, the DE method cannot properly deal with a very complex problem in this 
case. The results obtained by PGPSO-DE and PSO, in this case, are given in Table 9. In this 
case, the best cost and average cost from the proposed PGPSO-DE are better than those from the 
PSO method while the worst cost and standard deviation from the PSO method are better than 
those from the proposed method. The PSO method is faster than the PGPSO-DE in this case. 
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The convergence characteristic of PSO, DE, and PGPSO-DE are given in Figure 5 and the 
optimal solutions by PGPSO-DE and PSO methods are given in the Appendix. 

 
Table 9. Obtained result for the case of 9-outage lines considering objective with valve point 

loading effects 

Method Best total 
cost ($) 

Average total 
cost ($) 

Worst total 
cost ($) 

Standard 
deviation 

Average 
computational 

time (s) 

PSO 1041.9920 1072.2306 1172.6504 23.6435 117.247 

PGPSO-DE 1036.8080 1061.3965 1173.9480 34.8727 175.688 

 

5. Conclusion 
In the paper, the proposed PGPSO-DE method has been successfully applied for dealing with 

the complicated SCOPF problem in power systems. The SCOPF problem is a real challenge 
optimization problem due to its complexity and large-scale dimension. The proposed PGPSO-
DE has effectively exploited the advantages of both PGPSO and DE methods for dealing with 
the SCOPF for different scenarios. The effectiveness of the proposed PGPSO-DE method has 
been tested on the benchmark IEEE 30 bus system for quadratic and valve point effects 
objectives considering 5-outage and 9-outage lines. The obtained results by the proposed method 
for these cases have been validated by comparing to those from both conventional PSO and DE 
methods as well as other methods as reported in the literature. The result comparisons have 
shown that the PGPSO-DE method can be an effective method for dealing with this problem for 
different cases. Therefore, the proposed PGPSO-DE method could be an alternative method for 
solving the large-scale and complex SCOPF problem in power systems. 
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Appendix 

Table A.1. Fuel cost of the IEEE 30-bus system with valve point loading effects 

Unit ai ($/h) bi ($/MWh) ci ($/MW2h) ei ($/h) fi (1/MW) 

1 150 2.00 0.00160 50 0.063 

2 25 2.50 0.01000 40 0.098 

3 0 1.00 0.06250 0 0 

4 0 3.25 0.00834 0 0 

5 0 3.00 0.02500 0 0 

8 0 3.00 0.02500 0 0 
 

Table A.2. Transmission limits of the IEEE 30-bus system 

Line 
number 1 2 3 4 5 6 7 8 9 

Slmax 
(MVA) 130 130 65 130 130 65 90 130 130 

Line 
number 10 11 12 13 14 15 16 17 18 

Slmax 
(MVA) 32 65 32 65 65 65 65 32 32 

Line 
number 19 20 21 22 23 24 25 26 27 

Slmax 
(MVA) 32 16 16 16 16 32 32 32 32 

Line 
number 29 30 31 32 33 34 35 36 37 

Slmax 
(MVA) 32 32 16 16 16 16 16 16 65 

Line 
number 38 39 40 41 42     

Slmax 
(MVA) 16 16 16 32 32     
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Table A.3. Optimal solutions by PSO, DE and PGPSO-DE for the objective with quadratic fuel 
cost function 

Optimal 
solution 

Normal case 5-outage lines 9-outage lines 

PGPSO-DE PSO DE PGPSO-
DE PSO DE* PGPSO-

DE 

Pg1 (MW) 176.2417 123.2310 122.0641 123.3957 116.9869 133.1681 123.3180 

Pg2 (MW) 48.8183 64.6073 48.6945 64.1584 62.0662 66.2429 63.0275 

Pg5 (MW) 21.5263 25.1179 29.6548 25.9006 22.4018 23.3168 25.0899 

Pg8 (MW) 22.1117 35.0000 35.0000 35.0000 35.0000 16.2312 35.0000 

Pg11 (MW) 12.1442 21.1329 26.4425 21.3319 23.8303 26.1852 23.3210 

Pg13 (MW) 12.0000 20.8805 27.5348 19.9969 29.3561 26.5965 19.9988 

Vg1 (pu) 1.0500 1.0500 1.0500 1.0500 1.0500 1.0214 1.0500 

Vg2 (pu) 1.0374 1.0306 1.0364 1.0348 1.0314 1.0138 1.0354 

Vg5 (pu) 1.0102 0.9966 0.9946 1.0112 1.0034 1.0197 1.0081 

Vg8 (pu) 1.0175 1.0101 1.0183 1.0210 1.0112 1.0048 1.0179 

Vg11 (pu) 1.1000 1.0981 1.0644 1.0999 1.0684 1.0726 1.1000 

Vg13 (pu) 1.0852 1.0417 1.0840 1.0741 1.0775 0.9500 1.0794 

T11 (pu) 1.0131 1.0598 0.9696 1.0625 0.9800 0.9721 1.0324 

T12 (pu) 0.9193 0.9022 1.0084 0.9077 0.9000 1.1000 0.9277 

T15 (pu) 0.9988 1.0047 0.9797 0.9796 0.9859 0.9055 1.0026 

T36 (pu) 0.9414 0.9517 0.9837 0.9653 0.9438 0.9634 0.9575 
* The result is infeasible due to violating constraints. 
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Table A.4. Optimal solutions by PSO, DE and PGPSO-DE methods for the objective with the 
objective of valve point loading effects 

Optimal 
solution 

Normal case 5-outage lines 9-outage lines 

PSO DE PGPSO-
DE PSO DE PGPSO-

DE PSO DE* PGPSO-
DE 

PG1 (MW) 198.8043 191.9567 199.0761 99.9253 100.0975 99.8674 98.9462 91.2403 99.9352 

PG2 (MW) 51.4459 20.0000 49.0582 80.0000 78.6888 80.0000 80.0000 80.0000 80.0000 

PG5 (MW) 15.0000 37.1975 15.0000 27.0034 27.4269 25.7563 29.3441 42.6574 26.8497 

PG8 (MW) 10.0000 14.6233 10.0000 34.9769 35.0000 35.0000 35.0000 23.0529 35.0000 

PG11 (MW) 10.0000 10.0000 10.0000 24.1627 30.0000 25.2155 21.0345 30.0000 22.3602 

PG13 (MW) 12.0000 20.0575 12.0000 22.9804 18.9334 23.1453 24.7469 21.8148 24.9929 

VG1 (pu) 1.0500 1.0204 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 

VG2 (pu) 1.0290 0.9993 1.0301 1.0391 1.0369 1.0423 1.0363 1.0361 1.0406 

VG5 (pu) 0.9500 0.9605 1.0030 1.0183 0.9665 1.0171 0.9912 1.0244 1.0143 

VG8 (pu) 0.9594 0.9500 1.0045 1.0256 0.9936 1.0290 1.0166 1.0017 1.0075 

VG11 (pu) 1.0023 1.1000 1.0575 1.0999 0.9698 1.0589 1.1000 1.0825 1.1000 

VG13 (pu) 1.0781 1.0591 1.0614 1.0561 1.0866 1.0842 1.0942 1.0340 1.0521 

T11 (pu) 1.0557 0.9000 0.9857 1.0367 1.0833 0.9773 1.0055 0.9711 1.0160 

T12 (pu) 0.9920 1.0770 0.9812 0.9276 0.9682 0.9574 0.9819 1.1000 0.9000 

T15 (pu) 0.9000 0.9000 1.0589 0.9853 0.9882 1.0141 1.0149 0.9037 0.9549 

T36 (pu) 0.9000 0.9000 0.9520 0.9538 0.9356 0.9527 0.9527 0.9345 0.9490 
* The result is infeasible due to violating constraints. 
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