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Abstract: Forested landscapes such as mangrove have drawn many attentions 
due to their importance in carbon stock. Many attempts were conducted to obtain 
suitable mangrove map using multi-spectral remote sensing imagery. However, 
atmospheric disturbance including cloud limits multi-spectral sensors. In many 
cases, observation through Synthetic Aperture Radar (SAR) is then required. In 
this research, C-, L- and P-band fully polarimetric SAR data were evaluated to 
provide a mangrove map exploiting Wishart classifier. Results indicated that 
Ceriops was the only distinguishable species at C-band. Observation using 
longer wavelengths (L- and P-bands) revealed fairly strong attenuation from soil 
background. However, overall accuracy suggested that P-band produced lowest 
classification error, hence it was suitable to produce a highly accurate map. 
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1.  Introduction 

Geographically, mangroves are distributed in tropical region and dominate most of 
coastline area. Depending on the extent of warm water from the tropics, mangrove forests are 
also found in subtropical zones such as southern Australia and New Zealand. Generally, 
mangroves grow on tropical climate with saline or freshwater environment. Tidal waves are 
commonly responsible for nutrient supplies and indirectly minimize competition from other 
vegetations. The tide also plays an important role to transport seedlings, allowing broad 
distribution of mangrove species. 

In an undisturbed environment, mangroves can grow fast and densely populated. Therefore, 
they provide an ideal and natural protection for coastal region from waves or hurricanes. As the 
last tsunami hit north Indian Ocean and delivered wide impacts on South East Asian socio-
economics, awareness of the importance of coastal protection has raised. Several schemes can 
be implemented to minimize disaster’s impact. Nevertheless, mangrove forest has a proven 
record on minimizing impact of tsunami [1]. Due to its uniqueness and biodiversity richness, 
mangrove has been evaluated as an indicator of coastal environment changes [2]. 

There has been a strong pressure on mangrove habitat. Aquacultures are probably the most 
dominant factor responsible to the degradation. In the last two decades, a large number of 
mangrove conversions have been indicated since the coastal zone is a prime land for shrimp 
farming. Massive depletion on world’s mangrove forest has been reported, including Asia [3]. 
Valiela et al. [4] estimated about 35% of mangrove forests have been converted into various 
uses since 1980s. Both Asia and America regions shared similar percentage of loss, 36% and 
38% respectively, while Australia lost the least (14%).  

Similarly to other forested sites, assessments on the biophysical properties of mangrove 
have been presented. For this purpose, remotely sensed data are substantial, for instance on the 
estimation of leaf area index using optical data [5]. Mentioning data gaps due to cloud cover, 
Synthetic Aperture Radar (SAR) sensors were also studied to obtain biomass information [6-7]. 
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However, basic information such as mangrove species map is rarely available, despite its 
importance to assist further analysis or field assessment.  

SAR polarimetry data have been used to this aim considerably. One of the earliest 
utilizations was reported by Pasqualini et al. [8] using Shuttle Imaging Radar SIR-C. Based on 
amplitude data, the accuracy by means of per-pixel classification scheme was fairly moderate. 
To improve per-pixel classification, incorporating textural information was advised [9]. A 
mixture of different polarization and wavelength such as ERS and JERS combination was also 
found useful to improve land cover map of coastal region [10], especially to discriminate high- 
and low-density mangrove from their natural surroundings. Another approach by means of 
integrating SAR with optical images has been studied as well. Mitchell and Lucas [11], for 
instance, showed that integration of SAR and hyperspectral sensor provides a better 
understanding to study mangrove composition. Similarly, Rodrigues and Souza-Filho [12] 
study in Brazil concluded that wetlands, including general mangrove communities, were able 
to be mapped by combination of Landsat TM and Radarsat-1. 

A paper by Held et al. [13] was probably the earliest attempt to map mangrove species by 
means of radar polarimetry data. Several mangrove species were successfully identified, 
including Rhizophora, Bruguiera and Ceriops. All possible frequencies (C-, L- and P-band) of 
AIRSAR system were explored, in addition to L-band pedestal image. Nevertheless, low 
accuracy was attained using the AIRSAR only dataset. An appreciable accuracy was achieved 
only after combining CASI and AIRSAR data. Similar attempts were made by Lucas et al. [14] 
at several mangrove sites in Australia and Latin America and Pereira et al. [15] utilizing ALOS 
PALSAR L-band fully polarimetric (PLR) dataset.  

Previous reports [10-15] were solely based on the amplitude data. The data type offers a 
simple, but partial, representation of complex radar data which can be assessed using common 
image processing techniques. However, the approach disregarded complex polarimetric radar 
data processing which also contains various interesting information. The purpose of this paper 
is to evaluate fully polarimetric SAR imagery to present species map of a mangrove forest 
based on complex fully polarimetric data analysis, in particular using Wishart classification 
algorithm. 
 
2.  Methodology 

The Daintree (Queensland, Australia) site was recorded by JPL/NASA DC-8 AirSAR 
system which is able to provide multi-polarimetric and multi-frequency images. The first 
acquisition was taken in November 1996 which was a subject of previous study [13]. This 
paper explored the last data capture obtained through PACRIM-II Campaign in August 2000. 
Both data are available in fully polarimetric set at C- (5.3 GHz), L- (1.2 GHz) and P- (0.4 GHz) 
band. Figure 1 presents the study site taken from high-resolution optical data. 

 

 
 

Figure 1. Site location (courtesy of Google Earth). 
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Initially, AirSAR raw (compressed Stokes matrix) data were converted into coherence [T3] 
matrix using a freely-available toolkit namely PolSARPro. This conversion allows preservation 
of multivariate complex Wishart distribution, which is useful for classification purpose. In 
addition to covariance [C3] matrix, coherence matrix conveniently represents all components 
of complex polarimetric data, hence allows exploitation of all available information. 

In order to minimize speckle noise in the radar data, filtering by Refined Lee Filter was 
employed using 5x5 kernel size. While this size may be subjective, preliminary observation 
showed that the result was visually optimal. Therefore reducing the noise and maintain clarity 
between observable boundaries could be taken into account. The AirSAR data were 
preprocessed by multi-looking, hence the use of minimal size of kernel was sufficient. In this 
case, applying excessive kernel size might degrade quality of the image. 

Visual observation was conducted to observe general responses of surface covers on multi-
frequency polarimetric signal. A Pauli-composite image for each frequency was constructed to 
provide color composite figures using following configuration: 
 

Red = |Shh – Svv| 
Green = |Shv + Svh| 
Blue = |Shh + Svv| 

 
where h and v represents horizontal and vertical polarization respectively; hence Shh 

denotes component of horizontally transmitted and horizontally received signal. Based on those 
composite images, the quality of preprocessing previously taken was examined, particularly for 
speckle noises and the texture information. The step was particularly important since the 
classification approach was pixel-wise. 

Prior to supervised classification, samples were taken with guidance of available thematic 
map and in-situ data [13]. In addition to water bodies (river and estuary), four vegetative 
covers were observed i.e. Rhizophora, Bruguiera, Ceriops and Acacia. First three species were 
recognized as mangrove communities and located in the lowland regions (adjacent to the river 
or in back-swamp). The Acacia was found in beach ridge (sand dune complex) in southern part 
of the estuary. The mangroves were scattered in patchy fragments. This imposed small 
sampling dataset for classification. Two sampling set were taken for each surface cover. The 
first was used to create classification rule and the second was for accuracy assessment. 

Supervised classification was performed through Wishart algorithm [16] utilizing complex 
fully polarimetric SAR data. Detailed descriptions and processes used in this research were 
taken from Lee and Pottier [17]. Multilook processing of complex fully polarimetric SAR data 
can be achieved through spatial averaging of 1-look observations, mathematically denoted as 
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where n = number of looks and u(k) is k-th complex polarization vector (1-look). The 

complex polarimetric matrix A=nZ, which has complex Wishart distribution, contains 
following probability density function 
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Parameter q denotes dimension of u, which is 3 for monostatic SAR configuration. Lee et 

al. [16] proposed following distance measure for classification purpose: 
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where Cm denotes covariance matrix (also applicable for coherence matrix) for class ωm. The 
Wishart distance was then employed to discriminate all designated land cover types. 

Finally, quantitative analyses through confusion matrix were computed for each frequency. 
This allows selection of best SAR frequency. To avoid biases, accuracy was computed using 
testing data which were comparable in size to training data used for Wishart classification. 
 
3.  Results and Discussion 
A. Responses on polarimetric signal 

Pauli decomposition algorithm provides a convenient way to visualize polarimetric data 
onto a composite image. Another technique namely Sinclair algorithm also offers similar 
functionality as well. Nevertheless, it appears that the latter was not as popular as Pauli. Figure 
2 shows three composite images representing each frequency. 

C-band was the shortest wavelength in AirSAR frequency setup. This affects on very 
limited penetration into vegetative layers and therefore most of the scattering objects were 
localized to top of canopy (leaves). In general, three different mangrove species were quite 
indistinguishable. Although Rhizophora is quite similar to Bruguiera in terms of coherence 
matrix (Table 1), both species were quite distinguishable by T13 component. A notable 
difference was observed on Ceriops communities due to its sparse distribution. At hyper-saline 
region (on top of the image), environmental background (clutter) was considerably dominant. 
Therefore, the tone is reddish and noticeably has different response to both Rhizophora and 
Bruguiera. 
 

 
 

Figure 2. Pauli composite for each band. 
 

On L-band, a greater penetration of signal through canopy can be observed. At this 
frequency, backscattered signal from the leaves may be small; most returned signals were due 
to below canopy branches. Ceriops community appears reddish due to its ground reflection and 
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sparse distribution. Visual separation was considerably difficult for Rhizophora and Bruguiera 
mangroves as of C-band data. However, Rhizophora appears darker than Bruguiera. The [T3] 
matrix suggests this finding where all diagonal components of Bruguiera are slightly higher 
than Rhizophora. This result indicates high density of branches was observed in Rhizophora 
species. Those branches in turn created complex and intense interactions with incoming signal, 
hence low signal was returned to the sensor.  As observed in the field, Rhizophora generally 
has a greater number of branches in comparison to those of Bruguiera.  
 

Table 1. Cluster centers of training dataset. Off-diagonal components are 
 represented in complex number. 

Land Cover C-Band L-Band P-Band 
Rhizophora 
T11 0.244 0.041 0.023 
T12 -0.008 + (-0.013j) 0.007 + (-0.001j) 0.004 + (0.004j) 
T13 -0.007 + (-0.002j) 0.000 + (-0.002j) 0.000 + (0.001j) 
T22 0.089 0.018 0.012 
T23 -0.002 + (-0.009j) -0.001 + (0.000j) 0.000 + (0.000j) 
T33 0.059 0.015 0.006 
Bruguiera 
T11 0.256 0.048 0.038 
T12 0.011 + (-0.019j) 0.008 + (-0.001j) 0.013 + (0.006j) 
T13 -0.001 + (-0.001j) -0.001 + (0.000j) 0.000 + (0.000j) 
T22 0.085 0.024 0.034 
T23 -0.001 + (-0.006j) -0.001 + (0.000j) 0.001 + (-0.001j) 
T33 0.057 0.017 0.009 
Ceriops 
T11 0.166 0.109 0.084 
T12 0.011 + (-0.002j) 0.034 + (0.009j) -0.002 + (0.015j) 
T13 -0.005 + (0.001j) 0.001 + (-0.003j) 0.000 + (0.002j) 
T22 0.123 0.087 0.113 
T23 -0.003 + (-0.006j) -0.005 + (-0.002j) 0.001 + (-0.004j) 
T33 0.064 0.039 0.019 
Acacia 
T11 0.238 0.096 0.096 
T12 -0.014 + (-0.007j) 0.011 + (-0.002j) 0.015 + (0.009j) 
T13 0.002 + (-0.003j) 0.004 + (0.003j) -0.001 + (-0.002j) 
T22 0.115 0.064 0.087 
T23 0.000 + (-0.007j) -0.004 + (0.002j) 0.000 + (-0.001j) 
T33 0.075 0.049 0.035 
Water 
T11 0.013 0.010 0.015 
T12 -0.005 + (-0.001j) -0.005 + (-0.001j) -0.008 + (0.003j) 
T13 -0.001 + (0.000j) 0.000 + (-0.001j) -0.001 + (0.001j) 
T22 0.007 0.003 0.007 
T23 0.000 + (0.000j) 0.000 + (0.000j) 0.001 + (0.000j) 
T33 0.003 0.000 0.001 

 
With a longest wavelength available in AirSAR system, P-band has particular advantage 

for forestry applications. The signal has capability to obtain under-story information, hence it is 
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primarily useful to estimate stand biomass [6-7]. Interaction of the signal and dense 
Rhizophora stand was perceivable; hence the species still appears greenish. Both Bruguiera 
and Ceriops suffered from soil attenuation. As ground information might be dominant on P-
band data, it was clear that sand dunes could be distinguished from the lowland region. 
 
B. Polarimetric classification 

Taking into account available information on the training set, Wishart classification 
procedure was performed to derive land cover map using 3x3 ensemble averaging. No post-
classification procedure was performed to allow more focus on classification capability. Figure 
3 presents Wishart classified images of each frequency. 
 

 
Figure 3. Wishart classification. Color code: red=Rhizophora, green=Bruguiera, blue=Ceriops, 

yellow=Acacia, white=water. 
 

In all images, fragmented spatial configurations are visible. As AirSAR system produced 
high-resolution dataset with pixel spacing about 3.3 and 4.6 meters for range (East-West, left to 
right on the image) and azimuth (North-South) direction respectively, textural information was 
revealed. The Wishart classification was based on tone data processing hence the textural 
information was neglected. As a result, high variability in single mangrove community is 
clearly seen in the figures. Nevertheless, an appreciable grouping can be found in Rhizophora 
at L- and P-band. Acacia community over sand dunes was also significantly determined. A fair 
contiguity was observable on Bruguiera and Ceriops forests. Despite difficulties on 
classification due to texture information, impartial spatial contiguity can be observed in 
general. This suggests adequate accuracy on the classification procedure which will be 
discussed in the rest of this section. 
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In order to derive quantitative performance, three confusion matrices were computed. Table 
2-4 respectively shows accuracy assessment at C-, L- and P-band. Generally, accuracies were 
suitable based on testing data. Overall classification accuracy for C-, L- and P-band was 
77.88%, 83.83% and 91.00% respectively. While accuracy improvement was fairly 
insignificant using short wavelengths, low frequency radar data such as P-band contributed 
significantly to lower misclassification bias. It suggests that P band was the most suitable data 
to map the area.  

Applying longer wavelength significantly improved to the detection of Rhizophora. At C-
band, it was clear that the species had higher degree of confusion to other species having 
relatively thick canopy such as Acacia and Bruguiera. By employing L- or P-band, 
improvement on the classification accuracy was achieved which took benefit of below-canopy 
structural differences between those species. Bruguiera and Acacia gained similar advantages 
of exploiting longer wavelengths. 

In contrast, Ceriops appeared insensitive to longer wavelengths. On longer wavelength, an 
increasing confusion was shown between Ceriops and Acacia. This suggested similarity of 
under-canopy structure between both species. Returned signal from these covers revealed 
contribution of soil background due to sparse canopy and branches. 

Nevertheless, applicability of P-band for routine monitoring has been questionable. Despite 
its valuable capability, mounting a P-band radar system into a spaceborne platform is rather 
difficult due to power constraints and the opacity of atmosphere [18]. In addition, frequent 
observations by using recent airborne polarimeter systems are also difficult due to limited 
airborne platforms.  Proposals to establish P-band SAR have been launched including 
BIOMASS [19] and Ecosar [20]. However, referring to the result, potentially data provider in 
the near future would be Japanese ALOS PALSAR-2 which operates at L-band. Canadian 
Radarsat-2 which employs C-band might be applicable for other mangrove species. 
Nevertheless, limited penetration on thick canopy of mangrove may limit utilization of the 
thematic products. 
 
Table 2. Confusion matrix on C-band. Column represents reference classes. RH=Rhizophora; 

BR=Bruguiera; CE=Ceriops; AC=Acacia; WA=Water 
 RH BR CE AC WA 
RH 55.69  18.53  1.49  24.29  0.00 
BR 13.53  73.49  3.30  9.68  0.00 
CE 2.43  0.87  87.98  8.73  0.00 
AC 17.18  3.94  6.65  72.23  0.00 
WA 0.00  0.00  0.00  0.00 100.00 

 
 

Table 3. Confusion matrix on L-band. Column represents reference classes. RH=Rhizophora; 
BR=Bruguiera; CE=Ceriops; AC=Acacia; WA=Water 

 RH BR CE AC WA 
RH 74.58 25.32  0.05  0.05 0.00 
BR 28.25 70.50  0.08  1.18 0.00 
CE 0.00  1.33 83.82  14.86 0.00 
AC 0.00  0.00  9.71  90.29 0.00 
WA 0.00  0.00  0.00  0.00 100.00 
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Table 4. Confusion matrix on P-band. Column represents reference classes. RH=Rhizophora; 
BR=Bruguiera; CE=Ceriops; AC=Acacia; WA=Water 

 RH BR CE AC WA 
RH 92.02 7.98 0.00 0.00 0.00 
BR 5.66 92.60 1.73 0.00 0.00 
CE 0.00 2.08 82.31 15.61 0.00 
AC 0.00 0.00 11.94 88.06 0.00 
WA 0.00 0.00 0.00 0.00 100.00 

 
4.  Conclusion 

In summary, a new experiment on mangrove species mapping by means of fully 
polarimetric radar data is presented. Visual analysis based on Pauli composite image showed 
confusion on discriminating different vegetation species through shorter wavelengths such as 
C-band. On P-band, straightforward separation between mangrove communities was found. 
This research also observed that delimitation of upland region (sand dune complex) form 
surrounding wetland was possible. Assisted by Wishart classification algorithm, fairly high 
accuracies i.e. 77.88%, 83.83% and 91.00% for C-, L- and P-band were obtained. The 
quantitative analysis confirmed visual observation and implies that longer wavelength radar 
data provided a greater accuracy on the thematic map. 
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