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Abstract: In this paper, an energy management system (EMS) is modelled in a novel way, for 

the scheduling of interruptible and uninterruptible appliances of a residential consumer. It is 

considered that the local renewable energy is generated by the rooftop PV panels installed at the 

home, to convert a consumer into a prosumer. An energy controlling unit (ECU) schedules the 

home appliances according to the price signals received from the utility company within the user 

preferred durations so that the cost of electricity consumption could be minimized. A novel delay 

factor is also modelled to maintain the comfort level of the consumer. It is assumed that the 

consumer participates in a demand response (DR) program, based on real time price combined 

with inclined block rate (RTP-IBR) pricing scheme. Due to this, the peak to average ratio (PAR) 

of power is decreased and maintained within the satisfactory limits. Finally, for the optimization 

of the formulated objective function, a pigeon-inspired optimization (PIO) algorithm is used, due 

to its effectiveness and fast convergence rate over the other similar algorithms. At the end, the 

results of energy scheduling have been compared and verified against the results achieved by the 

particle swarm optimization (PSO) algorithm. 

 

Keywords: Smart grid; demand response; energy management system; real time price combined 

with inclined block rate; pigeon-inspired optimization.  

 

1. Introduction 

 Smart grid is a fast growing system, having advance technologies for the measurement of the 

network parameters and advanced metering infrastructure (AMI) for the two-way 

communication of the useful information in the network [1]. A rapid growth in the small-scale 

distributed generation has been also observed in the recent time due to the smart grid technology. 

Small level energy consumers have started active participation in the energy management 

programs, due to advance tools of the smart grid. Demand response (DR) programs are the main 

tools of the smart grid, which encourage the energy consumers to actively participate in the 

energy market [2-4]. 

 The design and implementation of an efficient DR program in a system is an important task 

to be performed very carefully [5]. Designing of different DR programs may be achieved by 

dividing it into different categories, like incentive based DR programs [6], price based DR 

programs [7,8], energy scheduling based DR programs [9]. In the energy scheduling based DR 

programs, the energy controlling unit (ECU) of the residential energy management system 

(EMS) schedule the appliances towards the low price time to give the benefit to the consumer in 

terms of savings in the electricity bill and to the utility company by reducing load demand during 

high-energy demand [10]. In recent years, many models of residential EMS and energy 

scheduling problems have been proposed by the researchers [11-13]. But still there is a 

requirement of an EMS model, which could fulfil maximum needs of the consumers as well as 

the utility company. 

 While doing research about a residential EMS, a researcher need to think about all important 

factors related to the residential EMS system. The main factors related to the residential EMS 

are taking care of consumer’s comfort level by making sure the availability of appliances as soon 

as possible, in their given preferred duration, taking care of benefit of the utility company by 

applying techniques for the reduction of energy peaks on demand curve, selection of algorithm, 

which could give more accurate results, energy scheduling of residential appliances to minimize  
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the cost of electricity consumption by choosing a real time pricing scheme, which will always 

give better result as compare to other conventional electricity tariffs. The mentioned factors are 

easy to implement, if they are implemented alone or in combination of two factors.  But till now, 

the researchers have not explored all these factors in a common model of residential EMS. Some 

researchers have focused on real-time optimization algorithms for the reduction of energy 

consumption cost. They framed linear problems, which are easy to solve. However, they 

compromised with the comfort level of the consumers during their electricity cost minimization 

[14-16]. Local photovoltaic (PV) generation based residential EMS has been optimized using 

simulated annealing method in [17]. In [18], the authors considered shiftable loads, 

thermostatically controlled loads, electric vehicle (EV) and a local renewable energy source in a 

home EMS and they optimized the schedule of the appliances using evolutionary algorithm. A 

multi-objective model for the reduction of electricity cost and energy peaks by considering user 

satisfaction is solved in [19]. In [17-19], the authors optimized their models under time-of-use 

tariff and hence the scope of the real time scheduling of the EMS under real time price combined 

with inclined block rate (RTP-IBR) pricing scheme can be seen in these papers. In [20], the 

authors optimized the electricity consumption cost of the households under DR programs based 

on changing price signals. In [21], the authors considered EV and energy storage system during 

the development of the load commitment strategy of smart home. But, the authors have not 

considered anything for the reduction of energy peaks in [20, 21]. In [22, 23], the authors used 

EV for load shaping purpose. The authors in [24] worked on the peak load shaping DR programs 

for the home EMS in a smart household. However, the authors have not worked on the reduction 

of daily energy consumption cost with the changing price of electricity in [22-24]. Some 

researchers focused only on the reduction of energy consumption of the consumers by the 

scheduling of appliances [25, 26]. However, in such type of energy scheduling, a waiting time 

will appear in the operation of the appliances, which will affect the comfort level of the 

consumers.  

 Among all factors of residential EMS, pricing schemes and solution algorithms play a key 

role in the success of energy management programs. Pricing schemes are main tool of demand 

response programs and hence, they are very essential to encourage the consumers to participate 

in the energy management programs to reduce their cost of electricity consumption. Algorithms 

are related to the solution of the model of the energy management programs. A fast algorithm 

with more accurate results is always preferred, while solving such problems. Latest energy 

scheduling methods having different pricing schemes and communication techniques are 

reviewed in [27] by presenting DR algorithms for the residential area. In [28] an energy 

management model is proposed for the scheduling of home appliances under time-of-use pricing. 

The authors optimized the model by using genetic algorithm. In [29] the authors presented 

another home EMS for the scheduling of household appliances and PV source under day-ahead 

market price. They used clonal selection algorithm for the optimization of the model. In [28, 29], 

authors did not consider automatic appliances, consumer comfort and advance real time pricing 

scheme, which could definitely improve the results in real time. A robust optimization model is 

proposed in [30] for the household load scheduling considering the intermittency in the 

household PV system. Authors framed a quadratic model to solve the energy scheduling problem 

and they tested the problem on feed-in tariff. Authors in [31] proposed a mixed integer 

programming based game theoretic algorithm for the solution of consumption scheduling 

problem. The limitations of the game theory approaches are that these algorithms sometimes 

deviate from the actual situations and the solution become more complex with the increase of 

variables. By considering different pricing schemes and by proposing different solution 

algorithms for the solution of energy scheduling problems, the authors provided a path for the 

implementation of advance real time pricing schemes and other optimization approaches for the 

scheduling of automatic home appliances, peak load management and user comfort management. 

In this paper, a residential EMS model is proposed to minimize the cost of electricity 

consumption by the scheduling of commonly used interruptible and uninterruptible appliances. 

To receive the maximum benefits from the system the consumer act as a prosumer by selling 
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extra locally generated solar energy to the grid. A model of solar energy generation is also 

presented in the paper. The purpose of the energy scheduling problem is not only the 

minimization of the cost of electricity consumption, but at the same time, it has to maintain the 

comfort level of the consumer. Hence, to maintain the satisfaction level of the consumer, a delay 

factor has been also proposed in the paper. For the appliance scheduling, RTP-IBR pricing based 

DR program is used. With the inclusion of this pricing scheme the peak to average ratio (PAR) 

value is reduced within satisfactory limits, which in turn helps in the reliability maintenance of 

the system. Peak load management is one of the main requirement of the utility companies. 

Hence by improving PAR value, this paper provides a significant contribution in this field. 

Finally, with the help of proposed energy scheduling model, the electricity consumption cost and 

PAR value have been minimized using pigeon-inspired optimization (PIO) on a time horizon of 

96-time slots (each of 15-minutes duration) and improvement of the results has been verified by 

comparing them with the results of particle swarm optimization (PSO). 

 The remaining paper is organized as follows: The system architecture of a residential EMS 

has been discussed in section-II in detail. Modelling of different types of appliances, dynamic 

pricing schemes and the model of solar energy has also been included in this section. Proposed 

solution approach is discussed in section-III. Problem formulation, delay cost and PIO used for 

the simulation in the paper have been also discussed in this section. Case study and the simulation 

results have been shown and discussed in section-IV. Effect of the delay factor has been also 

discussed in this section.  Concluding remarks have been included in section-V. 

 

2. System Architecture 

A. Energy Management System 

 A residential energy management system is required to manage the electricity consumption 

of home appliances. It provides an infrastructure to the residential consumers to participate in a 

DR program. It comprises AMI, smart meter (SM), ECU, home appliances, internet units to 

connect various equipment and display units at home. A model of a residential EMS is shown in 

Figure. 1. 

 
Figure 1. A residential energy management system 

 

 AMI provides two-way communication facilities in EMS architecture. Information about 

electricity price from the utility company is transmitted to the smart meter for appliance 

scheduling and energy scheduling data is transferred from SM to the utility company by AMI. 

In this way, an important role is played by AMI in EMS architecture. Smart meters are installed 

next to AMI. Energy consumption data reading and processing is done by SM to the utility 

company, while it also processes energy price data to the ECU.  

It has been assumed that the house is equipped with interruptible and non-interruptible 

appliances. Price signals and energy consumption data can be seen at in-house display device at 

any time. To transmit the signals between different devices in home area network various 

techniques like z-wave, ZigBee, Wi-Fi etc. can be used. 

 

B. Appliances modelling 

 In this paper, a home is assumed, having A number of commonly used interruptible and 

uninterruptible appliances. Energy scheduling of the appliances is done by an energy-controlling 

Energy Scheduling of Residential Appliances by a Pigeon-Inspired

20



 
 

unit. ECU schedules the appliances on complete time horizon, i.e. 24 hours in our case. It is 

assumed that a full day is divided into 96-small time slots, each of 15-minutes duration. If H is 

the set of 96 small time slots then it can be seen as H = [1, 2,……….96]. Hence the smallest 

length of operation time of any appliance can be 15-minute. Energy consumption scheduling 

vector of each appliance a is denoted by Za. Hence, 

 

    𝑍𝑎 ≜ [𝑍𝑎
1, 𝑍𝑎

2 ………………….. 𝑍𝑎
96]                                                           (1)       

 

where 𝑍𝑎
ℎ denotes energy consumption by appliance a at time slot h. Further, let us assume 𝐸𝑎 is 

the total energy required for the completion of operation of appliance a. Hence 

 

       ∑ 𝑍𝑎
ℎ

ℎ∈𝐻  = 𝐸𝑎                                                                  ∀  𝑎 ∈ 𝐴        (2) 

 

Any appliance 𝑎 ∈ 𝐴  can have different energy requirement for the completion of the task. The 

energy requirement of an appliance depends on its operational characteristics and the way in 

which it is used. For example, a clothes dryer needs total 5.5 kWh energy to complete its task in 

4-time slots, similarly a personal computer need 0.4 kWh energy to complete its task in 16-time 

slots. Different appliances have different operational characteristics. In this paper, following type 

of appliances have been considered: - 

• Type-1: In this category, the interruptible appliances are included. These appliances can run 

in any time slot in user’s preferred duration. These can operate only in ON or OFF status. In 

ON condition, these consume a fixed energy level of  𝑌𝑎
𝑚𝑎𝑥 and in OFF condition, energy 

consumption level become zero. Hence energy consumption of these appliances can be given 

as                 

   

      𝑍𝑎
ℎ =  𝑌𝑎

𝑚𝑎𝑥                         ∀ 𝑎 = 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑏𝑙𝑒 ∈ 𝐴,  ∀ ℎ ∈ 𝐻           (3) 

 

In this paper, it has been that the user preferred duration for the interruptible appliances is 

divided into some sub-durations in such a way that each interruptible appliance run one time 

in each sub-duration. Along with this, it is assumed that each interruptible appliance runs 

continuously for 2-time slots after getting ON in any sub-duration i.e. it operates as an 

uninterruptible appliance in a sub-duration. 

 

• Type-2: In this category, uninterruptible appliances are included. Uninterruptible appliances 

may be of two types, 1) with constant load profile, 2) with the variable load profile. In this 

paper, it has been assumed that each uninterruptible appliance has a variable load profile with 

the energy level of 𝑋𝑎
ℎ. Hence energy consumption of these appliances can be given as 

                      

      𝑍𝑎
ℎ =  𝑋𝑎

ℎ                       ∀ 𝑎 = 𝑢𝑛𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑏𝑙𝑒 ∈ 𝐴,  ∀ ℎ ∈ 𝐻           (4) 

 

If the operation time of any appliance in this category is more than 15-minutes to complete 

its task, then the length of operation time of the appliance should be integer multiple of 15-

minutes or it can be greater than and nearest number to the actual length of operation time of 

the appliance. For example, if an appliance need 9-minutes to complete a task then the length 

of operation time for this should be set as 1. If any other appliance needs 42-minutes to 

complete its task, then the length of operation time for this appliance should be set as 3 

(because 15*3=45 is the multiple number of 15 and it is nearest to the operation time of the 

appliance). 

 

C. Pricing Schemes 

 Pricing schemes are fixed by the utility company for its consumers. In general, there are two 

types of pricing schemes, 1) static pricing scheme 2) dynamic pricing scheme. In static pricing 

scheme, generally the price of electricity remains same within the complete energy-planning 
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horizon. On the other side, in the dynamic pricing scheme, the price of electricity changes 

frequently, according to the electricity market conditions [32]. Time-of-use pricing scheme, 

critical peak pricing scheme, real time pricing (RTP) scheme and RTP-IBR scheme are the 

pricing schemes under dynamic pricing category. In this paper, RTP-IBR scheme has been 

considered for the energy scheduling of the appliances. 

 

• Real Time Pricing combined with Inclined Block Rate 

 In the RTP pricing scheme, generally the price of electricity changes after every hour based 

on the real time status of the electricity market and remain same for any time slot. However, in 

the RTP-IBR dynamic pricing scheme, the price of electricity can be different within the same 

time slot. For example, if the user wants to reduce his electricity consumption cost, then he plans 

to run the appliances at a low price time. Due to this, the total energy consumption at that time 

may exceed the threshold value of the inclined block rate (IBR) and the energy consumption cost 

rises to a value higher than the expected. In this paper, two levels of the electricity price in RTP-

IBR scheme have been considered and the price changes at every hour. If it is assumed that, 𝑍ℎ 

is the total energy consumption and 𝛾ℎ is the threshold value of energy consumption at h time 

slot then the price function will be as follows: 

 

  𝑃ℎ (𝑍ℎ) = {
𝛼ℎ,          𝑖𝑓 0 ≤  𝑍ℎ  ≤  𝛾ℎ

𝛽ℎ ,                    𝑖𝑓 𝑍ℎ >   𝛾ℎ
                                                        (5) 

 

where 𝛼ℎ is the first real time electricity price level at h time slot and 𝛽ℎ is the second real time 

electricity price level at h time slot. In RTP-IBR scheme, value of 𝛽ℎ should be always greater 

than 𝛼ℎ in each time slot. To ensure this, it is assumed that 

 

       𝛽ℎ = λ . 𝛼ℎ                                                                                                    (6) 

 

where λ is a positive value such that λ > 1 . From equation (6), it can be said that the value of 𝛽ℎ 

changes with 𝛼ℎ. It means, when the value of 𝛼ℎ is the lowest then the value of 𝛽ℎ will be the 

lowest. This ensures the high responsiveness of demand within a time slot. 

 

D. Renewable Energy Source  

 In the scheduling of appliances, a small distributed renewable energy source has been also 

considered in form of rooftop PV panels. The capacity of rooftop PV panel may vary, depending 

on the number of installed PV panels. It has been assumed that PV panels of 1 kW capacity have 

been installed on rooftop of the consumer. Solar irradiation and temperature data are taken from 

[33] and are shown in Figure. 2. Power generation by the PV panels is governed by following 

equation: 

 

   𝑃𝑉ℎ = (
𝑓𝑃𝑉

0.8
) . 𝑃𝑉𝑟𝑎𝑡𝑒𝑑 .

𝐺ℎ

𝐺𝑆𝑇𝐶
. {1 +  𝛼𝑇(𝑇ℎ − 𝑇𝑆𝑇𝐶)}                                   (7)          

       

where  𝑃𝑉ℎ is the actual power generated by the PV panel (in kW) at hth time slot, 𝑃𝑉𝑟𝑎𝑡𝑒𝑑  is 

rated power of the PV panel (in kW), 𝑓𝑃𝑉 is the factor to include effect of dust etc., 𝐺ℎ is the 

actual radiation (in W/m2) from the Sun at hth time slot, 𝑇ℎ is the actual temperature (in oC) at hth 

time slot, 𝐺𝑆𝑇𝐶 = 1000  W/m2, 𝑇𝑆𝑇𝐶  = 25 oC and 𝛼𝑇 = -0.0048 oC.  
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(a) 

 
(b) 

Figure 2. Meteorological data. (a) Hourly solar irradiation, and (b) hourly temperature. 

 

3. Problem Formulation and Solution Approach 

 For the scheduling of specified home appliances, it is necessary for the users to define some 

parameters in advance for the appliances. For the interruptible appliances, it is necessary to set 

the start and end time of each sub-duration of the appliances in the complete user preferred 

duration. Similarly, for the uninterruptible appliances, it is necessary to set the start and end time 

of the complete user preferred duration.  Hence, it is assumed that 𝑚𝑎, 𝑛𝑎 ∈ H,  (𝑚𝑎 <  𝑛𝑎) are 

the indexes to indicate the start and the end time slots, respectively, of a sub-duration for the 

interruptible appliances and of a user preferred duration for uninterruptible appliances. Along 

this operation interval, 𝑙𝑎  indicates the length of operation of the interruptible appliances in a 

sub-duration and of the uninterruptible appliances in a user preferred duration. Here it should 

keep in mind that (𝑛𝑎 -  𝑚𝑎) should be greater than or equal to the length of the operation (𝑙𝑎) of 

appliance a. For example, if any appliance takes 10-time slots to finish its work then (𝑛𝑎 -  𝑚𝑎) 

should not be less than 10. It means that it can be any number from 10 to 96 according to the 

requirement of any appliance by the user. In addition to this, energy consumption data of each 

appliance should be also known before starting energy scheduling. Hence, an energy 

consumption matrix 𝑍𝑎
ℎ for the appliances can be defined as, 
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  𝑍𝑎
ℎ = {

𝑌𝑎
𝑚𝑎𝑥  ,           ∀ 𝑎 = 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑏𝑙𝑒 ∈ 𝐴,   ℎ ∈ [𝑡𝑎, 𝑡𝑎 + 𝑙𝑎]

𝑋𝑎
ℎ ,          ∀ 𝑎 = 𝑢𝑛𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑏𝑙𝑒 ∈ 𝐴,   ℎ ∈ [𝑡𝑎, 𝑡𝑎 + 𝑙𝑎]

0,                                               ∀ 𝑎 ∈ 𝐴,   ℎ ∈ 𝐻\[𝑡𝑎, 𝑡𝑎 + 𝑙𝑎]

                         (8) 

 

here in matrix 𝑍𝑎
ℎ , each row contains the data of energy consumption of a certain appliance. 

Each column represents the time slot h  ∈ [1, 96]. In (8), a new variable 𝑡𝑎 has been also 

introduced. This variable defines the task starting time of appliance a in a sub-duration for 

interruptible appliances and in a user preferred duration for uninterruptible appliances. The value 

of 𝑡𝑎 should be greater than or equal to 𝑚𝑎 and less than or equal to (𝑛𝑎 - 𝑙𝑎). It means, the range 

of task starting time of a is, 

 

   𝑡𝑎 = [𝑚𝑎 , (𝑛𝑎 - 𝑙𝑎)]                                                                                    (9) 

 

For all appliances, task starting time variable matrix can be defined as, 

 

      t = [𝑡1, 𝑡2,………… 𝑡𝐴]                                                                            (10)  

 

So, for an appliance a value of 𝑚𝑎, 𝑛𝑎, 𝑙𝑎 and 𝐸𝑎 are already known.  𝑡𝑎 is the only unknown 

variable that has to be calculated. Hence, after the calculation of matrix t, energy consumption 

vector of the appliances would be determined. Now, the cost of energy consumption can be 

defined as, 

 

    Cost = ∑ (∑ 𝑍𝑎
ℎ

𝑎 )ℎ . 𝑃ℎ(∑ 𝑍𝑎
ℎ

𝑎 )                                                                (11) 

 

here 𝑃ℎ is the electricity price at time slot h, which is the function of energy consumption at time 

slot h and can be determined using (5). 

 

A. Delay Cost 

 A delay factor 𝛼𝑎
ℎ has also been introduced in the paper, which is used to calculate the delay 

cost of any appliance a at a time slot h. This is represented as, 

 

   𝛼𝑎
ℎ = 

(𝛿𝑎)ℎ − 𝑚𝑎

𝐸𝑎
                       ∀  𝑎 ∈ 𝐴, ∀ ℎ ∈ [𝑚𝑎 , (𝑛𝑎  −  𝑙𝑎)]             (12)   

 

Here, it is assumed that 𝛼𝑎
𝑚𝑎 ≤…….≤ 𝛼𝑎

(𝑛𝑎− 𝑙𝑎)
, which implies that the value of delay factor 

increases with the delay in the starting time of the appliance a and 𝛼𝑎
ℎ = 0 for all ℎ <  𝑚𝑎 and 

ℎ > (𝑛𝑎  −  𝑙𝑎). In (12), 𝛿𝑎 is a control parameter for the delay factor. The value of delay factor 

increases with the increment of 𝛿𝑎. Now, the delay cost of appliance a can be modeled as, 

 

    Delay Cost = ∑ ∑ 𝛼𝑎
ℎ.𝐴

𝑎=1
𝐻
ℎ=1 𝑍𝑎

ℎ                                                               (13) 

 

B. Energy Scheduling Function 

 By combining (11), (12) and (13), the final energy scheduling function can be defined as 

follows subject to 𝑡 ∈ [𝑚𝑎 , (𝑛𝑎 - 𝑙𝑎)], 

 

    F = minimize ∑ (∑ 𝑍𝑎
ℎ

𝑎 )ℎ . 𝑃ℎ(∑ 𝑍𝑎
ℎ

𝑎 ) +  ∑ ∑
(𝛿𝑎)ℎ − 𝑚𝑎

𝐸𝑎
.𝐴

𝑎=1
𝐻
ℎ=1 𝑍𝑎

ℎ                 (14) 

 

 The first part in (14) is the total cost of energy consumption and the second part is delay cost 

of all the appliances. There is a trade-off involved in between the objectives shown in (14). It 

simply means that if the user wants lowest possible electricity bill, then he has to lose his comfort 

associated with the electrical appliances in terms of high delay cost and if the user wants full 
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comfort from the electrical appliances then he has to compromise with high electricity bill. So, 

the energy scheduler schedules the appliances in such a way that both the electricity bill and the 

delay cost of the user could be maintained at the optimal point. Here, the value of parameter 𝛿𝑎 

decides the level of trade-off between both the objectives. The value of parameter 𝛿𝑎 can  be 

predetermined and the associated operation modes can be given as, i) high cost reduction, if 𝛿𝑎 =
1; ii) medium cost reduction, if 𝛿𝑎 > 1; and iii) no cost reduction, if 𝛿𝑎 ≫ 1. 

 

• Inclusion of Renewable Energy Source 

 With the inclusion of renewable energy source i.e. solar energy, the consumer will have two 

supply sources at a time. One is supply from the grid and the other is supply from PV panel. If 

at any time of the day, renewable energy generated by PV panels is higher than the consumer 

demand at that time, then the extra renewable power can be fed back to the grid, which again 

gives benefit to the consumer by further reducing their electricity bill. If the energy generated by 

PV panels is less than the consumer demand at any time, then the remaining electricity will be 

consumed from the grid. It has been assumed that the power generated by the PV panels is fed 

to the grid with the same tariff, on which the grid power is purchased. This feature shows the 

direct involvement of the user in the electricity market as a prosumer and it helps in the 

minimization of the cost of electricity. With the inclusion of PV energy, the objective function 

will be modified as follows subject to 𝑡 ∈ [𝑚𝑎 , (𝑛𝑎 - 𝑙𝑎)], 

 

    F = minimize ∑ (∑ 𝑅𝑎
ℎ

𝑎 )ℎ . 𝑃ℎ(∑ 𝑅𝑎
ℎ

𝑎 ) +  ∑ ∑
(𝛿𝑎)ℎ − 𝑚𝑎

𝐸𝑎
.𝐴

𝑎=1
𝐻
ℎ=1 𝑍𝑎

ℎ                (15) 

 

here  𝑅𝑎
ℎ is a variable, which represents the remaining demand of appliance a at time slot h, left 

after the utilization of energy generated by rooftop PV panels and has to be fulfilled by the grid 

at price 𝑃ℎ. Variable 𝑅𝑎
ℎ can be defined as, 

 

   𝑅𝑎
ℎ ≥ ∑ 𝑍𝑎

ℎ
𝑎∈𝐴  - (𝑃𝑉)ℎ                                             ∀ ℎ ∈ 𝐻        (16) 

 

here (𝑃𝑉)ℎ denote the energy generated by the rooftop PV panels at hth  time slot. 

 

C. Solution Approach: Pigeon-Inspired Optimization  

 Pigeon-inspired optimization algorithm is a bio-inspired algorithm based on pigeon 

initialization. The basic PIO has two main operators [34], i) map and compass operator, ii) 

landmark operator. The first operator is based on sun and magnetic field and the second operator 

is based on landmarks. By the rule of map and compass operator, each pigeon will have a velocity 

and a position in the selected space, which are updated dynamically using the global best (Gbest) 

solutions found. Let in a D-dimensional space with the N number of pigeons, the velocity vector 

is 𝑉𝑖= [𝑉1𝑑 , 𝑉2𝑑 , 𝑉3𝑑,……., 𝑉𝑖𝑑] and their corresponding position vector is 𝑋𝑖= [𝑋1𝑑 , 𝑋2𝑑, 
𝑋3𝑑,……., 𝑋𝑖𝑑] where i = 1,2,3…..N, then after getting the value of Gbest, the pigeon velocity and 

position are updated in each iteration using the following equations: 

 

   𝑉𝑖𝑑(t+1) = 𝑉𝑖𝑑(t) *𝑒−(𝑅∗𝑖𝑡𝑒𝑟)+ rand*(Gbest - 𝑋𝑖𝑑(t))                            (17) 

       𝑋𝑖𝑑 (t+1) = 𝑋𝑖𝑑 (t) + 𝑉𝑖𝑑(t+1)                                                            (18) 

 

where R is map and compass factor in the range of [0-1], rand( ) is the function used to generate 

random number and Gbest is the current global best position.  

 In the nature, the pigeons change their strategies near the destination point. They use 

landmark operator in place of map and compass operator, as the guidance tool near the 

destination. Using the landmark operator, the convergence speed of the PIO algorithm improves. 

As compared to the other similar algorithms, the implementation of PIO is very easy. The PIO 

algorithm has fast convergence speed as compare to the PSO algorithm. The PSO algorithm 
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sometimes trap into some local optimal solution during the solution of the complex problems, 

while the PIO algorithm shows an effective improvement in this regard. 

 

4. Case Study and Simulation Results 

 For the energy scheduling of the home appliances, sixteen types of commonly used 

appliances have been considered. Each appliance can be used one or more times in a day, 

according to the user requirements. It means that the user preferred duration for each appliance 

can be defined one or more times on the complete time horizon. Interruptible appliances must be 

scheduled once in each sub-duration. It is assumed that there is not any priority given to any 

appliance during energy scheduling. Detail information of the appliances has been shown in 

Table 1. The value of λ has been taken from [35] and is equals to 1.5. We have assumed threshold 

power 𝛾ℎ= 1.0. For the optimization of objective function using PIO, the population size, Np is 

500. The optimization algorithm runs for I = 25 iterations.  Other used parameters have been 

shown in Table 2. The complete problem has been solved and results have been determined using 

MATLAB software.  

 

A. Trade-off between Electricity Consumption Cost and Delay Cost 

 To achieve minimum electricity bill, the appliances must run according to the schedule given 

by ECU. By doing so, comfort level of the user may be decreased. So, if the user wants high 

comfort level, then he may get a huge increment in the electricity bill. It means there is a trade-

off involved between the electricity consumption cost and the delay cost. To check the impact 

of the delay factor on electricity consumption cost, a new term average delay time (𝐷𝑇𝑎𝑣𝑔) of all 

appliances is defined as follows,                

 

𝐷𝑇𝑎𝑣𝑔  = 
∑ (𝑎 𝑡𝑎− 𝑚𝑎) 

∑ (𝑎 𝑛𝑎 − 𝑙𝑎− 𝑚𝑎)
                                                           (19)     

                                                                    

 The simulation results of the relationship between the electricity consumption cost and 𝐷𝑇𝑎𝑣𝑔 

is shown in Figure. 3. It is clear from the Figure that the electricity consumption cost is the 

highest when value of 𝐷𝑇𝑎𝑣𝑔 is zero. It means, in this case, the user’s major concern is to reduce 

the delay time. With the increase in value of average delay time, the electricity consumption cost 

decreases and reaches to the minimum value, when 𝐷𝑇𝑎𝑣𝑔=0.3811 i.e approximately 38%. Here, 

the impact of control parameter 𝛿𝑎 can also be analyzed. As the value of control parameter is 

increased from 𝛿𝑎 = 1 to 𝛿𝑎 = 2, the energy consumption cost increases from 52.19 cents to 

70.71 cents, while the average delay time decreases from 38.11% to only 0.60%. 

 

 
Figure. 3 Trade-off between electricity consumption cost and delay cost 
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Table 1. Parameters of Automatic Appliances used in the Simulation 

S.No. Appliance 
Operation 

Duration 

Operation 

Sub-

duration 

Operating 

slots 

Energy 

demand/ 

slot (kWh) 

Total 

energy 

demand 

(kWh) 

1 Humidifier 1-24 - 8 0.0125 
0.2 

2 Humidifier 73-96 - 8 0.0125 

3 
Air 

conditioner 
1-24 - 8 0.25 

4 

4 
Air 

conditioner 
49-72 - 8 0.25 

5 PHEV 

1-32 

1-5 2 0.825 

13.2 

6 PHEV 6-10 2 0.825 

7 PHEV 11-15 2 0.825 

8 PHEV 16-20 2 0.825 

9 PHEV 21-25 2 0.825 

10 PHEV 26-32 2 0.825 

11 PHEV 
81-96 

81-88 2 0.825 

12 PHEV 89-96 2 0.825 

13 Water pump 

5-32 

5-10 2 0.1875 

1.5 
14 Water pump 11-16 2 0.1875 

15 Water pump 17-24 2 0.1875 

16 Water pump 25-32 2 0.1875 

17 
Vacuum 

cleaner 
37-48 - 4 0.185 

1.48 

18 
Vacuum 

cleaner 
57-68 - 4 0.185 

19 Dryer 49-64 - 
 

4 
variable 5.5 

20 
Coffee 

maker 
25-32 - 4 variable 0.35 

21 Range top 37-48 - 4 variable 1.6 

22 
Microwave 

oven 
69-80 - 4 variable 0.8 

23 Iron box 77-96 - 4 variable 1.2 

24 Toaster 25-32 - 2 variable 0.55 

25 
Toaster 

oven 
69-80 - 2 variable 0.75 

26 
Oven 

cleaner 
49-64 - 2 variable 1.75 

27 
Washing 

m/c 
33-48 - 6 variable 0.9975 

28 Dish washer 77-96 - 6 variable 1.8 

29 Oven 37-48 - 6 variable 5.25 

 

Table 2. Parameters used for the proposed optimization approach 

Parameter Value Parameter Value 

n 29 Np 500 

λ 1.5 I 25 

𝛾ℎ 1 R 0.05 
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B. Result analysis with RTP-IBR 

 Now, the impact of RTP-IBR pricing scheme on the various energy scheduling parameters is 

analyzed. For the simulation, RTP has been taken from the Ameren Illinois Power Company and 

date ranges from 01-07-2016 to 31-08-2016 [36]. The simulation results for electricity 

consumption cost and PAR with RTP-IBR are shown in Figure. 4 and Figure 5. 

 If the main aim is only to reduce the electricity consumption cost, then during simulation of 

the problem, we assume 𝛿𝑎 = 1. From the results of Figure. 4, it is noted that the average daily 

electricity consumption cost without energy scheduling is 72.54 cents for two months, while it 

is only 52.19 cents with the proposed energy scheduling with RTP-IBR pricing scheme by 

considering the energy generated by the PV panels. It means that there is a decrement of 28.05% 

(Table 3) in the electricity consumption cost after scheduling the home appliances with the 

proposed approach. The results of Figure 5 show the impact of our energy scheduling approach 

on the PAR value of the power. The average value of PAR reduces from 5.85 to 5.12 after the 

scheduling of the appliances with the decrement of about 12.48%.  By these results, it can be 

concluded that the electricity consumption cost and PAR value have been effectively reduced by 

using our proposed approach by considering the renewable energy generated by the PV panels. 

The results of energy consumption cost and PAR value with and without energy scheduling and 

without considering renewable energy source can be seen in Table 3. 

 
Figure 4. Electricity Cost with and without Energy Scheduling 

 

 
Figure 5. Peak to Average Power ratio with and without Energy Scheduling 
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 In Figure 6, result of PAR of power is shown with RTP scheme and RTP-IBR pricing 

scheme. From the Figure, it is clear that with the energy scheduling under RTP-IBR pricing 

scheme the PAR decreases from 6.96 to 5.12 against the energy scheduling under RTP 

scheme. The RTP scheme sometimes may lead to high energy demand peaks during energy 

scheduling, which may cause serious problems in the system. Total 26.44% (Table-3) 

decrement is achieved in PAR value of the power with the use of RTP-IBR scheme against 

RTP scheme. It shows the effectiveness of RTP-IBR pricing scheme over the RTP scheme. 

 
Figure 6. Peak to Average Power ratio comparison with RTP and RTP-IBR 

 

 Now the effect of RTP-IBR on the energy demand peaks can be analyzed. Figure. 7 shows 

the RTP profile on 10-07-2016 in the USA. Figure 8 shows the energy demand peaks achieved 

without energy scheduling and with energy scheduling under RTP scheme by considering the 

local renewable energy generated by the PV panels. User may get lower electricity 

consumption cost with RTP scheme as compared to without energy scheduling but it may 

also cause high energy demand peaks during low price time. However, the high energy 

demand peaks disappear due to the effect of two level price of the considered RTP-IBR 

scheme in Figure 9. This again shows the effectiveness of RTP-IBR scheme over RTP 

scheme. 

 
Figure 7. Real Time Price on 10-07-2016 in USA 

Sandeep Kakran, et al.

29



 
 

 
Figure 8. Energy consumption profile with and without energy scheduling under RTP 

 

 
Figure 9. Energy consumption profile with and without energy scheduling under RTP-IBR 

 

 To verify the effectiveness of PIO for the solution of energy scheduling problem, the 

simulation results achieved by PIO are compared with the results achieved by PSO. For PSO 

optimization, the population size of each generation, Np is 500. The optimization algorithm runs 

for I = 25 iterations. Table 3 shows the results of various scheduling parameters achieved by 

using both the algorithms. It is found that the cost of energy consumption after scheduling the 

appliances reduces by 20.73% using PSO, while it reduces by 28.05% using PIO. Reduction in 

PAR value after the energy scheduling is only 8.21% using PSO, while it reduces by 12.48% 

using PIO. On the other hand, the PAR value reduces only by 17.64% after scheduling by PSO 

under RTP-IBR scheme with respect to the scheduling under RTP scheme. While in case of PIO, 

it reduces by 26.44%. The high difference in the percentage change value in this case is due to 

the effectiveness of PIO on the PAR value achieved after scheduling under RTP-IBR. So with 

all these analysis, It can be said that the PIO gives better results than PSO on the solution energy 

scheduling problem. 
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Table 3. Comparison of simulation results with PIO and PSO 

Simulation Approach PIO PSO 

Without PV With PV With PV 

 

Electricity 

Consumption Cost 

(cents) 

Without 

Scheduling 
164.02 72.54 72.54 

Scheduling with 

RTP-IBR 
139.48 52.19 57.50 

Percentage 

change 
14.96% 28.05% 20.73% 

 

Peak to Average 

Ratio 

Without 

Scheduling 
5.85 5.85 5.85 

Scheduling with 

RTP-IBR 
5.34 5.12 5.37 

Percentage 

change 
8.72% 12.48% 8.21% 

 

Peak to Average 

Ratio 

Scheduling with 

RTP 
6.96 6.96 6.52 

Scheduling with 

RTP-IBR 
5.34 5.12 5.37 

Percentage 

change 
23.28% 26.44% 17.64% 

 

5. Conclusion 

 In this paper, we first discussed the detailed architecture of EMS. In this EMS, the 

interruptible and uninterruptible appliances at home have been included for the energy 

scheduling purpose. Along with this, the model of rooftop PV panel has also been presented in 

the paper to consider a distributed renewable energy source. The objective function has been 

formulated to achieve the optimal solution of the energy consumption cost and the delay cost. 

The formulated problem has been solved by using the PIO algorithm under DR program based 

on RTP-IBR pricing scheme. Here, it is also concluded that the role of control parameter 𝛿𝑎 is 

very important in our proposed model of energy scheduling. By adjusting the value of 𝛿𝑎, the 

consumer may decide, whether he wants a minimum electricity bill or maximum comfort level. 

From the results, it has been found that the cost of electricity consumption has been successfully 

minimized for 𝛿𝑎 =1 and the comfort level of the user can also be maintained by adjusting the 

value of 𝛿𝑎. Along with this, the PAR value has been reduced and maintained within the 

satisfactory limits, because of the consumer participation in the DR programs. The effectiveness 

of the results achieved by using the PIO algorithm has been verified by comparing the results 

achieved by using the PSO algorithm. The assumption made in this paper can be relaxed in the 

future work. Priorities for different appliances can be set during the energy scheduling.  With all 

these positive arguments, we can say that our proposed approach for the solution of energy 

scheduling problem of the interruptible and the uninterruptible appliances under DR program 

can be a reliable method for future EMS at home in the environment of smart grid. 
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