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Abstract: The unique hydrophobicity transfer property of silicone rubber material 
ensures its good hydrophobicity when being polluted with pollutants. Earlier studies 
have shown that the migration of low molecular weight (LMW) components of 
polysiloxane from the bulk to the surface of silicone rubber is the root cause of the 
hydrophobicity transfer property. This migration process is influenced by the ambient 
conditions. In this paper the influence of temperature on the transfer property is 
investigated, and transfer characteristics on HTV-SR have been found which exhibit a 
saltus between 50  and 55 . The influence of humidity on the transfer property with 
different kinds of pollutants is investigated using the saturated salt solution method to 
control the relative air humidity. The results show that the influence of relative humidity 
is related with the hygroscopicity of soluble and non-soluble substances in pollutants on 
the surface. The hydrophobicity transfer property of HTV-SR polluted with 10 different 
kinds of inert materials is investigated, and the results show that different kinds of 
pollutants have a great influence on the hydrophobicity transfer property of HTV-SR. 
DC artificial pollution tests were conducted in Yunnan, China. The results show that the 
pollution flashover performance of composite insulators is closely related to the 
hydrophobicity state of the surface. The flashover voltage of composite suspension 
insulators rises with the increase of the transfer time and the mass fraction of kieselguhr 
in pollutants. 
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1. Introduction 
 IN recent years, silicone rubber products have been widely used in power systems to 
combat pollution flashover problems. In China, composite insulators with a housing consisting 
of high temperature vulcanizing silicone rubber (HTV-SR) have been widely applied since the 
1980s, and have shown excellent pollution flashover performance ever since. Only in China, 
there are nowadays more than 5,000,000 composite insulators in service on transmission lines 
[1-3]. Another application of silicone rubber products is the usage of room temperature 
vulcanizing silicone rubber (RTV-SR) as coating for insulators. It has been widely used to coat 
porcelain and glass insulators in the power system of China since the 1980s, especially in wet 
and heavily polluted conditions, showing excellent performance since then. RTV coating has 
now been accepted as one of the most important measures to resist pollution flashover on 
porcelain and glass insulators in China [4-6]. 
 Good hydrophobicity and the unique hydrophobicity transfer property of silicone rubber 
materials is the basic reason for the excellent pollution flashover performance of silicone 
rubber products. Earlier studies have shown that the hydrophobicity transfer of silicone rubber 
materials is mainly due to a diffusion process, whereby low molecular weight (LMW) polymer 
chains from the bulk migrate to the surface to recreate a low energy surface [6-10]. Even when 
the surface loses hydrophobicity due to severe weather conditions like corona or long-time 
wetting conditions, the hydrophobicity recovers with time due to further LMW transfer from  
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the bulk [11]. When their surface is polluted, silicone rubber materials also tend to coat 
pollutants deposited on the surface of the insulator sheds thus mitigating the degradation of the 
hydrophobicity by pollution. 
 As mentioned above, the hydrophobicity transfer property is the key point why silicone 
rubber products can combat pollution flashover problems. However, in actual service, the 
hydrophobicity transfer property of silicone rubber materials is affected by external factors, 
such as the ambient environment and pollutants [12-14]. A lot of investigations have been 
carried out on the factors influencing the hydrophobicity transfer property of silicone rubber 
materials. Results show that the ambient environment and pollutants greatly influence the 
speed and degree of the hydrophobicity transfer. However, most of these investigations have 
not been carried out systematically and the influence of ambient temperature, ambient humidity 
and pollutants on hydrophobicity transfer property has not been thoroughly reported. In-depth 
research should thus be carried out on these problems. 
 In this paper the hydrophobicity transfer characteristics of silicone rubber material are 
investigated under different ambient temperature and humidity to get thorough results. The 
hydrophobicity transfer characteristics in the presence of kieselguhr and kaolin pollutants as 
well as a number of natural pollutants are investigated and compared in order to determine how 
best to simulate the behavior of natural pollution using artificial pollutants and their mixtures. 
In addition, the pollution flashover performance of composite suspension insulators is 
investigated after different transfer time and with different compositions of pollutants. 
 
2. Sample and Test Method 
A. The test sample 
 A typical HTV-SR and RTV-SR sample is shown in Figure 1. The size of the sample is 
100 mm*100 mm*5 mm. The pollutants were applied to the surface by the solid layer method 
[15], in which a contaminant solution consisting of pollutants and distilled water was used to 
coat the sample surfaces. The non-soluble deposit density (NSDD) in each case was 1.0mg/cm2, 
the equivalent salt deposit density (ESDD) was 0.1 mg/cm2.  
The test method 
 

 
(a) 

 

 
(b) 

Figure 1. Test samples made of (a) HTV and (b) RTV 
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3. Results and Discussion 
A. Influence of ambient temperature 
 High temperature condition 
 The process of hydrophobicity transfer was measured on HTV-SR and RTV-SR samples at 
different ambient temperature. The ambient temperature was controlled by an incubator whose 
accuracy was ±1 . The pollutants were kaolin and NaCl and the following pollution severity 
was adjusted, NSDD = 1.0mg/cm2 and ESDD = 0.1mg/cm2. 
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Figure 3. Hydrophobicity transfer characteristics of HTV-SR under different ambient 
temperature, (a) hydrophobicity transfer speed, (b) final asymptotic value of the contact angle 

 
 As we can see in Figure 3, after polluting the surface of HTV-SR samples, the static contact 
angle increases with the increase of transfer time, and gradually gets to a stable value. The 
hydrophobicity transfer speed and the asymptotic value of the contact angle both increase with 
the ambient temperature. It can also be seen that there is a saltus of the asymptotic contact 
angle between 50  and 55 , where the asymptotic contact angle leaps from below 90° to 
above 90°. It can be assumed that diffusion of LMW from bulk to pollutants greatly increases 
when the temperature arises from 50  to 55 . 
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 The hydrophobicity transfer characteristics of RTV-SR sample are shown in Figure4. 
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Figure 4. Hydrophobicity transfer characteristics of RTV-SR under different ambient 
temperature, (a) hydrophobicity transfer speed, (b) final asymptotic value of the contact angle 

 
 It can be seen that the hydrophobicity transfer speed and the asymptotic value of the contact 
angle also increase with the ambient temperature, albeit in a way different from HTV-SR. No 
saltus of the asymptotic contact angle was observed but a roughly linear increase with the 
ambient temperature appeared between 25  and 60℃.   
 It is also necessary to investigate the hydrophobicity transfer property of silicone rubber at 
lower temperatures as well, because composite insulators have shown bad pollution flashover 
performance in recent years. A special semiconductor temperature control platform (Figure 5) 
was used, with which a stable temperature could be maintained during the measurement of the 
hydrophobicity transfer. That way, condensation on the pollution surface during the 
measurement procedure could be avoided as well. 
 
 Low temperature condition 
 The process of hydrophobicity transfer was measured on HTV-SR at ambient temperatures 
of 5 , 10  and 25 , respectively. The pollutants were kaolin and kieselguhr with NSDD=1.0 
mg/cm2, and ESDD=0.1 mg/cm2. 
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Figure 5. Semiconductor temperature control platform 
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Figure 6. Hydrophobicity transfer characteristics of HTV-SR under different low temperature 

conditions, (a)polluted with kaolin, (b) polluted with kreselguhr 

25L 
10L 
5L

25L 
10L 
5L

Zhicheng GUAN, et al.

266



 
 

 It can be seen in Figure 6 that the hydrophobicity transfer speed and the asymptotic value of 
the contact angle decrease significantly as the temperature drops from both 25  to 10  and 10  
to 5 . Therefore, it can be concluded that when silicone rubber products are exposed to low 
temperature conditions for a long period, pollutants build up gradually on the surface while 
hydrophobicity cannot transfer from bulk onto the pollution surface as quickly as under high 
temperature conditions. Pollution flashover will thus be more likely to happen at low 
temperature conditions which have to be considered as a kind of harsh conditions for the 
service of silicone rubber material. 
 
B. Influence of ambient humidity 
 In this paper, the ambient humidity was controlled by using the saturated salt solution 
method according to EN ISO 483 [18]. The polluted samples were put into a closed container 
with different kinds of saturated salt solutions. The relative humidity in the container stayed 
constant. The used solutions and the corresponding constant relative humidity in the closed 
container are shown in Table 1. 
 

Table 1. Saturated salt solutions and their corresponding constant relative humidity 
Saturated 
solutions 

Theory humidity Actual humidity 

desiccant - 25% 
NaCl 75% 75% 
KCl 84% 85% 
KNO3 92% 89% 
K2SO4 97% 95% 
distilled water 100% 100% 

 
 Pollutants with no soluble substances 

Hydrophobicity transfer characteristics of HTV-SR when polluted with only kaolin or 
kieselguhr is shown in Figure 7. It can be seen that when polluted with kaolin, the 
hydrophobicity transfer speed and the asymptotic value of the contact angle are both greatly 
influenced by the relative humidity. Especially when the relative humidity is high, the transfer 
speed and the asymptotic value of the contact angle decrease significantly. The situation is 
different in case of HTV-SR samples polluted with kieselguhr. When the relative humidity 
reaches 100%, the transfer speed decreases and the asymptotic value of the contact angle drops 
from 140° to about 120° while there is almost no influence on the hydrophobicity transfer 
characteristics at relative humidity below 100%. 
 The difference between kaolin and kieselguhr in different humidity can be explained by the 
theory of hygroscopicity, i.e. the water absorption per unit mass of kaolin and kieselguhr 
(Figure 8). It can be seen that the hygroscopicity of kaolin is much higher than that of 
kieselguhr. At relative humidity of 85%, kaolin exhibits a 50% greater hygroscopicity than 
kieselguhr. When the relative humidity reaches 100%, the difference is more obvious so that 
kaolin has 68% greater hygroscopicity than kieselguhr. Due to the higher hygroscopicity of 
kaolin, the amount of moisture stored in the Kaolin pollutant is bigger than in the kieselguhr 
pollutant, what blocks the transfer of LMW from bulk to the surface pollutant to some extent. 
Therefore, the influence of the relative humidity on kaolin-polluted HTV-SR samples is 
greaterthan on the kieselguhr-polluted samples, especially in high humidity conditions. 
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Figure 8. Hygroscopicity of kieselguhr and kaolin at different relative air humidity 
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 Pollutants with different kinds of soluble substances 
In practical service, pollutants on insulators consist of various kinds of soluble substances. 

Different soluble substances show different transfer characteristics in certain humidity 
conditions. In this paper, 3 kinds of soluble substances were chosen to pollute the HTV-SR 
samples: 1) NaCl is the most commonly used soluble salt for artificial pollution tests on 
insulators; 2) CaSO4 is known as the most common salt on naturally polluted insulators in 
China; 3) Sugar is a special kind of soluble substance on insulators in some area. The 
hydrophobicity transfer characteristics of HTV-SR polluted with different kinds of soluble 
substances are shown in Figure 9. The non-soluble pollutant is kaolin. 
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Figure 9. Hydrophobicity transfer characteristics of HTV-SR polluted with different kinds of soluble substances, 
(a) kaolin and NaCl, (b) kaolin and CaSO4, (c) kaolin and sugar 
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 The results in Figure 9 show that when being polluted with kaolin and different kinds of 
soluble substances, the hydrophobicity transfer speed and the asymptotic value of the contact 
angle decrease when the relative humidity increases. That is no matter whether the soluble 
substances are NaCl (Figure 9a), CaSO4 (Figure 9b), or sugar (Figure 9c). However, the 
characteristics of the hydrophobicity transfer with different kinds of soluble substances differ 
from each other when the relative humidity is the same. In Figure 9 (a), the hydrophobicity 
transfer speed and the asymptotic value of the contact angle decrease greatly when the relative 
humidity reaches values higher than 89%, thus 89% can be considered as the critical relative 
humidity for pollutants with NaCl. Similarly, it can be seen in Figure 9 (b) that the critical 
relative humidity for pollutants with CaSO4 is 95%. Likewise, the critical relative humidity for 
pollutants with sugar is 60%. When the relative air humidity rises above the critical value, an 
obvious damping phenomenon can be seen on the surface of pollutants, and the hydrophobicity 
transfer speed and the asymptotic value of the contact angle decrease greatly. 
 The difference of the critical relative humidity of NaCl, CaSO4 and sugar can also be 
explained by the theory of hygroscopicity. The water absorption per unit mass of different 
pollutants is shown in Figure 10. It can be seen that pollutants containing NaCl and sugar have 
the highest hygroscopicity being able to absorb much more water than pollutants containing 
CaSO4 and no soluble substances, even at low relative humidity like 75%. It can be concluded 
that the hygroscopicity of pollutants and the hydrophobicity transfer characteristics are closely 
correlated. The higher the hygroscopicity of pollutants, the lower the hydrophobicity transfer 
speed and the smaller is the asymptotic value of the contact angle. Meanwhile, the critical 
relative humidity decreases as well the higher the hygroscopicity of pollutants is. 
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C. Influence of pollutants  
 Under natural pollution conditions, the components of pollutants in different areas differ 
significantly from each other. When being polluted with different kinds of non-soluble 
pollutants, the hydrophobicity transfer characteristics of HTV-SR may be quite a bit different. 
The process of hydrophobicity transfer was measured on the surface of HTV-SR samples 
which were polluted with 10 different kinds of pollutants. Some pollutants were natural 
pollution accumulated on insulators near the sea side and near a steel plant; powdered coal, 
charcoal, zinc oxide, aluminum, cement, and silica were used to represent possible natural 
pollutants as well as kaolin and kieselguhr. The coal and charcoal dust could represent 
pollutants originating from nearby coal burning factories or forest fires. Metal oxides, cement 
and silica represent pollutants originating from various industrial processes, from a cement 
factory and from dust storms, respectively. 
 The results are shown in Figure 11. In each graph the curves for kieselguhr and kaolin are 
shown for comparison. In Figure 3(a), the hydrophobicity transfer characteristics are shown for 
HTV-SR samples coated with pollutants gained by scraping from insulators located near a steel 
plant, near the sea side or near a cement factory. Figure 11(b) shows the hydrophobicity 
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transfer characteristics when coal, charcoal and aluminum powder were used as the pollutants. 
In Figure 11(c), the hydrophobicity transfer onto two other inert materials, i.e. zinc oxide and 
silica, is shown. 
 It is clear from Figure 11 that several of the inert pollution materials behaved in a manner 
very similar to that of kieselguhr. All pollutants became more hydrophobic than kaolin in a 
significantly shorter time. Indeed, the curves of most of the materials reached their asymptote 
within 25 hours while the hydrophobicity transfer onto kaolin was completed not before 144 
hours. 
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Figure 11. The transfer of hydrophobicity for 10 types of naturalinert pollutants: (a) from insulators located within 
1000m from the sea side, a steel plant, and a cement factory, (b) coal, charcoal and aluminum powder, (c) zinc oxide 

and silica 
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