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Abstract: This paper deals with the design problem of a robust fault estimation (FE)/ fault-
tolerant control (FTC) scheme for wind turbines (WT) in the finite frequency domain (FF). 
First, an adaptive fuzzy H∞ observer is constructed to simultaneously reconstruct the WT 
states and faults within the FF range. Throughout the observer analysis, it is only assumed 
that faults, uncertainties, and disturbances are bounded, which coincide with the practical 
requirements. In the second stage, based on the observer information, an active FTC method 
is proposed to stabilize the faulty WT. The controller and observer gain matrices are extracted 
employing the Lyapunov theory, where constraints are expressed as a set of linear matrix 
inequalities (LMIs). The Simulation results illustrate the best performances of the suggested 
strategy. 
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1. Introduction  

Today, wind energy and other renewable technologies, such as photovoltaic energy, are 
needed to meet the growing global energy demand profitably. A large number of wind energy 
production systems have been widely installed (onshore and offshore) as a complement to 
other traditional forms of power generation. Therefore, it is essential to reduce the cost of 
wind energy to compete or even replace a significant number of traditional power resources. 
One of the most critical aspects of achieving a cost-effective wind energy exploitation is to 
reduce the WT maintenance cost. Like any other industrial system, with external disturbances, 
the wind turbine plant can have undesirable behavior because of actuator or sensor faults, 
resulting in a higher production cost. To prevent severe imposing damages to the system and 
to secure a particular degree of safety, reliability, and performance. The design of robust fault 
estimation plays an essential task in the reliability of the WT. 

 However, the high nonlinearity of the wind turbine system and the wind's fluctuation 
make the design of the FE/FTC system a difficult task to achieve. 

In the past decade, many articles have been published on fault detection, isolation, and 
FTC [1-8]. In particular, the process of fault estimation performs an active role in the 
reliability of the system. Because, based on it, a decision can be made on how and when to 
change the control system. One of the most potent methods used for fault estimation is the so-
called observer-based approaches. The central idea is to correctly estimate faults so that a 
reconfigurable controller is tuned to eliminate the fault effect. For example, in [9], an adaptive 
observer is designed to estimate faults of the wind turbine process based on a parameter-
varying representation of the WT plant. In [10], the fault estimation is achieved using an 
augmented observer where both genetic algorithm optimization and eigenstructure 
assignment employed to enhance the reconstruction accuracy. In [11], the authors constructed 
a fault detection system based on the unscented Kalman filter (UKF) to handle faults in the 
generator part of the wind turbine. In [12], the authors tackle the problem of fault estimation  
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using both reduced and full-order unknown input observer (UIO). Then, the obtained 
reconstruct of fault is used in the FTC system's design. In [13], an adaptive sliding mode 
estimation method has also addressed to estimate the pitch actuator faults where an FTC scheme 
based on baseline PI controller was developed. In [14], an adaptive observer scheme has been 
employed for the FE/FTC task of a class system described by the Takagi-Sugeno descriptor 
systems subject to both actuator and sensor faults. It should point out that the design of a robust 
FE/FTC can be ensured by using the techniques mentioned above. However, these studies 
consider faults belong to the entire frequency range, which introduces much conservatism due 
to the overdesign. In practical requirements, with the fact that faults are usually located in 
limited frequency intervals, the generalized Kalman–Yakubovich–Popov (GKYP) lemma [15] 
provides a practical approach for analysis and design in FF domain. Although a couple of results 
exist on the FE in the finite-frequency field [16-20], none of these studies consider the 
robustness of the closed-loop WT system. Moreover, from a practical perspective, various 
factors should be considered in the design of the WT FE/FTC scheme, such as model 
uncertainties, estimation errors, and external disturbances. 

Motivated by the above observations, in the current study, a new adaptive observer is 
proposed with finite-frequency specification to simultaneously reconstruct state and faults of 
the wind turbine systems. Since GKYP lemma cannot be used to design an observer with an 
adaptive mechanism, an improved method is used to derive observer constraint in terms of 
LMIs. After that, using the obtained estimations, an active FTC design is formed to preserve 
the stability of the closed-loop faulty Wind Turbine. The adaptive FF observer and the FTC 
are designed separately from each other. The H∞ optimization technique in FF, which is more 
effective in addressing significant uncertainties, is used to compute the gain matrices.   

The remainder of this paper is arranged as follows: Wind turbine modeling, including 
faults and disturbances, is presented in section 2. The FF fault estimation and fault-tolerant 
control design conditions and analysis are addressed in section 3. The effectiveness of the 
introduced FE/FTC approach is illustrated through simulation results in section 4. Finally, 
section 5 concludes this article. 

2. Wind Turbine modeling
In general, the wind turbine system is an interaction of three subsystems, respectively,

known as the aerodynamics of the blades. It describes the transformation of the wind energy 
into forces operating on the blades. The mechanical model transmits the aerodynamic torque 
from the low-speed shaft to the generator by mean of the drive-train. The generator unit that 
describes the conversion from the mechanical power into electrical power. The mathematical 
equations governing the wind turbine dynamics given as follows:        

g
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τ τ

= − + (5)    

where ωr [rad/s] denotes the rotational speed of the rotor, ωg [rad/s] refers to the rotational 
speed of the generator, and θΔ is the torsion angle. Tg, Tg, r and τg are the generator torque, 
desired input and time delay constant. β and βr are measured, and the demanded pitch angle. 
Ta is the aerodynamic torque operating on the rotor calculated as follows. 
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3 21 ( , )
2a QT R C vρπ λ β= (6)    

with ρ [Kg/m3] represent the density of the air, R [m] denotes the radius of the blades, v [m/s] 
is the measured wind speed. Cq (λ, β) is the torque coefficient depending on both the measured 
angle β and the tip speed ratio λ.   

A. T-S fuzzy modelling of Wind turbine
From (1)-(5) and (6), the entire WT model can be obtained by combining its subsystems.

However, because of high nonlinear behavior of the turbine aerodynamics, the proposed 
observer and controller's design steps cannot be directly applied. For this reason, taking 
advantage of the T-S modeling flexibility the aerodynamic torque is approximated as follows: 
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  are calculated at different operating points determined by the control 

strategy. Then, incorporating (7) to (1) the dynamic model of the WT is written as 

{ ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

vx t A x t Bu t B v t
y t C x t

θ θ= + +
=

  (8)        

where θ= [ωr, β, v] represents the vector of premise variables. The matrices of the entire WT 
model are: 
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According to the wind turbine operating zones [21], concerning region 2, the controller aims 
to extract the maximum amount of energy from the captured wind energy. To this end, the pitch 
angle is set to β=0, and the power coefficient Cp=λCq to Cpmax=0.45. Consequently, the T-S 
representation of the WT is derived using the following IF-THEN T-S model: 
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B. System model with faults and disturbances. 
The wind speed is the primary source of disturbances that affect the system. For this reason, 

the total wind turbine disturbances are modeled as d(t)= v(t)+ζ(t). Hence, by considering, the 
effects of faults and disturbances, the state-space model (9) of the wind turbine under fault and 
disturbances is rewritten as: 
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where fa(t) is the actuator fault vector. 
 
3. Adaptive fuzzy observer-based FE and FTC design 
 In the following, the FE/FTC scheme design conditions are addressed in detail. Before 
presenting the main results, the subsequent assumptions and lemmas are considered.   
Assumption 1:  The faults af  and disturbances d  satisfy a af f≤ , and 0d d≤ . Moreover, 

the derivative of af  to time is also bounded ,maxa af f≤ . 

Lemma 1 [22]. Given a scalar 0µ > and a symmetric matrix 0M > , the subsequent expression 
holds:  

 112 ,T T T nu v u M u v M v u v Rµ
µ

−≤ + ∈                                                                         (11)

                                                                                                                       
Lemma 2 [23]. Let U, V and Θ  be given. There exists a matrix Σ satisfying 

0T TU V V UΘ+ Σ + Σ <  if only if the next statements hold: 

- 0TU U⊥ ⊥Θ < and 0TV V⊥ ⊥Θ < .   

where, 0U U ⊥ =  and 0V V ⊥ = .   
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For a given positive scalar γ, if the Hermitian matrices P=PT and Q=QT>0 exist so that 
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with the matrix QΞ  as given in Table 1. Therefore, the error system (15) is considered 
asymptotically stable with the prescribed H∞ performance index in FF range. 
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  Table 1. QΞ for all frequency ranges 

Low-frequency range 
lω ω≤  

Middle-frequency range 
1 2ω ω ω≤ ≤ , 0 1 2( ) / 2ω ω ω= +  

High-frequency range 
hω ω≥  
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 2Q
h
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 
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A. FF observer-based fault estimation 

Given the wind turbine model in (10), the next FF adaptive observer (FFAO) shape is 
considered [24]:  
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where ˆ( )x t , ˆ( )y t are the estimate of the wind turbine state and output vectors, respectively. 
ˆ ( )af t is the estimation of the fault and ( )ye t is the output reconstruction error. the scalar σ >0, 

and the matrix 0TΓ = Γ > Γ are tuning parameters, and F and Li are the gain matrices to be 
solved. Let defines the state, output, and fault reconstruction error vectors as: 

ˆ( ) ( ) ( )xe t x t x t= − , ˆ( ) ( ) ( )ye t y t y t= −  and ˆ( ) ( ) ( )f a ae t f t f t= − . 
Based on (10) and (14) we have the estimating error system as follows 

4

1
( ) ( )(( ) ( ) ( ) ( ))

( ) ( )
x i i i x f i

i

y x

e t h A L C e t Ee t D d t

e t C e t

θ
=


 = − + +

 =

∑
                                                     (14)                                  

Thus, the observer design can be formulated as follows: 
Given the wind turbine TS fuzzy representation in (10), determine a fuzzy adaptive observer in 
the form of (14) so that the next constraints hold:  

- For ( ) 0d t = and ( ) 0af t =  the error system (15) is asymptotically stable. 

- For ( ) 0d t = and ( ) 0af t ≠ , the H∞ performance from ( )fe t  to ( )ye t  is less than a given 

scalar 0fγ > in low frequency range.  

- For ( ) 0d t ≠  and ( ) 0af t = , the H∞ performance from ( )d t  to ( )ye t  is less than a given 

scalar 0dγ > .   
For the sake of clarity, the following notations defined. 
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Theorem 1 (FE). For a fixed scalars 0, 0, 0fσ µ γ> > > and 0dγ > , the error system (15) is 
called asymptotically stable and the H∞ performances indices fγ and dγ hold, if there is a 

symmetric matrices 0, 0P Q> > , and 0X > , general matrices hY , P  and G which satisfy: 
TE X FC=                          (15)                                                                                                              
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Proof. Let define a Lyapunov function as follows 1 20 0
( ) ( ) ( )V t V t dt V t dt

∞ ∞
= +∫ ∫  . With 

1( ) ( )( ) ( )T T T
QV t t tξ ξ= Ψ Ξ Ψ +Λ ΠΛ  and  1

2
2( ) ( ) ( )T

f fV t e t e t
σ

−= Γ  .  Based on (15), the derivative 

2V can be proved to be equal to:  

1
2

2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ).
σ σ σ

−= Γ − − − − T T T T
f a f h h x f f f xV t e t f t e t FC A L C e t e t FCEe t e t FCe t   

From lemma 1 and the equality (16) we have 

2 1 1 1
2 max

2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )µ λ
σ σ σµ σ

− − −≤ − − − + + Γ Γ T T T T T
f h h x f f f f aV t e t E X A L C e e t E XEe t e t Ge t f t G   

which is equal to ( )2 ( ) ( ) ( )TV t t tξ φ ξ χ≤ +  where 

   

10 ( )

2 1*

T
h h

T

A L C XE

E XE G

σφ

σ σµ

 − − 
 =
 − + 
 

 , ( )
TT T

x ft e eξ  =   and 2 1 1 1
,max max ( )af Gχ λ − − −= Γ Γ .  

Therefore, the overall derivative of the Lyapunov candidate function is rewritten as  
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which has the same form of 0TU U⊥ ⊥Θ <  with 
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Which is equal to (18) by Schur complement with h hY X L=  . Therefore, when ( ) 0∆ <  one 
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state and fault estimation error will be bounded and converge to a small set. 
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which gives the inequality (17). 
 

B. Finite Frequency-based FTC scheme   
In low operating mode, the wind turbine runs with the pitch angle β=0 while tracking the 

desired power reference. In the high operating mode, the pitch controller becomes effective 
in regulating the current and restricting the rotational speed of the generator at maximum 
value. Thus, it sets the power of the turbine at the desired value. As a result, the wind turbine 
system operates at a variable frequency [25]. In this particular, a limited frequency range ([ω1 
ω2] Hz) can cover the complete operational bounds of the WT. To this purpose, the controller 
design conditions will be computed in the middle-frequency range to further reduce the 
conservatism. Figure 1 describes the structure of the FF-FTC scheme. 

 
Let consider the following FTC law:   

ˆˆ( ) ( ) ( )h au t K x t f t= −                    (23)                                                                                            

Then, the closed loop system is written as     

( ) ( ) ( ) ( ) ( ) ( )h h h x f hx t A BK x t BK e t Ee t D d t= + − + +                 (24)                                                
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Figure.1 The finite-frequency observer-based FTC scheme. 

 

Let ( ) ( ) ( )
TT T

xx t x t e t =   , ( ) ( ) ( )
TT T

ft e t d t ϒ =   . The following augmented structure hold:  

 ( ) ( ) ( )
( ) ( )

c
h hx t A x t W t

y t C x t
 = + ϒ


=


                    (25)                                                                                       

where 
0

0
h

h
h h

A
A

A L C
 

=  − 
, 

E
E

E
 

=  
 

, h
h

h

D
D

D
 

=  
 

,  h hW E D =    ( )h h hK K K= − , 

( )0C C= , 
0
B

B
 

=  
 

 and c
h h hA A BK= + . 

Theorem 2 (FTC): Given a scalar 0γ > , the closed-loop system (27) is asymptotically stable 
with H∞ performance index γ in the middle frequency, if there is Hermitian matrices

1 2

3*
P P

P
P

 
=  
 

, 1 2

3

0
*

Q Q
Q

Q
 

= > 
 

 and 1

1

0
0
X

X
X

 
=  
 

, and matrices [ ]h h hY Y Y= − so that 

the next condition holds:  

0

1 2
2

0
* ( ) ( ) 0
* * 0
* * *

ω
ωω

γ

 − − − + − +
 

− + + + +  < −
  − 

T c
h h

T
h h h h h

Q X X P j Q X A X W
Q A X BY A X BY W XC

I
I

                (26)                    

Proof: Let 0

0 1 2
Q

Q P j Q
P j Q Q

ω
ω ωω

 − +
Ξ =   − − 

 and 
2

0
0

TC C
Iγ

 
Φ =  

− 
,  thus, by mean of the lemma 

3 we have 0T
QΨ Ξ Ψ +Φ < .  Which is equivalent to 

 0TU U⊥ ⊥Θ <                  (27)                                                                                                             

with 
0

0 1 2
2

0
0

0 0

T

Q P j Q
P j Q Q C C

I

ω
ω ωω

γ

 − +
 

Θ = − − + 
 − 

, and 0
0

Tc
h hA W

U I
I

⊥

 
 

=  
 
 

. Using the projection 

lemma (29) is equivalent to  
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0

1 2
2

* ( ) 0
* *

ω
ωω

γ

 − − − + + −
 

− + + + < 
 − 

T c T
h h

T c c T
h h h

Q Z Z P j Q ZA Z ZW
Q C C ZA ZA ZW

I
               (28)                             

through multiplying both sides of (30) by { }1 1J Z Z I− −= and its transpose and 

setting 1X Z −= , 1 TQ Z QZ− −= , 1 TP Z PZ− −= , the condition (30) is equal to (28).    
 
4. Simulation results 

The proposed finite-frequency FE/FTC scheme is tested in this section. Case studies are 
carried out through Matlab/Simulink, where Sudemi toolbox is used to solve the obtained 
LMIs constraints. The parameters of the used wind turbine correspond to parameters of the 
4.8 MW WT given in [21] where the inertia of the rotor and generator 6 255 10rJ kg m= ⋅ ⋅ , 

2390gJ kg m= ⋅ . The viscous friction of the rotor and the generator 7.11 /rB Nms rad= , 

45.6 /gB Nms rad= , the torsion stiffness and damping 92.7 10 /dtK Nm rad= ⋅ , 

775.49 /dtB Nms rad= , 57R m= . During the simulation, the nonlinear wind turbine model 
under disturbances and actuator faults is directly used to evaluate the FF observer-based FTC 
scheme. The wind speed profile used in simulations consist of real wind speed sequence 
collected at north of morocco as shown in Figure.2. 

 

Figure 2. wind speed profile (m/s) 
 

 Due to the wind turbine nonlinearity, the wind input disturbance has a critical stochastic 
component on the wind turbine that makes the open-loop operation becomes unstable. The 
eigenvalues of the open-loop wind turbine are the following. 

[ ]1( ) 0.0498 28.1633 0.0498 28.1633 0.1483 6.6660 8.8880 6.6660 8.8880 50.0000 TA i i i iλ = − + − − − + − − − , 

[ ]3( ) 0.0390 28.1630 0.0390 28.1630 0.4760 6.6660 8.8880 6.6660 8.8880 50.0000 TA i i i iλ = − + − − − + − − −  

2 1( ) ( )A Aλ λ= ,  4 3( ) ( )A Aλ λ= .  
To stabilize the WT and reach the desired control objectives. The control low given in (25) is 
applied to the nonlinear WT model. The closed-loop eigenvalues are the following: 

[ ]1 1( ) 31.8084 0.0693 28.1625 0.0693 28.1625 0.0616 6.6660 8.8880 6.6660 8.8880 TA BK i i i iλ + = − − + − − − − + − −  

[ ]2 2( ) 35.3665 0.0678 28.1628 0.0678 28.1628 0.0615 6.6660 8.8880 6.6660 8.8880 TA BK i i i iλ + = − − + − − − − + − −  
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[ ]3 3( ) 88.9144 0.0576 28.1704 0.0576 28.1740 0.0293 6.6660 8.8880 6.6660 8.8880 TA BK i i i iλ + = − − + − − − − + − −  

[ ]4 4( ) 81.4394 0.0580 28.1696 0.0580 28.1696 0.0294 6.6660 8.8880 6.6660 8.8880 TA BK i i i iλ + = − − + − − − − + − −   
 

A. Actuator fault estimation   
In this subsection, two actuator faults applied to examine the capability of the proposed 

fault estimation observer. The chosen faults models for the actuator faults are: 

 ,1

1 0.01*sin(0.1* ) 100 150
( )

0a

t if s t s
f t

if others
+ < <




                    (29)                                                 

 

 ,2

0.8 sin(0.5* ) 200 250
( )

0a

t if t s
f t

if others
+ < <




                                      (30)                                 

Simulation results with comparison to the method given in [26] presented next to show the 
superiority of the approach. Choosing the tuning parameter values of the adaptive observer as 
follows: σ=2, μ=5, results in the following eigenvalues:    
 [ ]1 1( ) 135412.54 13.21 3.39 0.32 1.29 1.70 TA L Cλ − = − − − − − − , 
 2 2 1 1( ) ( )A L C A L Cλ λ− = − , 

 [ ]3 3( ) 135412.60 13.22 3.38 0.31 1.68 1.28 TA L Cλ = − = − − − − − − ,   
 4 4 3 3( ) ( )A L C A L Cλ λ− = − . 
Figures (3), (4) and (5) and (6) display the actuator faults profiles along with the obtained 
estimation curves and errors.  
 

Figure 3. Estimation results of the fault fa,1 
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Figure 4. Estimation error of the fault fa,1 
 

Figure 5. Fault estimation of the fault fa,2 
 

                     Figure 6. Estimation error of the fault fa,2 
 

From those plots, one can observe that the obtained fault estimates track both constant fault 
and time-varying fault signals. However, the proposed FFAO exhibit robust estimation with 
functional disturbances attenuation of the actuator faults compared to the method given in [26], 
which is explained with the fast convergence speed and with reduced fluctuations toward 
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significant disturbances generated by the proposed FFAO. 
 

B. Actuator fault compensation    

To check the fault tolerance capacity of the proposed FFAO method, dynamic simulation 
of the WT system with a sudden fault occurrence in the period [20 30s] is carried out under the 
wind sequence given in Figure.2.  

Figures. 7-9 shows the generator speed, torque, and power response curves under the active 
FTC method in the presence of the fault. It worth noting that a rate limitation of 1000 Nm/s is 
applied to the actuator torque in simulation on account for physical system constraint. 

 

 
Figure 7. Generator speed ωg under the proposed FTC 

 

 
Figure 8. The Generator torque Tg under the proposed FTC 

Ayoub EL BAKRI, et al.

582



 
 

 
Figure 9. The Generator power Pg under the proposed FTC 

 
As can be seen from those curves, the presence of fault causes an undesired deviation in the 

rotation speed of the generator, causing a non-optimal power extraction. However, from the 
results, we can see that the proposed FE/TFC scheme employed in this work quickly recover 
the desired performance and ensure the stability of the closed-loop wind turbine regardless to 
the existence of disturbances and faults. Thus, leading to optimal power extraction.   

 
5. Conclusion  

In this study, a finite-frequency fault estimation/fault-tolerant control scheme is developed 
and applied for the wind turbine. Given the unpredictable actuator fault in the WT, an adaptive 
fuzzy observer is designed to estimate the system's state and faults simultaneously. As shown 
by simulation results, the chosen H∞ synthesis in the finite-frequency field allows to 
disturbances impact to be significantly mitigated, and, consequently, to the fault estimate to be 
very smooth and accurate. Furthermore, simulation results show that the FTC methodology 
presented in this study can easily sustain the stability, reliability, and dominant performances 
of the WT during the occurrence of actuator faults. 
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