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Abstract: With the increasing load demand and emergence of various types of Distributed 

Generators (DG) the complexities and challenges for reliable operation of Distribution Network 

(DN) power system have increased. The major operational challenge in the DN is non-detection 

of Islanding event, which may cause the system to collapse. In this paper, two Modified Islanding 

Detection Techniques (MIDT-I \& MIDT-II) are proposed for accurate and early islanding 

detection in the presence of different types of DGs. These approaches utilizes robust parameters 

for accurate identification of the islanded bus. The proposed MIDT schemes combines the 

advantages offered by different existing passive Islanding Detection Techniques (IDTs) for early 

identification of the islanding event. In the proposed schemes the DGs are installed in the existing 

DN by Genetic Algorithm (GA) based Multi-Level Optimization (MLO) approach. The 

installation of DGs is performed to improve the voltage stability margin of the system and for 

power loss reduction. In the second stage during operation of the network two methods are 

proposed to detect unintentional islanding. The proposed scheme is demonstrated on IEEE 33 

and IEEE 69 standard radial bus system for the effectiveness of the scheme. 

 

Keywords: Distributed Generation, Islanding detection, Voltage-Active Power Sensitivity, 

Frequency-Reactive Power Sensitivity, Active Power loss, Voltage Stability Margin, Genetic 

Algorithm, Penetration Level. 

 

1.  Introduction 

 Electric power source connected directly to the DN is known as DG. The different definitions 

and technologies of DGs are explained in [1]-[2]. With more emphasis on green energy 

technology due to environmental concerns, the importance of the DG units in the network has 

increased. DG plays an important role in enhancing the security, reliability and efficiency of the 

modern power systems [3]. The different types of DGs are: (i) type-1: supplying only active 

power, (i) type-2: supplying only reactive power, (i) type-3: supplying both active and reactive 

power and (i) type-4: supplying active power while consuming reactive power [4]. An exhaustive 

analysis of different methods and models for optimal installation of DG units is given in [5]. 

Various techniques have been proposed for optimal placement of the DG units in the DNs using 

different AI techniques [6]-[9]. The advantages of various DGs for improvement of voltage 

profile, minimization of power, increased power transfer capability, overcoming uncertainties of 

load and fuel prices, planning of dispatchable and non-dispatchable DG units, better network 

security and reliability etc. are discussed in [10]-[13]. 

 The electrical isolation of distribution system from the power system due to abnormal 

conditions while being connected to the DG is known as Islanding [14]. The islanding detection 

is critical during the operation of the system. A comprehensive survey of islanding protection 

with renewable DG is reported in [15]. The islanding detection techniques are broadly classified 
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into Active and Passive techniques [16]. Active islanding detection techniques have smaller Non-

Detection Zones (NDZ) but since pertubrations are introduced they suffer form large time of 

detection and could degrade the performance of system [16]-[19]. Most of the active IDTs are 

proposed for current controlled sources and for single DG unit only. The passive scheme utilizes 

local measurements of voltage and current signals ranging from usage of voltage variations and 

its derivatives, frequency variations and its derivatives, intelligent devices etc. have been 

proposed for islanding detection in the presence of DGs in the system [20]-[25]. The algorithms 

of passive scheme incorporates under/over frequency and voltage, rate-of-change of frequency 

and power, vector surge and harmonic distortion indices [26]-[28]. The passive methods have 

small time of detection but suffer from large NDZ.  

  In this paper, two MIDTs are proposed for early and effective detection of vulnerable bus 

for islanding. The proposed MIDTs utilize the advantages of the existing passive methods of 

islanding detection with identification of appropriate threshold values for early and effective 

detection of the islanding event. In the presence of Type-1 DG unit, MIDT-I is used for islanding 

detection. In the proposed MIDT-I a new parameter, based on the Voltage sensitivity to the 

Active power (Voltage-Active Power sensitivity parameter (ΔVP) is utilized for effective 

identification of the islanding event. The proposed parameter is used in addition to the existing 

parameters used in the passive IDTs. The MIDT-II is used for the islanding detection when Type-

3 DG units are present. In the proposed MIDT-II, two new parameters, Voltage-Active Power 

sensitivity parameter (ΔVP) and Frequency-Reactive Power sensitivity parameter (ΔfQ) are 

utilized for effective identification of the islanding event along with the existing parameters used 

in the passive IDTs. The proposed MIDTs are capable of detecting the islanding event early with 

lesser non-detection zones. The size and location of the DGs are obtained by proposed GA based 

MLO for improving the voltage profile of the buses and power loss minimization in the 

distribution system. The disadvantages in conventional GA requiring a large population size for 

achieving the optimal solution has largely been reduced by a proposed MLO. The results 

obtained by the proposed scheme shows that the effect of islanding can also be reduced by proper 

installation of the DG units. The proposed method of DG installation makes the operation of the 

DNs more reliable as the number of load buses in the island is reduced. 

 

2.  Problem Description 

 The optimal placement and sizing of DG plays an important role in the planning stage of any 

DN. The proper installation of DG units provides several advantages in terms of minimization 

of active power loss, increased network reliability, improvement of voltage stability, peak 

demand shaving etc. [2]. The appropriate placement of DGs in the DN leads to less load shedding 

requirements and aids in proper partitioning of system [29]. 

 

A.  Assumptions for the proposed Multi-stage GA Based Placement of DG 

 The maximum penetration level of DGs is considered to be 30% of the total supply of the 

distribution system with the output of DGs is assumed to be in either UP or DOWN state without 

any intermediate state in between [9]. For both the test systems under consideration the number 

of DGs is assumed to be three with the mutation rate for GA fixed at 5%. [6]. 

 

B. Mathematical Formulation: 

 In the proposed scheme, the installation of DGs is performed for achieving the following 

objectives (i) Maximization of Voltage Stability Margin of the System through improvement of 

voltage profiles of the buses and (ii) Maximizing the system line losses reduction. The above 

problem is formulated as: 

 

B.1. Maximization of the System Voltage Stability Margin: 

 The objective function for increasing the system voltage profile can be given as:  
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  (1) 

Where  is the Voltage of  bus in the presence of DGs and  is the Voltage of  bus 

without DG, m is the total number of buses in the system and  is the weight assigned to the 

given objective. 

 

B.2. Maximization of System line losses Reduction 

 The objective function for increasing the line loss reduction can be given as:  

  (2) 

  Where  is the Active Power Losses in the presence of DGs and  is the Active 

Power Loss without DG and is obtained as:  

                                  (3) 

 Where  is the total number of lines in the system,  is the Resistance of the line connecting 

any two adjacent buses. ,  and  are the Active power, Reactive power and Voltage of 

the  bus respectively.  

 

B.3. Overall objective function 

  Finally the objective function is formulated as nonlinear multi-objective optimization 

problem by combining the above objectives as:  

  (4)

   and  are weights assigned to the objectives as desired and are related as:  

  (5)

   

C. Constraints: 

  The mentioned objective is achieved by satisfying the following constraints: (i) Equality 

constraints (ii) Inequality constraints and (ii) DG capacity constraint.  

 

C.1. Equality constraints 

  The equality constraints are characterized by the real and reactive power flow equations. 

  (6) 

  (7) 

 The individual bus voltages are calculated as:  

  (8) 
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Where  and  are the Resistance and Reactance of the line connecting any two adjacent 

buses. ,  and  are the Active power, Reactive power and Voltage of the  bus 

respectively.  is the admittance matrix of the two adjacent buses. 

 

C.2. Inequality constraints 

 The inequality constraints are characterized by real power generation and reactive power 

generation constraints, load bus voltage constraints, thermal limits. 

Real power generation constraints  

  (9) 

 Where  and  are the minimum and maximum real power generation limits of the 

DG in kW at bus . 

Reactive power generation constraints  

                                                                                                                               (10) 

 Where  and  are the minimum and maximum reactive power generation limits of 

the DG in kVA at bus . 

Load bus Voltage inequality constraints  

                                                                                                                                     (11) 

  Where  and  are the minimum and maximum voltage limits of the DG in p.u. 

The minimum and maximum limits are taken as 0.95 p.u and 1.05 p.u respectively.  

 

C.3. DG capacity limits 

                                                                                                                                     (12)

                                                                                                                              (13) 

where  and  are Real and Reactive Power Penetration Levels respectively and is 

calculated as  

                                              (14)                                                                                

                                                                                                                               (15) 

where  and  are the total real and reactive power output of all DGs and  and 

 are the total real and reactive power demand of the distribution system.  and  

are the real and reactive power supplied by the Grid. Eqns 10, 13 and 15 are considered only for 

optimal installation of type-3 DGs only. 

 

3. Genetic Algorithm (GA) Based Multi-Level Opti0mization (MLO) 

 The optimal installation of DG units in the system is performed through GA based 

optimization technique. GA derives its behavior from the process of Evolution [30]. The 

advantages of simplicity and flexibility in approach combines with robust response to changing 

environment makes GA a powerful tool for the optimal installation of DG units in the DNs. It 
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has been extensively used for power system optimization problems like loss reduction, 

improvement of voltage profile, and reconfiguration of DNs [31]-[33]. The various steps in 

implementation of the proposed GA based MLO for optimal DG location and capacity is 

summarized as: 

 

A. Selection 

  The process of choosing two parents to produce a child is known as selection. In the present 

work, a two-level selction process is utilized. The weaker solutions are discarded in the initial 

round by a knockout selection. The fitter individuals are processed in further stages of 

optimization by selecting them through roulette wheel selection.  

 

B. Crossover 

 Crossover is the process of producing a child from two parent solutions. In the present work, 

the fitter individuals selected by roulette wheel selection are taken for two-point cross over to 

enable a good mix of characteristics of both the parents in the children.  

 

C. Mutation and Elitism 

   

 
Figure 1. Flowchart for optimal placement of DGs using proposed GA Based MLO 

 

A New Scheme for Islanding Event Identification by Strategic Installation

717



 
 

 

 

 Lost genetic information is recovered by Mutation and also restrains the algorithm to be 

trapped in a local optimum. The weakest individual of the current population is replaced by the 

fittest individual of the immediately preceding population by Elitism. 

 

 The encoding of each parent for type-1 DG is considered as:  

 

  

 

 

 The encoding of each parent for type-3 DG is considered as:  

 

 

 

 

 Where Loc1 is the location of the first DG, Loc2 is the location of the second DG and so on. 

P1 is the active power supplied by the first DG; P2 is the active power supplied by the second DG 

and so on; Q1 is the reactive power supplied by the first DG; Q2 is the reactive power supplied 

by the second DG and so on. 

 A flowchart for the optimal placement and sizing of DG by the proposed method is shown in 

Figure.1. 

 

4. Proposed Modified Islanding Detection Techniques (MIDTs) For Islanding Event 

Identification 

 A system wide blackout can be caused by faults upstream or failure of grid. Intentional 

islanded operation of the systems is one major advantage of presence of DG units in the 

distribution system. Controlled islanding can also restrict the amount of load shedding needed in 

the system in case of any contingency. However, the active or reactive power imbalance leads to 

frequency, angle or voltage instability in the unintentional islands. These may further lead 

tripping of interconnected tie-lines causing instability in the interconnected parts of the network. 

Hence, the islanding event has to be detected early and accurately for initiating appropriate 

control actions by the system operator to avoid a blackout of the islanded region of the system.  

The passive islanding detection techniques utilizes local measurements of voltage, frequency, 

current. The passive techniques have the drawback of large NDZ and requires precise setting of 

threshold values of different parameters. Very low threshold values results in unwanted tripping 

and higher threshold values results in failure of detection of islanding event. The passive IDTs 

are preferred as the cost of implementation is less along with early detection of islanding. Since 

the DG can supply only a small amount of load, the islanding has to be detected early and 

accurately.  

 The instability in the islanded part can cascade into the stable part of the system and lead to 

a complete failure of the system if undetected. The accurate identification of islanding becomes 

difficult due to complexity in monitoring the system parameters in the presence of DG units. 

Hence, the existing methods need to be re-investigated for early and accurate detection of the 

islanding event. For accurate and early detection of islanding the existing passive IDTs are 

modified by utilizing more robust parameters along with the existing parameters used in the 

passive IDTs. The existing parameters are used as alarm signals for the impending islanding 

event and the system moves into an alert state. In the alert state if the proposed MIDT parameters 

also violate the threshold limits, it is identified as an islanding event and the bus where the 

parameters violate the limits is identified as the islanding bus. In the existing passive detection 

techniques the following parameters are utilized: 

The variation in voltage at each bus is measured for every time instant as:  

                       (16)                                                                                                                       

   

)( =  VoltsdVVoltageofVariation
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 The voltage parameter is computed by averaging the variation of voltage over five continuous 

cycles. The averaging of voltage over 5 continuous cycles is performed to avoid any errors in 

measurement and is measured in (V/sec).  

                                                                                         (17)                       

   is the predefined threshold value for the parameter and is taken as 160 V/sec [21]. The 

frequency at each bus is monitored and the variation in frequency is calculated for every time 

instant as:  

                                                                                                                 (18) 

 The Rate of Change of Frequency (ROCOF) is calculated as frequency parameter at every bus 

for each cycle in (Hz/sec).  

                                                                                                           (19) 

   The ROCOF is used for quick islanding detection. The ROCOF is calculated usually 

between 2 and 50 cycles. The typical ROCOF settings are between 0.1 and 1.2 Hz/sec for a 60 

Hz system. The frequency variations are used for for detecting the islanding event in ROCOF 

relays. However, the ROCOF relays may become ineffective for power imbalance less than 15% 

in the island. The threshold value of  is set as 2.18 (Hz/sec) for 60 Hz system [23].  

 The net active power is monitored for every cycle at each bus. The variation will be less in DG 

buses since the power available from DG units is fixed. But, the buses farther away from the DG 

bus will have more variation of active power when the load demand changes.  

                                                                                                   (20) 

 The Rate Of Change Of Active Power (ROCOP) is calculated at each bus for every time instant 

in (MW/sec).  

                                                                                      (21) 

 is the pre-defined threshold limit and is fixed as 0.64 MW/sec [23].  

 A new Voltage-Active Power sensitivity parameter ( ) is proposed in the presence of type-

1 DG units. As voltage and active power is cross coupled, monitoring the variation of voltage 

with active power ensures accurate identification of the islanding event. The Voltage-Active 

Power sensitivity parameter is calculated by dividing eqn. (16) by eqn. (20). This gives the 

variation of voltage to real power parameter at a bus and is measured in (V/MW).  

                                                                               (22) 

 ‘μ’ is the threshold value of the proposed Voltage-Active Power Sensitivity parameter. The 

threshold value of ‘μ’ is set as 10%. After rigorous simulations it was observed that if ‘μ’ was 

considered less than 10%, false tripping of islanding event occurred. Some islanding events are 

not detected for greater threshold values. The identification of the vulnerable bus is a two-step 

process. In the first step the system operator is alerted for an impending islanding event if either 

the voltage parameter (δVt) or frequency parameter (δft) or Rate-of-change of Active Power (δPt) 

violate the pre-defined threshold limit. Mathematically it can be expressed as:  

                                                            (23) 

 If the Voltage-Active Power sensitivity parameter also violate the threshold in the alert state, it 

is classified as an islanding event and the bus at which the violation occurs, is identified as the 

islanding bus. It can be expressed as:  

                                                                                          (24) 
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A flow chart of the proposed MIDT-I for type-1 DG units is shown in Figure 2. 

 

 
Figure 2. Flowchart for MIDT-I with type-1 DG 

 

 For type-3 DG unit installed in the system, MIDT-II is proposed. It utilizes the existing 

parameters for the islanding suspicion and the system enters into the alert state. A frequency-

Reactive Power sensitivity parameter is also utilized for effective identification of the islanding 

event along with the Voltage-Active Power sensitivity parameter. The cross-coupling of 

parameters ensures against any false triggering of islanding event. The Reactive Power variation 

is calculated at each bus for every time instant as:  

                                                                                                  (25) 

 The Rate Of Change of Reactive Power (ROCOQ) is measured at each bus for every time instant 

in (MVAr/sec).  

                                                                                  (26) 

An additional Frequency-Reactive Power sensitivity parameter (δfQ) is proposed. This parameter 

is calculated by dividing eqn. (18) by eqn. (25). The Frequency-Reactive Power sensitivity 

parameter is measured in (Hz/MVAr). 

                                                                      (27) 

 ‘β’ is the predefined threshold limit for the Frequency-Reactive Power sensitivity parameter. 

The threshold values of these two proposed parameters were set after extensive testing. The value 

)( =  MVArdQVariationPowerReactive

 |<=|)(      
dt

dQ
QPowerReactiveofchangeofRate t

|<=|)(   
dQ

df
fySensitivitPowerReactiveFrequency Q−
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of ‘β’ is set at 2%. The Frequency-Reactive Power sensitivity parameter is highly sensitive. 

Throughout the simulations it was observed that if ‘μ’ and ‘β’ are considered less than 10% and 

2% respectively, false tripping of islanding event occured and some islanding events are not 

detected for greater threshold values.  

  The islanding event is identified by a two-stage process. In the first step, if either the voltage 

parameter (δVt) or frequency parameter (δft) or Rate-of-change of Active Power (δPt) violate the 

predefined threshold limit, the system operator is alerted for a suspected islanding event and the 

system goes into alert state. Mathematically it can be expressed as:  

                                                         (28)

  In the second stage, if the Voltage-Active Power sensitivity (ΔVP) parameter and the 

Frequency-Reactive Power sensitivity (ΔfQ) also violate the threshold limit at any bus, when the 

system is in alert state, it is classified as an islanding event. 

The bus at which these proposed parameters initially violate the limit is identified for islanding. 

Mathematically it can be expressed as:  

                                                                                 (29) 

A flow chart of the proposed MIDT-II for type-3 DG units is shown in Figure 3. 

 

 
Figure 3. Flowchart for MIDT-II with type-3 DG 

 

5. Results and Discussion 

  The proposed algorithm has been tested on standard IEEE 33 bus and 69 radial bus test 

systems. All simulations have been carried out using MATLAB [34] and PSAT [35]. The 

dynamic simulation has been performed after the optimal installation of DG units. The real and 

reactive loads are increased exponentially during dynamic simulation. If islanding occurs during 
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simulation the vulnerable bus is observed. In this section firstly the results obtained for optimal 

location and capacity for the two test systems are discussed and then the results of the two 

proposed MIDTs are presented on the two test systems at base case and 140% of base case. 

 

A. Simulation results of Optimal Placement and location of DGs by GA based Multi-Level 

Optimization 

  The optimal locations of type-1 DG units for 33 Bus system obtained by the proposed 

method are 13, 30 and 23 and sizes as 786, 745 and 42 kW respectively. The optimal locations 

of DG units for 69 Bus system obtained by the proposed method are 62, 43 and 16 and sizes as 

788, 644 and 45 kW respectively. The results obtained for type-1 DG units are compared with 

two existing method and is shown in Table. 1. The proposed method of DG installation has been 

tested with the minimum load at 140% of base load. 

 The optimal locations of type-3 DG units for 33 Bus system obtained by the proposed method 

are 13, 30 and 24 and sizes as 40,1443 and 13 kVA respectively. The optimal locations of DG 

units for 69 Bus system obtained by the proposed method are 61,18 and 11 and sizes as 937,551 

and 11kVA respectively. The results obtained for type-3 DG units are compared with existing 

PSO method and is shown in Table. 2. 

From the tables it can be observed that the proposed MLO based optimal location and sizing of 

DG units give better result in terms of improvement of Voltage stability margin and reduction of 

losses when any type of DG unit is installed. Type-3 DG unit gives better result than Type-1 DG 

unit as both real and reactive power are supplied at the same bus. 

 

Table 1. Comparative Analysis of Results with Type-1 DGs in 33 and 69 Bus Systems  

for various operating Conditions 

Bus 

System 

Loading 

Conditions 
Cases 

DG 

Location 
DG Size (kW) 

Minimum 

Voltage 

(p.u.) 

Improvement 

in Voltage 

Stability 

Margin (%) 

Active 

Power 

Losses 

(MW) 

Reduction 

in active 

Power 

Losses (%) 

33 Bus 

system 

Base 

Load 

Without 

DG 
- - 0.9131 - 0.202 - 

Proposed 

GA base 
MLO 

13,30,23 786,745,42 0.9872 4.97 0.08283 59.13 

SA[8] 17,18,33 719,113,1043 0.9693 4.32 - - 

HSA[6] 17,18,33 572,107,1046 - - 0.09676 52.26 

140 % base 
Load 

Without 
DG 

- - 0.8738 - 0.42464 - 

Proposed 

GA base 

MLO 

13,30,23 786,745,42 0.9766 7.36 0.19219 54.74 

SA[8] 17,18,33 719,113,1043 0.9688 6.34 - - 

HSA[6] 17,18,33 572,107,1046 - - 0.2112 50.26 

69 Bus 
System 

Base 

Load 

Without 

DG 
- - 0.9104 - 0.225 - 

Proposed 
GA base 

MLO 

62,43,16 788,644,45 0.9943 2.48 0.0779 65.38 

SA[8] 26,65 656,1606 0.9808 2.08 - - 

HSA[6] 63,64,65 1302,369,1018 - - 0.08677 61.44 

140 % base 

Load 

Without 

DG 
- - 0.8690 - 0.47768 - 

Proposed 
GA base 

MLO 

62,43,16 788,644,45 0.9918 3.66 0.18752 58.11 

SA[8] 26,65 656,1606 0.9718 3.11 - - 

HSA[6] 63,64,65 1302,369,1018 - - 0.19801 55.77 
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Table  2. Comparative Analysis of Results with Type-3 DGs in 33 and 69 Bus Systems  

for various operating Conditions 

Bus 

System 

Loading 

Conditions 
Cases DG Location 

DG Size 

(kVA) 

Minimum 

Voltage (p.u.) 

Improvement 
in Voltage 

Stability 

Margin (%) 

Active 
Power 

Losses 

(MW) 

Reduction 
in active 

Power 

Losses (%) 

Reactive 
Power 

Losses 

(MVAr) 

Reductio

n in 
reactive 

Power 

Losses 
(%) 

33 Bus 

system 

Base Load 

Without DG - - 0.9131 - 0.202 - 0.13514 - 

Proposed GA 

base MLO 
13,30,24 40, 1443, 13 0.9914 5 0.0534 73.65 0.03573 73.56 

PSO[4] 6 3025 0.9509 3.83 0.07612 62.44 0.05797 57.1 

140 % base 
Load 

Without DG - - 0.8738 - 0.42464 - 0.28343 - 

Proposed GA 
base MLO 

13, 30, 24 40, 1443, 13 0.9874 7.41 0.15187 64.24 0.11365 59.64 

PSO[4] 6 3025 0.9509 5.71 0.16069 62.16 0.11913 70.41 

69 Bus 
System 

Base Load 

Without DG - - 0.9104 - 0.225 - 0.10219 - 

Proposed GA 

base MLO 
61, 18, 11 937, 551, 259 0.9943 2.51 0.0551 75.51 0.025 75.44 

PSO[4] 61 2243 0.9935 2.42 0.08801 60.88 0.04353 57.04 

140 % base 

Load 

Without DG - - 0.8690 - 0.47768 - 0.216 - 

Proposed GA 

base MLO 
61, 18, 11 937, 551, 259 0.9921 3.77 0.18733 58.16 0.08847 59.04 

PSO[4] 61 2243 0.9639 2.75 0.23585 47.32 0.11286 47.75 
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B. Results of MIDT-I with type-1 DGs 

   The results of the proposed MIDT-I is compared with existing passive IDT using the Rate 

of change of voltage as given in eqn. (17) [22], Rate of change of frequency as given in eqn. (19) 

[23] and Rate of change of Active Power as given in eqn. (21) [23]. In the proposed method, 

along with parameters used in existing IDTs like voltage, frequency and active power at each 

bus for every instant of time, the Voltage-Active Power sensitivity is also calculated. The 

proposed method is also tested when the base load in the system is set at 140% of the initial base 

load. The results of islanding detection and the vulnerable bus of 33 Bus system and 69 Bus 

system is shown in Table 3.  

 From the tables it can be seen that, the proposed MIDT is effective in identifying the islanding 

event early and accurately along with the vulnerable bus. The MIDT-I is triggered by the 

frequency variations initially. The problem of NDZ in the frequency parameter is overcome in 

the proposed MIDT-I as the variations of voltage to active power is considered for each bus. By 

the proposed method of DG installation the number of buses islanded is also reduced.  

 The islanded bus moves away from the grid when the minimum load in the system is 

increased as the eff ect of DG penetration cannot be effective on buses away from the DG buses. 

The number of buses islanded in the 33 Bus system at base load condition and at overloaded 

condition is shown in Figure 4. A representation of the islanded buses at overloaded condition 

of the 69 Bus system is shown in Figure 5. 

 

 
(a) At Base Load Condition 

 

 
(b) At Overloaded Conditon 

Figure  4.  Formation of Islands in 33 Bus System with type-1 DGs 
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Table 3. Comparative Analysis of Islanding Detection techniques with Proposed MIDT-1 (33 Bus System and 69 Bus System with type-1 DGs) 

Bus 

System 

Islanding Detection 

Loading 
Level 

DG 
Placemen

t 

Techniqu
e 

Passeive Method I [23] Passive Method II [21] Passive Method III Proposed MIDT-I 

Time of 

Detectio
n 

Islan
ded 

Bus 

No. 

No. of 

Buses 
Islanded 

Time of 

Detectio
n 

Islanded 

Bus No. 

No. of 

Buses 
Islanded 

Time of 

Detectio
n 

Islanded 

Bus No. 

No. of 

Buses 
Islanded 

Time of 

Detectio
n 

Islanded 

Bus No. 

No. of 

Buses 
Islanded 

33 Bus 

System 

Base 
Load 

Proposed 

GA 

Method 

1.05 4 23 1.083 3 27 1.074 2 32 1.05 5 22 

SA [8] 1.058 2 32 1.0833 2 32 1.074 2 32 1.058 3 27 

HSA [6] 1.058 2 32 1.0833 2 32 1.074 2 32 1.058 3 27 

140% of 

Base 

Load 

Proposed 

GA 
Method 

1.0412 4 23 1.085 3 27 1.077 2 32 1.0412 6 21 

SA [8] 1.043 3 27 1.0916 2 32 1.079 2 32 1.043 3 27 

HSA [6] 1.043 3 27 1.0916 2 32 1.079 2 32 1.043 3 27 

69 Bus 
System 

Base 

Load 

Proposed 
GA 

Method 

1.05 7 40 1.083 21 7 1.07457 6 41 1.05 6 41 

 SA [8] 1.058 7 40 1.084 8 39 1.07457 8 39 1.058 6 41 

 HSA [6] 1.058 4 47 1.1162 7 40 1.07457 8 39 1.058 6 41 

140% of 

Base 

Load 

Proposed 

GA 

Method 

1.0412 7 40 1.0845 15 13 1.07457 7 40 1.012 8 39 

 SA [8] 1.042 7 40 1.0857 7 40 1.07457 6 39 1.042 6 41 

 HSA [6] 1.042 7 40 1.1162 7 40 1.07457 8 39 1.042 6 41 
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Figure 5. Formation of Islands in 69 Bus System with type-1 DGs at overloaded condition 

 

C. Results of MIDT-II with type-3 DGs 

   The results of the proposed MIDT-II is compared with existing passive IDT using the Rate 

of change of voltage as given in eqn. (17) [22], Rate of change of frequency as given in eqn. (19) 

[23] and Rate of change of Active Power as given in eqn. (21) [23]. In the proposed method, 

along with voltage, frequency and active power variations at each bus for every instant of time, 

the Voltage-Active Power sensitivity and Frequency-Reactive Power sensitivity are also 

calculated. The proposed method is also tested when the base load in the system is set at 140% 

of the initial base load. The results of islanding detection and the vulnerable bus of 33 Bus system 

and 69 Bus system is shown in Table. 4.  

  

 
(a) At Base load condition 

 

 
(b) At overloaded condition 

Figure 6. Formation of Islands in 33 Bus System with type-3 DGs 
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Table 4. Comparative Analysis of Islanding Detection techniques with proposed MIDT-II (33 Bus System and 69 Bus System with type 3 DGs) 

Bus 

System 

Islanding Detection 

Loading 
Level 

DG 

Placement 

Technique 

Passeive Method I [23] Passive Method II [21] Passive Method III Proposed MIDT-II 

Time 
of 

Dete

ction 

Islanded 

Bus No. 

No. of 

Buses 
Islanded 

Time of 

Detection 

Islanded 

Bus No. 

No. of 

Buses 
Islanded 

Time of 

Detection 

Islanded 

Bus No. 

No. of 

Buses 
Islanded 

Time of 

Detection 

Islanded 

Bus No. 

No. of 

Buses 
Islanded 

33 Bus 

System 

Base 
Load 

Proposed 

GA Method 
1.05 3 27 1.083 3 27 1.07457 2 32 1.05 4 23 

PSO [4] 
1.05

8 
2 32 1.084 13 6 1.07457 2 32 1.058 3 27 

140% of 

Base 
Load 

Proposed 

GA Method 

1.04

12 
3 27 1.083 3 27 1.083 2 32 1.0412 6 21 

PSO [4] 
1.04

2 
2 32 1.0833 2 32 1.0833 2 32 1.042 3 27 

69 Bus 

System 

Base 

Load 

Prposed 

GA Method 
1.05 6 41 1.085 6 41 1.07457 6 41 1.05 7 40 

 PSO [4] 
1.05

8 
6 41 1.085 10 18 1.075 7 40 1.058 6 41 

140% of 
Base 

Load 

Proposed 

GA Method 

1.04

12 
7 40 1.083 14 14 1.08 15 12 1.0412 8 39 

 PSO [4] 
1.04

2 
6 41 1.1162 12 16 1.1162 13 15 1.042 6 41 
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 From the tables it can be seen that, the proposed MIDT-II is effective in identifying the 

islanding event early and accurately. TThe problem of NDZ in the existing technique using 

frequency parameter is largely overcome in the proposed MIDT-II as the variations of frequency 

to reactive power is considered for each bus. As the Frequency-Reactive Power sensitivity (δfQ) 

is very sensitive, the vulnerable bus is identified accurately. The number of buses islanded is also 

reduced by the proposed method of DG installation. As the minimum load in the system is 

increased, the islanded bus moves away from the grid as the effect of DG penetration cannot be 

effective on buses away from the DG buses.  

 The number of buses islanded in the 33 Bus system at base load condition and at overloaded 

condition is shown in Figure. 6. A representation of the islanded buses at base load condition 

and at overloaded condition of the 69 Bus system is shown in Figure 7. 

 

 
(a) At Base Load Condition 

 

 
(b) At Overload condition 

Figure 7. Formation of Islands in 69 Bus System with type-3 DGs 

 

 From the analysis of MIDT-I and MIDT-II for different loading conditions in both the test 

systems, the installation of DG units by the proposed MLO based GA method reduces the effect 

of islanding. The cross-coupling of parameters in MIDT-I and MIDT-II ensures that the 

identified vulnerable bus for islanding is far from the grid and nearer to the DG bus. As the effect 

of DG penetration cannot be near the grid, the proposed MIDT-I and MIDT-II does not give any 

false triggering of islanding event. 

 

6. Conclusion 

 A GA based MLO is utilized for optimal installation of DGs in the DN in this paper. The 

MLO has been applied for optimal placement and sizing of type-1 and type-3 DGs in the DN. 

As the type-3 supplies both active and reactive power at the same bus, the loss reduction and 
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voltage stability margin improvement is better with type-3 DG units. In the proposed technique 

using MLO since the weaker solutions are neglected at an early stage the DGs tend to get placed 

in the most sensitive bus.  

 For early detection of islanding event accurately in DN in the presence of DGs, two MIDTs 

schemes are also proposed. The two schemes MIDT-I and MIDT-II are proposed for type-1 and 

type-3 DGs respectively. The main features of these proposed schemes is fast islanding event 

detection based on the advantages offered by the existing passive IDTs. The correct identification 

of islanding event is facilitated by utilizing dynamic parameters like Voltage-Active Power 

sensitivity (ΔVP) and Frequency-Reactive Power sensitivity (ΔfQ). Since the parameters are 

cross-coupled the islanding event is not triggered due to any transient events like sudden 

switching of loads or capacitor switching events. The inherent disadvantages of the existing 

methods like slow detection, Non-Detection zones and false triggering of islanding event have 

been reduced considerably in the proposed schemes. Even under different operating conditions 

the performance of the proposed methods of islanding detection is satisfactory making them 

more robust and effective. 
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