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Abstract: Obtaining an optimum solution in a deregulated generation expansion planning (GEP) 
using a mixed strategy game theory method has faced a computation problem. Therefore, this 
paper proposes a new method called the majority–dominant–mixed strategy (MDMS) game 
theory to obtain the optimum solution with an acceptable computation time. The MDMS is a 
social science optimization-based approach that combines a social science concept called the 
majority rule and the dominant strategy with the mixed strategy. The research results show that 
the MDMS saves computation time by reducing the matrix size, as shown in the reduced 
quadratic coefficient of the time complexity trend line. Compared with the mixed strategy, the 
MDMS obtains the optimum solution with a significant computation time reduction. The 
optimum solution of the levelized total cost obtained using the MDMS is similar to that obtained 
using the mixed strategy and lower than that of the improved genetic algorithm (IGA). The 
MDMS requires a computation time of 23.1 hours, while the mixed strategy requires nine days. 
The MDMS computation time only slightly differs from that of the IGA previously used in 
regulated GEP. 
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1. Introduction
The electricity industry is shifting from a regulated to a deregulated market, which has

prompted the research on generation expansion planning (GEP). Before the market change, the 
regulated electricity market is the basic model of the GEP. The shift to a deregulated market 
creates a new problem called deregulated GEP (DGEP) because the electricity industry is 
assumed to operate as a deregulated market[1]. 

In the conventional (regulated) GEP, the electricity market is a monopoly, which means a 
public utility owns all power plants. Therefore, there is no competition between power plants to 
obtain maximum profit. Because of the monopoly system, the electricity price is only defined by 
the utility. However, in the deregulated market, the electricity market is a competitive market, 
which means the power plants are owned by more than one generation company (Genco)[2]. 
Each Genco competes for its maximum payoff[3]. Under the deregulated market, the utility 
cannot define the electricity price because it is defined based on the Genco competition. Because 
of the market competition in the deregulated market, an optimization method representing the 
Genco competition mechanism is needed[4]. Game theory is one of the best optimization 
methods to solve the Genco competition problem[5]. In terms of solving the Genco competition, 
two factors should be considered in the game theory: the model's characteristics to get the optimal 
value and the computational burden. 

Based on the game model, game theory can be classified into two types: cooperative game 
and non-cooperative game[6]. In the cooperative game model, the decision-making process of 
each Genco is based on not only personal rationality but also collective rationality and social 
optimality; these are combined to gain better profits. In this game, there is a possibility of 
cooperation between Gencos to realize increased profits. Examples of cooperative game 
implementation include the power retailers' competition in a spot market[7] and competition on 
building a distributed heating network[8]. An optimum solution in the cooperative game has 
been found using the Nash bargaining model[6]. 
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Unlike in the cooperative game model, the decision-making process in the non-cooperative 
game model is based solely on personal rationality to maximize personal profit without 
considering cooperation with other Gencos[6]. Examples of non-cooperative games have been 
modeled in [9] and [10]. In [9], a non-cooperative game strategy was used to model the 
competition between wind power plants in a deregulated market by considering the ramping rate 
factor. In [10], a non-cooperative game strategy was used to model the effect of dynamic pricing 
in a deregulated market. 

 An optimum solution in non-cooperative game models can be found by using different 
models, such as the Stackelberg model[11], the Cournot model[5], and a simultaneous quantity 
model[1]. The Stackelberg model is a sequential quantity leadership model that involves a 
sequential scheme movement of all companies[11]. For example, Company 1 moves first and is 
followed by Company 2. To find the optimum solution in the Stackelberg model, [12] used the 
Lagrangian function, while [13] used a combination of the particle swarm optimization algorithm 
and nonlinear programming to find the optimum solution. 

The Cournot model is a simultaneous quantity model[5]. In this model, all companies are 
assumed to be moving simultaneously. Unlike in the Stackelberg, there is no order of company 
movement in the Cournot model. In [14], the optimum solution in the Cournot model was found 
using the determining-optimal-quantity algorithm, while in [15], the optimum solution was 
found using the generalized Nash equilibrium based on the Karush-Kuhn-Tucker conditions. In 
another research, the Gauss-Seidel iterative method was used to find the optimum solution[16]. 

Besides the Cournot model, there is another type of simultaneous model that does not use the 
Cournot mechanism, which is called the simultaneous quantity model. In this model, all 
companies simultaneously decide their strategy, and the optimum solution is found using a mixed 
strategy method[1]. In one study[1], a multi-objective function and a multi-period framework 
were combined into the game theory to optimize GEP in a deregulated market. The optimal 
solution in this model was found in the Nash equilibrium condition (NEC). To find the NEC, the 
research used a mixed strategy method. The computation time required in [1] was nine days due 
to the Nash equilibrium searching process. 

In addition to [1], another study [17] has also shown the extended computation time to be the 
disadvantage of using the mixed strategy method. In [17], the computation time increased in 
proportion to the increasing number of players and strategies. This was caused by the searching 
mechanism of the mixed strategy method to find the optimum solution in the NEC. The mixed 
strategy used the greatest probability value of each strategy in each player to find the NEC. 
Increasing the number of players and strategies increased the probability value sought. The 
statement on computation time disadvantage is also supported by the result of [18], which shows 
that computation time is the main problem in DGEP. Because of the computation time problem, 
implementing DGEP in big power systems is difficult. 

In [1] and [17], the computation time problem was caused by the Nash equilibrium searching 
process. A faster method to find the Nash equilibrium and consequently reduce the computation 
time is needed to solve the problem. Not only realizing a faster computation time but also keeping 
the optimum result is important. Therefore, this research focuses on developing a faster method 
to find the Nash equilibrium while maintaining the optimum result. 

In the game theory model, especially in the non-cooperative model, a dominant strategy is 
important for finding the NEC. The dominant strategy is a player's strategy that gives the best 
payoff, even when the other players change their strategies[19]. Rationally, every player will 
choose the strategy that gives the best payoff[20]. The location of the strategy that gives the best 
payoff is the location of the NEC. However, a problem may arise from the dominant strategy if 
the player does not have a dominant strategy or has more than one dominant strategy. This will 
result in a lack of a unique solution. No unique solution means that there is no Nash equilibrium 
or more than one Nash equilibria[21], and this is the disadvantage of using the dominant strategy. 
Thus, [1] used a mixed strategy rather than the dominant strategy to find the Nash equilibrium. 
However, the current study did not use the mixed strategy because of its disadvantage related to 
computation time. 
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Branching into the social science field has helped to identify a solution to this problem. Social 
science involves an organized study of relationships between macro variables, such as culture 
and society, and micro variables, such as human interactions[22]. An example of a social science 
topic of study is the majority rule in a democratic system. In the context of the current research 
topic, the majority-rule game is a game in which the optimum strategy is chosen based on the 
majority-rule. In other words, the strategy chosen by more than half of the players will be the 
optimum solution[23]. The majority rule is derived from the decision-making process in a 
democratic system[24]. The majority-rule division game was proved in [25] to be the simplest 
equilibrium that resulted in less computation time. 

By adopting this democratic concept, in the majority-rule game in [23], most players' strategy 
is set as an optimum solution. Another study [26] combined the majority rule with the bargaining 
set theory. The result of the combination was flexible majority rules[24]. The bargaining process 
can be used to decrease the game size[15]. The game size is proportional to the computation 
time. 

 On the other hand, another study has proved a sub-optimality in the majority-rule model, 
especially in a stochastically correlated environment[28]. In the study, the dominant strategy rule 
was better than the majority rule in the stochastically correlated environment. 

 
 

 

Figure 1. Novelty Offered by this Research 

By considering the pros and cons of the majority rule and the characteristics of the dominant 
strategy in terms of the Nash equilibrium, the current research proposes a new method that 
combines the dominant strategy and the majority rule with the mixed strategy. The combination 
of the dominant strategy and the majority rule resolves the lack of a unique solution while 
realizing less computation time, while the mixed strategy is used to maintaining the optimum 
result. In this research, the combination is called the majority–dominant–mixed strategy 
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(MDMS) game theory rule. Using the MDMS, the optimum strategy is obtained based on the 
location of the dominant strategy chosen by the majority (hereafter referred to as "the majority 
dominant strategy"). The computation time is directly proportional to the algorithm's complexity 
related to the matrix size[29], which can be represented by the time complexity[30]. The 
effective method to analyze the time complexity of an algorithm is the big-O notation[31]. 
Therefore, this research uses the big-O notation to analyze and compare the time complexity 
between the proposed method and the game theory mixed strategy.  

The purposes of this research are to create a new method to find the NEC based on a social 
science optimization-based approach, obtain the optimum solution, and solve the computation 
time problem in a deregulated market. The deregulated market is modeled as a non-cooperative 
game, and it is solved using a simultaneous quantity model. This research offers a novelty in 
creating a new method called the MDMS to obtain the deregulated GEP's optimum solution with 
acceptable computation time, as shown in Figure 1. The MDMS is proposed to fill the research 
gap on obtaining the deregulated GEP's optimum solution with acceptable computation time. It is 
hoped that by implementing this method, the optimum solution is obtained, and the computation 
time is reduced, making the game theory more viable for use on larger power systems. 

The MDMS was implemented in two case studies. The first was to analyze the time 
complexity of the proposed method, and the second was to prove the effectiveness of the 
proposed method in DGEP. The first case study consists of different scenarios, whereby all 
scenarios equally have four existing power plants but different numbers of candidate power 
plants, from 3 to 16. The numbers of power plants were different to analyze the impact of the 
number of power plant strategies on the computation time. Based on the first case study results, 
the big-O notation can be obtained.  

The second case study consists of 15 existing power plants and five candidate power plants. 
The case study has previously been considered in [32] and [1]. In [32], an improved genetic 
algorithm (IGA) was applied, considering a regulated market point of view. Later on, unlike in 
[32], a deregulated point of view was considered in [1], and a game theory mixed strategy was 
applied to solve the optimization problem. The effectiveness and validity of the method proposed 
in this research were assessed by comparing the obtained levelized total cost (LTC) and 
computation time with those of the game theory mixed strategy and IGA, as these methods 
considered similar case studies. 

 
2. Notation 

The notations used throughout the paper are stated below: 

Indices: 
i  the player number 
J the strategy number 
N the total number of players 
X the total combinations of power plant 
x the index of power plant combination 
m the total number of strategies for ith player 
t Years 

Constants: 
s strategy 
𝑆𝑆𝑗𝑗 the number of dominant strategies in j 
𝑆𝑆−𝑗𝑗   the number of dominant strategies located outside of j 

μi (σ) the player-ith payoff (US dollar) 
μi (σ (-i),sj

i ) the player-ith payoff for each strategy-jth without considering the player-ith 
strategy probability (US dollar) 
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𝜇𝜇𝑗𝑗
𝑖𝑖

 the player-ith payoff in strategy-jth (US dollar) 

∇  gradient function 

𝛻𝛻2 Hessian function 

𝛻𝛻 𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜇𝜇) the gradient of Lagrangian function 

𝛻𝛻2𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜇𝜇) the hessian of Lagrangian function 
 LOLP loss of load probability index 
 𝛽𝛽𝑖𝑖 the optimum payoff of player-ith (US dollar) 
 𝜎𝜎𝑗𝑗

𝑖𝑖 the strategy-jth probability from player-ith 
f(x) nonlinear function 
h(x), g(x) constrains of nonlinear function 
 𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜇𝜇) Lagrangian function 
 𝜆𝜆 the coefficient of h(x) in Lagrangian function 
 𝜇𝜇 the coefficient of g(x) in Lagrangian function 

Locdom
i the location of the ith player dominant strategy  

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑗𝑗𝑚𝑚𝑚𝑚  the location of the majority dominant strategy 

Px the cumulative probability 
Tx the duration of loss of load 
LTC levelized total cost (US dollar) 
Investmentt investment cost in tth year (US dollar) 
 O&Mt operation and maintenance cost in tth year (US dollar) 
Fuelt fuel cost in tth year (US dollar) 
r discount rate (%) 

 
3. Problem Formulation  

The shift of GEP from a regulated market to a deregulated market creates a new problem 
known as the DGEP problem, which features a computation time challenge. Therefore, a method 
that can be implemented in DGEP to create an optimum solution with an acceptable computation 
time is needed. This research aims to create a new method based on a social science optimization-
based approach that satisfactorily answers the defined problems. 

In [32], an IGA is proposed to solve the regulated GEP problem. The results showed that the 
IGA performed well, with an LTC of USD 45,053 million and a computation time of 13.3 hours. 
However, the method was adopted for a regulated market, so it cannot be used in DGEP. 
Therefore, [1] proposed a game theory mixed strategy to solve the DGEP problem and compared 
the results with the IGA's results. The results showed that the mixed strategy performed 
satisfactorily. Compared with the IGA, the mixed strategy produced a lower LTC (USD 43,718 
million), but its computation time (9 days) was much higher. This creates a computation time 
problem in DGEP. Therefore, the current study aims to create a new method based on a social 
science optimization-based approach to find the optimum solution in DGEP that requires a 
shorter computation time. To create this method, we combine the mixed strategy with a social 
science concept (majority rule) and a dominant strategy, forming a method we call the MDMS 
rule. 

The MDMS was implemented in a case study with 15 existing power plants and five candidate 
power plants. The same case study was used in [32] and [1]. Thus, the proposed method's 
effectiveness and validity were assessed by comparing the LTC and computation time with those 
of the mixed strategy[32] and IGA[1]. 

The first step of the MDMS implementation is modeling the MDMS into a non-cooperative 
game theory. Based on the MDMS modeling, the possibility and the concept of the MDMS 
implementation can be known. The next step is modeling the optimization algorithm based on 
the MDMS. By using the optimization algorithm, the time complexity of the MDMS and the 
optimum solution of DGEP can be obtained with feasible computation time. 
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A. Modeling the MDMS into Non-Cooperative Game  
In [1], a non-cooperative game theory problem was solved using a mixed strategy. In the non-

cooperative game theory, the optimum solution is found in the NEC. Each player has the 
maximum payoff in the NEC, so they do not change their decision [17]. The mixed strategy is 
used to find the optimal strategy of each player in the NEC. Each strategy from each player is 
given a probability value. The optimal strategy is the strategy with the highest probability value. 

The probability value is calculated based on the expected utility of each player. The expected 
utility is illustrated in Figure 2. To simplify the illustration, it is assumed that there are only two 
players in the game and that each player has only two strategies. The players represent power 
plants, i.e., a coal steam power plant and a gas turbine power plant, while strategies represent the 
investment decision of power plants (invest or not). The game represents the DGEP optimization 
process.  

 

 
As previously mentioned, there are two players: player A and player B. Player A has two 

strategies, i.e., S1 and S2, and player B has two strategies, i.e., s1 and s2. The probability of each 
strategy from each player has a specific value. PA is the probability of S1 chosen by player A, 
and (1 − PA) is the probability of S2 chosen by player A. PB is the probability of s1 chosen by 
player B, and (1 − PB) is the probability s2 chosen by player B. There are four alternative 
solutions in Figure 2 because there are two players, each of them having two strategies (22). 
Each of the alternative solutions has different payoffs for each power plant. Solution 1 has A11 
as a payoff for player A, and B11 as a payoff for player B. Solution 2 has A12 as a payoff for 
player A, and B21 as a payoff player B. Solution 3 has A21 as a payoff for player A, and B12 as 
a payoff for player B. Solution 4 has A22 as a payoff for player A, and B22 as a payoff for player 
B.  
 Expected utility is used by players to analyze the game situation and make a decision under 
uncertainty. There are two uncertainties in Figure 2: the strategies of other players and their 
strategies. For example, player A does not know which strategy is chosen by player B and which 
one of its strategies can give the maximum payoff. Player A uses its expected utility to know 
which one of its strategies can give the maximum payoff. Player A has two expected utilities: 
the expected utility when player B chooses s1 (A11 × PA + A21 × [1 − PA]) and the expected 
utility when player B chooses s2 (A12 × PA + A22 × [1 − PA]). The strategy of player A that 
gives the maximum payoff is the strategy that has the largest probability. In the NEC, regardless 
of the strategy chosen by player B, player A does not change its strategy. This condition creates 
an optimum strategy for player A. The NEC is met when the two expected utilities from player 
A have the same value. Equation (1) shows the NEC of player A. For player B, the mechanism 
of choosing the optimum strategy is similar to that of player A. The NEC of player B is met when 

    Player B 
Expected Utility 

Player 2    Strategy s1 s2 

   Probability PB 1-PB 

 Strategy Probability     

Player A 

S1 PA  
Solution 1 

A11, B11 

Solution 2 

A12, B21 

B11*PB + B21* 

(1-PB) 

S2 1-PA  
Solution 3 

A21, B12 

Solution 4 

A22, B22 

B12*PB + B22* 

(1-PB) 

Expected Utility Player A 
A11*PA+A21* 

(1-PA) 

A12*PA+A22* 

(1-PA) 
 

Figure 2. Illustration of the Expected Utility of Each Player[1] 
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two expected utilities from player B have the same value. Equation (2) shows that the NEC of 
player B. Using (1) and (2), the optimum strategy of each player can be obtained. 

𝐵𝐵11 ∗ 𝑃𝑃𝐵𝐵  +  𝐵𝐵21 ∗ (1 − 𝑃𝑃𝐵𝐵) − (𝐵𝐵12 ∗  𝑃𝑃𝐵𝐵 + 𝐵𝐵22 ∗ (1 − 𝑃𝑃𝐵𝐵)) = 0 (1) 
𝐴𝐴11  ∗ 𝑃𝑃𝐴𝐴 + 𝐴𝐴21 ∗ (1 − 𝑃𝑃𝐴𝐴) − (𝐴𝐴12 ∗ 𝑃𝑃𝐴𝐴 + 𝐴𝐴22 ∗ (1 − 𝑃𝑃𝐴𝐴)) = 0 (2)  

This study considers a test system with 15 existing power plants and 13 candidate power 
plants; therefore, solving the expected utility equation is more complicated. The expected utility 
equation problem can be solved using sequential quadratic programming (SQP) combined with 
a quasi-Newton method (QNM)[17]. The SQP-QNM produces the probability value of each 
player's strategy. The optimum solution is the strategy that has the largest probability value for 
each player[1]. This method requires transforming the expected utility equation into a nonlinear 
function that can represent the NEC. The transformation is performed using (3), (4), (5), and (6). 

𝑚𝑚𝑚𝑚𝑚𝑚 ∑ (𝑁𝑁
𝑖𝑖=1 𝛽𝛽𝑖𝑖 −  𝜇𝜇𝑖𝑖(𝜎𝜎)) (3) 

𝜇𝜇𝑖𝑖�𝜎𝜎−𝑖𝑖 , 𝑠𝑠𝑗𝑗
𝑖𝑖� −  𝛽𝛽𝑖𝑖  ≤ 0 (4) 

∑ (𝜎𝜎𝑗𝑗
𝑖𝑖 − 1𝑚𝑚

𝑗𝑗=1 ) = 0 (5) 
𝜎𝜎𝑗𝑗

𝑖𝑖 ≥ 0 (6) 
 

Where 
𝛽𝛽𝑖𝑖              = Player-ith optimum payoff  
𝜇𝜇𝑖𝑖(𝜎𝜎)         = Player-ith payoff  
𝜇𝜇𝑖𝑖�𝜎𝜎−𝑖𝑖 , 𝑠𝑠𝑗𝑗

𝑖𝑖� = Player-ith payoff for each strategy-jth without considering the 
strategy probability of player-ith  
𝜎𝜎𝑗𝑗

𝑖𝑖               = Probability of strategy-jth from player-ith 
N                = The number of all alternative strategies 

 

 

The NEC is met when the player payoff (μi(σ)) has a similar value with the optimum payoff 
of each player (βi). Therefore, (3) minimizes the difference between the optimum payoff and the 
player payoff. Because the player payoff is similar to or slightly different from the optimum 
payoff, the player does not change its strategy.  

Equations (4) and (6) show the inequality constraints. Equation (4) means that the optimum 
payoff of each player (βi) is greater than each player's payoff for each strategy without 
considering the strategy probability of other players (μi�σ−i, sj

i�). In other words, (4) creates a 
condition in which when a player changes its strategy, it does not produce a payoff greater than 
the optimum payoff, or when other players change their strategy, the optimum payoff of the 
player is not affected. Therefore, the player does not change its strategy. The other function of 
(4) prevents the optimum payoff from being negative, so the minimum value in equation (3) is 
zero. Equation (6) means that each player's probability must be a positive value. Equation (5) is 
an equality constraint that shows that the sum of each player's strategy probabilities is equal to 
one. 

In [1], (3) to (6) are formed based on all the alternative strategies. The test system in [1] 
comprises 15 existing power plants that have only one strategy (invest) and 13 power plants that 
have two strategies (invest or not). The total number of all alternative strategies is 8192 
(115 × 213 = 8192), and this resulted in a computation time of 9 days. To reduce the size of all 
alternative strategies, the current study uses the majority rule and the dominant strategy. 

The first step of reducing the size of all alternative strategies is to find each player's dominant 
strategy using (7). The second step is to find the location of the dominant strategy using (8). The 
location is known from the index (j) on the dominant strategy. The dominant strategy and the 
location are sought for each player. 

𝑑𝑑𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑 𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑑𝑑𝑥𝑥 𝜇𝜇𝑗𝑗
𝑖𝑖  (7) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑚𝑚𝑚𝑚
𝑖𝑖 = 𝑗𝑗 (8) 
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Once the dominant strategy location of each player is known, the next step is to find the 
majority dominant strategy's location. There are two types of majority dominant strategies: 
absolute majority and the relative majority[33]. The absolute and relative majorities were 
calculated by (9) and (10), respectively. If more than half the players choose the jth strategy, then 
the jth strategy is the absolute majority. If most players choose the jth strategy, but the number of 
players is less than or equal to half of the total number of players, then the jth strategy is the 
relative majority. Once the strategy is identified as the majority dominant strategy, the strategy's 
location is obtained using (11). 

𝑑𝑑𝑎𝑎𝑠𝑠𝐿𝐿𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 𝑚𝑚𝑑𝑑𝑗𝑗𝐿𝐿𝑠𝑠𝑚𝑚𝑑𝑑𝑠𝑠 = 𝑆𝑆𝑗𝑗  | 𝑆𝑆𝑗𝑗 > 𝑁𝑁
2
 (9) 

𝑠𝑠𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑚𝑚𝑟𝑟𝑠𝑠 𝑚𝑚𝑑𝑑𝑗𝑗𝐿𝐿𝑠𝑠𝑚𝑚𝑑𝑑𝑠𝑠 = 𝑆𝑆𝑗𝑗  | 𝑆𝑆𝑗𝑗 > (𝑁𝑁 − 𝑆𝑆−𝑗𝑗) (10) 
𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑗𝑗𝑚𝑚𝑚𝑚 = 𝑗𝑗                                           (11) 

 In the majority dominant strategy, not all players agree to invest. In the deregulated market, 
the investment decision of Genco cannot be forced. Therefore, this research combines the mixed 
strategy with the majority dominant strategy. Players that agree to invest have one strategy 
(invest). Players that do not agree to invest have two strategies (invest or not). For example, the 
majority dominant strategy is strategy no. 5000 (the total number of strategies is 8192 (115 × 
213 = 8192)). In strategy no. 5000, 24 players agree to invest, and four players refuse to invest. 
Therefore, all alternative strategies that are used in equations (3) to (6) total 16 (124 × 24 = 16). 
Compared with the mixed strategy method in [1], in which 8192 strategies are used, the majority 
dominant strategy uses 16 strategies. The number of strategies used shows that the majority 
dominant strategy's computational load is lighter than that in the mixed strategy. 

After the reduction process using the majority rule and dominant strategy, the next step is to 
find the optimum payoff of each player (𝛽𝛽𝑖𝑖) and the probability value of each player strategy 
(𝜎𝜎𝑗𝑗

𝑖𝑖). The optimum payoff and the probability value are calculated using the SQP-QNM. The 
SQP solves a nonlinear optimization problem using Lagrangian[1]. The nonlinear optimization 
problem is shown in (12) [34]. 

𝑀𝑀𝑚𝑚𝑚𝑚 𝑓𝑓(𝑥𝑥) (12) 
with constraints: 
ℎ(𝑥𝑥) = 0 
𝑠𝑠(𝑥𝑥) ≥ 0 
Equation (12) is similar to equations (3) to (6), which consist of objective function (min f(x)), 

inequality constraint (g(x)), and equality constraint (h(x)). The nonlinear optimization problem 
is solved using the Lagrangian method, as shown in (13). 

 𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜇𝜇) = 𝑓𝑓(𝑥𝑥) −  𝜆𝜆 ℎ(𝑥𝑥) −  𝜇𝜇 𝑠𝑠(𝑥𝑥) (13)  
The values of x, λ, and μ that produce the minimum L can be calculated using (13). The 

values are searched using the QNM. To update the values of x, λ, and μ, the QNM uses the 
Hessian and gradient[35]. Using the QNM in (13) requires (14) to find the minimum L. The 
minimum L is obtained when 𝛿𝛿𝑥𝑥 𝛿𝛿𝑥𝑥, 𝛿𝛿𝑠𝑠, and 𝛿𝛿μ are equal to zero or less than the tolerance 
value. 

�
𝛻𝛻2𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜇𝜇) 𝑁𝑁𝑇𝑇

𝜆𝜆 𝑁𝑁𝑇𝑇
𝜇𝜇

𝑁𝑁𝑇𝑇
ℎ 0 0

𝑁𝑁𝑇𝑇
𝑔𝑔 0 0

� �
𝛿𝛿𝑥𝑥
𝛿𝛿𝑠𝑠
𝛿𝛿𝜇𝜇

� = �
𝛻𝛻 𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜇𝜇)

ℎ(𝑥𝑥)
𝑠𝑠(𝑥𝑥)

� (14) 

where 
 NTh = 𝛻𝛻h(x) 
 NTg = 𝛻𝛻g(x) 

 
B. Constraints and Objective Function 

The constraints used in this research are energy production and loss of load probability 
(LOLP). The energy production constraint requires that the energy production is more than the 
energy demand and lower than the maximum production capacity of the power plants. The 
energy production constraint is shown in (15). The LOLP constraint relates to the reliability 
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requirement of a power system. The LOLP index can be calculated using (16), while the LOLP 
constraint is shown in (17). 

Max capacity factor ×  𝐶𝐶𝑑𝑑𝐶𝐶𝑑𝑑𝐿𝐿𝑚𝑚𝑑𝑑𝑠𝑠 𝑥𝑥 8760≥ 𝐸𝐸𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶𝑠𝑠𝐿𝐿𝑑𝑑𝑎𝑎𝐿𝐿𝑑𝑑𝑚𝑚𝐿𝐿𝑚𝑚 ≥ 𝐸𝐸𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑠𝑠𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑 (15) 
𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃 = ∑ 𝑃𝑃𝑥𝑥  . 𝑇𝑇𝑥𝑥

𝑋𝑋
𝑥𝑥=1  (16) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃 𝑠𝑠𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑 (17) 
 The objective function in this study is to find the minimum value of LTC which can be 
calculated using (18). 

𝐿𝐿𝑇𝑇𝐶𝐶 = � 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+ 𝑂𝑂&𝑀𝑀𝑡𝑡+ 𝐹𝐹𝐹𝐹𝐼𝐼𝐹𝐹𝑡𝑡
(1+𝑚𝑚)𝑡𝑡

𝐼𝐼

𝐼𝐼=0
 (18)  

 The LTC is inversely proportional to the Genco's payoff. The minimum LTC creates the 
maximum Genco's payoff. In addition, (3) to (6) need a payoff from each Genco. Therefore, (18) 
needs to be modified so that it can represent the Genco's payoff. Because the LTC is inversely 
proportional to the Genco's payoff, the modification to represent the Genco's payoff is shown in 
(19). The small number is needed to avoid infinity. Infinity occurs when the Genco has an LTC 
of zero. 

𝑃𝑃𝑑𝑑𝑠𝑠𝐿𝐿𝑓𝑓𝑓𝑓 = 1
𝐿𝐿𝑇𝑇𝐿𝐿+𝐼𝐼𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹 𝐼𝐼𝐹𝐹𝑚𝑚𝑛𝑛𝐼𝐼𝑚𝑚

 (19) 
 The relationship between the constraints and the objective function is modeled as a bi-level 
model (Figure 3). There are two levels in the bi-level optimization method; the first level is used 
for constraints checking, while the second level is used for optimizing the LTC objective 
function. The inputs in the first level are all of the alternative solutions. The checking process at 
this level uses the LOLP constraint. The aim of this level is to find the alternative solutions that 
are appropriate to the constraints criteria. The alternative solution that exceeds the constraints 
criteria is not used for the second level. 
 After the first level, the second level can be implemented using the LTC objective function. 
The inputs of this level are the outputs of the first level. The aim of this level is to find the 
solution that has the minimum LTC value and is set to be the optimum solution. 

  
Figure 3. Bi-level model 

C. Design of Optimization Algorithm 
The optimization was completed by following the steps presented in the flowchart in Figure 

4. The first step is to input the data and constraints, i.e., the existing power plants, candidate 
power plants, the techno-economic parameters of power plants, electricity demand, and LOLP 
constraint. Based on the entered data, the input data are read for the next processes, and m =1 
and j = 1 are set for indexing purposes, with m and j representing alternative strategy and 
alternative solution index, respectively.  
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Figure 4. Design of optimization algorithm 

 

The matrix combination formation for all alternative strategies is obtained from combining 
each power plant's strategy. For example, there are three existing power plants (E1 = 10 MW, 
E2 = 10 MW, and E3 = 10 MW) and four candidate power plants (C1 = 8 MW, C2 =8 MW, 
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C3 = 8 MW, and C4 = 8 MW). Each existing power plant only has one strategy (invest), and 
each candidate power plant has two strategies (invest or not). Based on the existing and candidate 
power plants' strategies, the total number of alternative strategies is 16 (13 × 24 = 16), as shown 
in Table 1. 

Table 1. Alternative strategies matrix  

Alternative The capacity of each power plant (MW) Total 
(MW) E1 E2 E3 K1 K2 K3 K4 

1 10 10 10 0 0 0 0 30 
2 10 10 10 0 0 0 8 38 
3 10 10 10 0 0 8 0 38 
4 10 10 10 0 0 8 8 46 
5 10 10 10 0 8 0 0 38 
6 10 10 10 0 8 0 8 46 
7 10 10 10 0 8 8 0 46 
8 10 10 10 0 8 8 8 54 
9 10 10 10 8 0 0 0 38 
10 10 10 10 8 0 0 8 46 
11 10 10 10 8 0 8 0 46 
12 10 10 10 8 0 8 8 54 
13 10 10 10 8 8 0 0 46 
14 10 10 10 8 8 0 8 54 
15 10 10 10 8 8 8 0 54 
16 10 10 10 8 8 8 8 62 

   
Table 2. Alternative strategies index 

Index 
(m) 

Alternative Total 
(MW) 

1 1 30 
2 2 38 
3 3 38 
4 4 46 
5 5 38 
6 6 46 
7 7 46 
8 8 54 
9 9 38 
10 10 46 
11 11 46 
12 12 54 
13 13 46 
14 14 54 
15 15 54 
16 16 62 

  
 The Genco role in the matrix formation is important because the number of Gencos and their 
strategy determine the number of alternatives. Suppose K1 changes its number of strategies from 
2 to 1 (invest) and K2 changes its decision and cancels its participation; then, the matrix will 
have four alternative strategies (13 × 11 × 22 = 4). 
 After the Gencos submit their alternative strategies and the matrix is obtained, the 
government utility indexes all alternative strategies, as shown in Table 2. The strategies index 
(m) ranges from 1 to k, with k being the maximum index.  
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 After the indexing process, the utility calculates and checks the LOLP of each alternative 
strategy using (15) and (16). If the LOLP of an alternative strategy is more than the pre-specified 
LOLP constraint, the utility moves the strategy to the unused strategy. If the LOLP of the 
alternative strategy is less than or equal to the LOLP constraint, the utility places the strategy in 
the alternative solution and assigns a new index (j). For example, from the 16 strategies in Table 
2, there are five strategies (1, 2, 3, 5, and 9) that violate the LOLP constraint, as shown in Table 
3. Therefore only 11 strategies are used by the utility as alternative solutions, and the strategies 
are assigned a new index, as shown in Table 4. 
 

Table 3. LOLP checking of each alternative strategy  
Index (m) Alternative strategy Total (MW) LOLP violation 

1 1 30 Yes 
2 2 38 Yes 
3 3 38 Yes 
4 4 46 No 
5 5 38 Yes 
6 6 46 No 
7 7 46 No 
8 8 54 No 
9 9 38 Yes 
10 10 46 No 
11 11 46 No 
12 12 54 No 
13 13 46 No 
14 14 54 No 
15 15 54 No 
16 16 62 No 

 
Table 4. Matrix combination of alternative solutions and their new index 

New 
index (j) 

Old  
index (m) 

Alternative 
solution 

The capacity of each power plant (MW) Total 
(MW) E1 E2 E3 K1 K2 K3 K4 

1 4 4 10 10 10 0 0 8 8 46 
2 6 6 10 10 10 0 8 0 8 46 
3 7 7 10 10 10 0 8 8 0 46 
4 8 8 10 10 10 0 8 8 8 54 
5 10 10 10 10 10 8 0 0 8 46 
6 11 11 10 10 10 8 0 8 0 46 
7 12 12 10 10 10 8 0 8 8 54 
8 13 13 10 10 10 8 8 0 0 46 
9 14 14 10 10 10 8 8 0 8 54 
10 15 15 10 10 10 8 8 8 0 54 
11 16 16 10 10 10 8 8 8 8 62 

 
 By using the alternative solutions with their new indices, as shown in Table 4, the LTC 
calculation was performed using (17). The LTC calculation was performed for each power plant 
in every alternative solution. The LTC represents the total cost of each Genco, which is inversely 
proportional to the payoff. Therefore, each Genco tries to minimize this cost. This means that 
the minimum cost creates the maximum payoff. The LTC is reformed to represent a payoff of 
each power plant using (18). Table 5 shows the matrix combination of alternative solutions with 
payoff value. 
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Table 5. Matrix combination of alternative solutions with payoff value 

New index (j) The payoff of each Genco (MW) 
Ea Eb Ec Ka Kb Kc Kd 

1 CEa1 CEb1 CEc1 CKa1 CKb1 CKc1 CKc1 
2 CEa2 CEb2 CEc2 CKa2 CKb2 CKc2 CKc2 
3 CEa3 CEb3 CEc3 CKa3 CKb3 CKc3 CKc3 
4 CEa4 CEb4 CEc4 CKa4 CKb4 CKc4 CKc4 
5 CEa5 CEb5 CEc5 CKa5 CKb5 CKc5 CKc5 
6 CEa6 CEb6 CEc6 CKa6 CKb6 CKc6 CKc6 
7 CEa7 CEb7 CEc7 CKa7 CKb7 CKc7 CKc7 
8 CEa8 CEb8 CEc8 CKa8 CKb8 CKc8 CKc8 
9 CEa9 CEb9 CEc9 CKa9 CKb9 CKc9 CKc9 
10 CEa10 CEb10 CEc10 CKa10 CKb10 CKc10 CKc10 
11 CEa11 CEb11 CEc11 CKa11 CKb11 CKc11 CKc11 

 
The majority dominant strategy was searched using (7) to (11) based on the value in Table 5. 

The payoffs of the alternative solutions for the Gencos are compared to determine the location 
of each Genco strategy that produces the maximum payoff. Suppose that the maximum payoff 
of Ea is in strategy 6 (CEa6), the maximum payoff of Eb is in strategy 6 (CEb6), the maximum 
payoff of Ec is in strategy 6 (CEc6), the maximum payoff of Ka is in strategy 3 (FKa3), the 
maximum payoff of Kb is in strategy 9 (FKb9), the maximum payoff of Kc is in strategy 6 
(FKc6), and the maximum payoff of Kd is in strategy 6 (FKd6). By using (9), strategy 6 can be 
identified as the absolute majority dominant strategy. Table 6 shows the absolute majority 
dominant strategy. 

 
Table 6. The absolute majority dominant strategy 

New 
index (j) 

Alternative 
solution 

The capacity of each power plant (MW) Total 
(MW) E1 E2 E3 K1 K2 K3 K4 

6 11 10 10 10 8 0 8 0 46 
 

The utility informs each Genco of the absolute majority dominant strategy as a temporary 
optimum solution, and then, each Genco searches their optimum solution based on the absolute 
majority dominant strategy (strategy 6). The optimum solution of each Genco is found in the 
NEC based on strategy 6. The first step of searching the NEC is to create a matrix combination 
based on each Genco's decision regarding strategy 6. Five Gencos (E1, E2, E3, K1, and K3) 
agree to invest. Therefore, the five Gencos only have one strategy (invest) because they have 
obtained the maximum payoff. For the rest of Gencos that do not agree to invest, they have an 
opportunity to recalculate their strategy. Therefore, these Gencos have two strategies (invest or 
not). This situation creates 4 (14 × 22 = 4) alternative strategies, as shown in Table 7. 

 
Table 7. The new matrix combination based on strategy 6 

Alternative 
solution 

The capacity of each power plant (MW) Total 
(MW) E1 E2 E3 K1 K2 K3 K4 

1 10 10 10 8 0 8 0 46 
2 10 10 10 8 0 8 8 54 
3 10 10 10 8 8 8 0 54 
4 10 10 10 8 8 8 8 62 

 
Based on Table 7, the probability of each strategy for every GenCo is searched using the 

mixed strategy method (equations (3), (4), (5), (6), (12), (13), and (14)). Assume the mixed 
strategy method results show that E1, E2, E3, K1, K2, and K3 decide to invest and that K4 
refuses to invest, then the utility checks the LOLP violation. If the LOLP is not violated, the 
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results are set as the optimum solution. If the LOLP is violated, the utility erases strategy 6 from 
Table 5 and searches the new majority dominant strategy based on the new Table 5 (without 
strategy 6). After the new majority dominant strategy is found, the next processes are repeated 
to find the optimum solution using the mixed strategy method until the LOLP is not violated. 

After the first-year optimum solution is obtained, all the processes to find the optimum 
solution are repeated until the planning period ends. The existing power plants in the (y+1)th year 
use the optimum solution in the yth year, while the candidate power plants are the same. 
 
D. Time Complexity Analysis 

The time complexity was analyzed using the big-O notation. The big-O notation is an 
effective method to analyze the time complexity of an algorithm or method[31]. The big-O 
notation calculation can be implemented stepwise or by using a practical approach, i.e., running 
the method code using different test system sizes and making a graph of computation time vs. 
test system size[36], [37]. From the graph, the big-O notation for the method can be obtained. 

Previous works have categorized the big-O notation into some classes, such as: O(1) = 
constant, O(log n) = logarithmic, O((log n)c) = polylogarithmic, O(n) = linear, O(n2) = quadratic, 
O(nc) = polynomial, and O(cn) = exponential[31], [37]–[39]. Figure 5 shows the illustration of 
a graph of computation time vs. test system size with the big-O notation. 

 

 
Figure 5. Illustration of a graph of computation time vs. test system size with the big-O 

notation[40] 
 

This research uses the practical method to obtain the graph and the big-O notation. The 
proposed method (MDMS) was implemented using the first case study with various numbers of 
power plant strategies to obtain the graph of computation time vs. test system size. Based on the 
graph, the big-O notation of the MDMS can be obtained. 

For comparison, the method in [1] was run using the first case study with various numbers 
of power plant strategies. The graph obtained from the method was compared with the MDMS 
graph. Based on the comparison, the effectiveness of MDMS to reduce the computation time can 
be proved. 
 
4. Case Study  

Two case studies were considered in this study. Each case study has its purpose. The first case 
study was used to analyze the time complexity of the proposed method. The second case study 
was used to prove the effectiveness of the proposed method in DGEP. The method was built and 
solved with MATLAB R2014A on a 3.5 GHz laptop with 4 GB RAM. 
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A. The First Case System 
The first case study was used to analyze the time complexity of the proposed method. The case 

study consists of 14 scenarios, whereby all scenarios equally have four existing power plants but 
different numbers of candidate power plants, from 3 to 16. The first scenario, scenario 1, consists 
of four existing power plants and three candidate power plants. In contrast, the last scenario, 
scenario 14, consists of four existing power plants and 16 candidate power plants. The numbers 
of power plants were different to analyze the impact of the number of power plant strategies on 
the computation time.  

The existing power plant data are shown in Table 8. The number and type of candidate power 
plants for each scenario are presented in Table 9, while the techno-economy parameters of the 
candidate power plants are listed in Table 10. The peak demand for the case system is 50 MW. 

 
Table 8. Existing power plants of the first case study 

Power plant 
Capacity 

(MW) FOR 
Fixed costs 
(USD/kW) 

Operational costs 
(USD/kWyr) 

Diesel 5 0.09 35.34 704.18 

Diesel 5 0.09 35.34 704.18 

Diesel 16 0.09 35.34 704.18 

Diesel 10 0.09 35.34 704.18 

 
Table 9. The number and type of candidate power plants for each scenario 

Scenario Number of candidate power plants Total candidate 
power plants Coal steam PP Gas turbine PP Biomass PP 

1 1 1 1 3 

2 2 1 1 4 

3 2 2 1 5 

4 2 2 2 6 

5 3 2 2 7 

6 3 3 2 8 

7 3 3 3 9 

8 4 3 3 10 

9 4 4 3 11 

10 4 4 4 12 

11 5 4 4 13 

12 5 5 4 14 

13 5 5 5 15 

14 6 5 5 16 
 

Table 10. The techno-economy parameters of the candidate power plants 

Power Plant 
Cap. 

(MW) FOR 
Fix Costs 

(USD/kW) 
Operational Costs 

(USD/kWyr) 
Investment Costs 

(USD/kW) 
Lifetime 

(year) 
Coal steam 25 0.05 31.32 118.02 1400 25 
Gas turbine 15 0.023 11.64 196.87 1200 20 

Biomass 7 0.05 31.32 17.52 1400 20 
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B. The Second Case System 
The second case study was used to prove the effectiveness of the proposed method in DGEP. 

To prove the performance of the proposed model in terms of the computation time and the LTC, 
we present a case study similar to those in [32] and [1].  

 For the second test system, this study used the test system used in [1] and [32] with the data, 
as shown in Table 11, Table 12, and Figure 6. Table 11 presents the existing power plants and 
their techno-economic data. Table 12 shows the candidate power plants and their techno-
economic data. Figure 5 shows the forecasted peak demand. The discount rate is 8.5%. The 
LOLP constraint is 0.01. The discount rate and LOLP constraint used in this research are similar 
with the discount rate and LOLP constraint value used in [32] and [1].    

Table 11. Data of existing power plants [1], [32] 
Power plant Capacity 

(MW) FOR Fixed costs 
(USD/kW) 

Operation costs 
(USD/kWyr) 

Oil PP #1 200 0.07 27 210.24 
Oil PP #2 200 0.068 27 236.52 
Oil PP #3 150 0.06 25.56 262.8 
LNG_GT PP #1 50 0.03 54.24 376.68 
LNG_GT PP #2 50 0.03 54.24 376.68 
LNG_GT PP #3 50 0.03 54.24 376.68 
LNG_CC PP #1 400 0.1 19.56 332.88 
LNG_CC PP #2 400 0.1 19.56 350.4 
LNG_CC PP #3 450 0.11 24 306.6 
Coal PP #1.1 250 0.15 79.8 201.48 
Coal PP #1.2 250 15 79.8 201.48 
Coal PP #2 500 9 33.72 166.44 
Coal PP #3 500 8.5 33.72 131.4 
Nuclear PP #1 1000 9 59.28 43.8 
Nuclear PP #2 1000 8.8 55.56 43.8 

Table 12. Data of candidate power plants [1], [32] 

Power Plant Cap. 
(MW) FOR Fixed Costs 

(USD/kW) 
Operation Costs 

(USD/kWyr) 
Investment Costs 

(USD/kW) 
Lifetime 

(year) 
OIL PP #1 200 0.07 26.4 183.96 812.5 25 
OIL PP #2 200 0.07 26.4 183.96 812.5 25 
OIL PP #3 200 0.07 26.4 183.96 812.5 25 
LNG_CC PP #1 450 0.1 10.8 306.6 500 20 
LNG_CC PP #2 450 0.1 10.8 306.6 500 20 
LNG_CC PP #3 450 0.1 10.8 306.6 500 20 
COAL PP #1 500 0.095 33 122.64 1,062 25 
COAL PP #2 500 0.095 33 122.64 1,062 25 
COAL PP #3 500 0.095 33 122.64 1,062 25 
PWR PP #1 1000 0.09 55.2 35.04 1,625 25 
PWR PP #2 1000 0.09 55.2 35.04 1,625 25 
PHWR PP #1 700 0.07 66 26.28 1,625 25 
PHWR PP #2 700 0.07 66 26.28 1,625 25 
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Figure 6. Forecasted peak demand [1], [32] 

 
5. Results and Analysis 

This research proposes a new method called the MDMS, which is based on a social science 
optimization-based approach to obtain the optimum solution and solve the computation time 
problem in a deregulated market. A time complexity analysis is needed to prove that the 
computation time problem is solved, and the MDMS implementation in DGEP is analyzed to 
obtain the effectiveness and performance of the MDMS. 

A. Time Complexity 
The time complexity was analyzed using the big-O notation, and the practical method was 

adopted to obtain the big-O notation. Using the results developed from the first scenario, the 
pattern of the proposed method computation time was obtained. Each scenario has a different 
number of power plants and a different number of strategies, as shown in Table 13.  
 

Table 13. The matrix size and the total combination of all alternative strategies for each 
scenario 

Scenario 

Existing power 
plants 

Candidate power 
plants Total of all 

alternative 
strategies 

The size of the 
all alternative 

strategies 
matrix 

The total 
combination 

of all 
alternative 
strategies 

Number 
of units 

Number 
of 

strategies 
Number 
of units 

Number 
of 

strategies 
1 4 1 3 2 8 7 × 8 56 
2 4 1 4 2 16 8 × 16 128 
3 4 1 5 2 32 9 × 32 288 
4 4 1 6 2 64 10 × 64 640 
5 4 1 7 2 128 11 × 128 1408 
6 4 1 8 2 256 12 × 256 3072 
7 4 1 9 2 512 13 × 512 6656 
8 4 1 10 2 1024 14 × 1024 14336 
9 4 1 11 2 2048 15 × 2048 30720 

10 4 1 12 2 4096 16 × 4096 65536 
11 4 1 13 2 8192 17 × 8192 139264 
12 4 1 14 2 16384 18 × 16,384 294912 
13 4 1 15 2 32768 19 × 32,768 622592 
14 4 1 16 2 65536  20 × 65,536 1310720 

 
From Table 13, the matrix size increases linearly with the number of scenarios. The number 

of power plants and strategies are the main contributors to the increasing matrix size and the total 
combination. The number of power plants affects the number of matrix rows, while the number 
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of alternative strategies affects the number of matrix columns. The number of matrix columns is 
equal to mn, where m is the number of strategies and n is the number of power plants. For 
example, scenario 2 has four existing power plants with one strategy on each existing power 
plant and four candidate power plants with two strategies on each candidate power plant. The 
number of matrix columns is 8 (4 existing power plants + 4 candidate power plants), and the 
number of matrix rows is 16 (14 × 24). 

The addition of the number of power plants and strategies has an impact on (increases) the 
matrix size of all the alternative strategies and the total combination. The increasing matrix size 
and the total combination cause the computation time to increase, as shown in Figure 7. Figure 
7 not only shows the computation time of the proposed method (MDMS) but also compares it 
with that of a previous method, the game theory mixed strategy. 

 
Figure 7. Computation time for each scenario 

The computation time pattern of the MDMS, i.e., quadratic (x2), is similar to that of the game 
theory mixed method. Therefore, the big-O notation for the MDMS and the game theory mixed 
strategy is O(n2). The MDMS and the game theory mixed strategy still have a similar time 
complexity (quadratic) because the MDMS also uses the mixed strategy to obtain the NEC after 
implementing the social science approach (majority dominant strategy rule). The implementation 
of the majority dominant strategy rule decreases the alternative strategy matrix size and the total 
combination. The reduction in the matrix size and the total combination significantly saves 
computation time, as shown in Figure 7. 

The constant of x2 in the MDMS is less than that in the game theory mixed strategy. This shows 
that the curve slope of the MDMS is lower than that of the game theory mixed strategy. The 
MDMS has a lower curve slope because, by the majority dominant strategy rule, the number of 
players and strategies can be reduced, which saves computation time. In this strategy, the 
optimization is performed based on the majority dominant strategy location, not using all 
alternative strategies. In contrast, in the mixed strategy, the optimization is performed using all 
alternative strategies. For example, using 15 power plants, with each of the power plants having 
two strategies (invest or not), 32,768 (215) alternative strategies are created. The mixed strategy 
requires using all the alternative strategies, while the MDMS requires about 16 alternative 
strategies and depends on the majority dominant strategy location. 

By using the equation based on the total computation time curves in Figure 7, it can be 
calculated the total computation time of the MDMS and game theory-mixed strategy for a larger 
power system, as shown in Table 14. Table 14 shows that the MDMS reduces the computation 
time by about 90% compared to the game theory-mixed strategy. The MDMS's computation time 
reaches 17.3 hours (0.72 days) when the total power plant is 116 power plants (100 existing power 
plants and 16 candidate power plants). In contrast, the game theory-mixed strategy produces a 
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computation time of 224.7 hours (9.36 days). When the total power plant is increased to 120 power 
plants (100 of existing power plants and 20 of candidate power plants), the MDMS produces the 
computation time of 4,419 hours (184.13 days), while the game theory-mixed strategy produces 
the computation time of 45,043 hours (1,876.79 days). This significant reduction proves that the 
MDMS is more superior to conduct the deregulated GEP than the game theory-mixed strategy. 
Therefore, the MDMS more feasible to be implemented in big power systems than the game 
theory-mixed strategy. 

 
Table 14. The comparison of total computation time between the MDMS and game theory-

mixed strategy 
Existing 

power plants 
(unit) 

Candidate 
power plants 

(unit) 

The total 
combination of 
all alternative 

strategies 

The total computation time 
The MDMS 

(hour) 
Game theory-
mixed strategy 

(hour) 
20 16           2,359,296               1.9              35.4  
40 16           3,670,016               4.4              68.4  
60 16           4,980,736               7.7            111.0  
80 16           6,291,456              12.0            163.1  

100 16           7,602,176              17.3            224.7  
20 18           9,961,472              29.2            359.8  
40 18         15,204,352              66.7            770.5  
60 18         20,447,232            119.5         1,334.0  
80 18         25,690,112            187.6         2,050.2  

100 18         30,932,992            270.9         2,919.1  
20 19         20,447,232            119.5         1,334.0  
40 19         30,932,992            270.9         2,919.1  
60 19         41,418,752            483.4         5,115.1  
80 19         51,904,512            757.0         7,921.9  

100 19         62,390,272         1,091.7       11,339.5  
20 20         41,943,040            495.7         5,240.9  
40 20         62,914,560         1,110.0       11,526.4  
60 20         83,886,080         1,968.7       20,255.2  
80 20       104,857,600         3,071.7       31,427.5  

100 20       125,829,120         4,419.0       45,043.0  
 

B. MDMS Implementation in DGEP 
To measure the performance and effectiveness of the MDMS in DGEP, the MDMS was applied 

in the second case study. The second case study has been previously solved using the game theory 
mixed strategy[1] and IGA[32]. Therefore, the effectiveness and validity of the MDMS can be 
obtained by comparison with the game theory mixed strategy and IGA.  

Figure 8 compares the optimization results of the MDMS, game theory mixed strategy, and 
IGA. In the figure, GT MDMS represents the MDMS, GT Mix represents the mixed strategy, and 
IGA represents IGA. The results of the MDMS and mixed strategy are similar in total capacity, 
while the IGA gives a significantly higher total capacity. The total capacity affects the LTC. From 
this, it can be determined that the MDMS produces a lower LTC than that of the IGA. Considering 
that the total capacity of the MDMS is similar to that of the mixed strategy and lower than that of 
the IGA, the MDMS is valid and produces more economical results. 
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Figure 8. Comparison of the results of game theory majority with [1] and [32] 

 
 To determine the effectiveness of the MDMS, its LTC and computation time need to be 

compared with those of the mixed strategy and IGA. The LTC of the MDMS in the period of 
1996–2020 is USD 43,718 million, and the computation time is 23.1 hours, while the mixed 
strategy generated an LTC of USD 43,718 million with a computation time of about nine days[1], 
and the IGA generated an LTC of 45,053 million with a computation time of about 13.3 hours[32]. 
Figure 9 and Figure 10 show comparisons of the LTC and computation time, respectively. 

 

 
Figure 9. Levelized total cost comparison of the game theory dominant strategy, game 

theory mixed strategy, and IGA 

If the IGA optimization result is used as the basis, the percentage of the LTC and computation 
time of the three methods can be obtained, as shown in Figure 9 and Figure 10. The MDMS 
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generated better LTC than the IGA. The LTC of the MDMS is 2.96% lower than that of the IGA 
because the IGA uses a stochastic approach, while the MDMS seeks the optimal solution by using 
all combination alternative solutions. In addition, the MDMS LTC value is similar to that of the 
mixed strategy. This result shows that combining the majority rule and the dominant strategy with 
the mixed strategy yields economical results. The first aim of this research, the combination of 
the social science approach (majority rule and dominant strategy) with the mixed strategy gives 
economical results, is accomplished. 

 
Figure 10. Computation time comparison of the game theory dominant strategy, game theory 

mixed strategy, and IGA 

 

Besides affecting the LTC, the optimization mechanism of the three methods also affects the 
computation time. The IGA has the lightest computational load among the three methods because 
it uses a stochastic approach; therefore, it does not calculate the LTC for all alternative solutions. 
The mixed strategy has the heaviest computational load because of the probability searching 
process for each strategy. The computation time using the MDMS is longer (74%) than that of the 
IGA. Although the percentage increment appears high (74%), the computation time in the MDMS 
is acceptable (23.1 hours) and is much less than that of the mixed strategy. The computation time 
using the MDMS is only 10.69% of that required by the mixed strategy. This is due to the 
reduction process of the matrix combination size using the majority rule and dominant strategy. 
This computation time's reduction is in line with the results on the time complexity sub-section. 
In the time complexity sub-section, the MDMS reduces the game theory-mixed strategy's 
computation time by about 90%. 

The LTC and computation time comparison shows that the MDMS presents economical results 
and can significantly speed up the computation time in DGEP. Thus, the MDMS is effective and 
feasible for solving the DGEP problem. By using the MDMS, the computation problem in [1] can 
be solved while maintaining optimal result. Therefore, the MDMS more viable to be implemented 
in big power systems. 
 The optimization results are validated by referring to the LOLP index. Figure 11 shows that 
the LOLP index of this research result is appropriate with the LOLP constraint (≤1%). Therefore, 
the result is valid. 
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Figure 11. The LOLP index of the test system 

6. Conclusion 
This study proposes a novel social science optimization-based method, called the MDMS, to 

obtain the optimum solution and solve the computation problem in DGEP. The MDMS combines 
a social science concept called the majority rule and the dominant strategy with the mixed 
strategy method. The MDMS finds the NEC by adopting the democratic concept of the majority 
rule. By adopting the democratic concept, the optimum solution in DGEP can be achieved with 
a faster computation time. 

Implementing the democratic concept of the majority rule saved significant computation time. 
The MDMS saved the computation time by reducing the matrix size of all the alternative 
strategies and the total combination, as shown in the reduced quadratic coefficient of the time 
complexity trend line. 

The MDMS was successfully implemented in DGEP. It created an optimum solution similar 
to that of the mixed strategy but with a faster computation time. The LTC obtained using the 
MDMS (USD 43,718 million) was less than that of the IGA (USD 45,053 million). The mixed 
strategy also generated an LTC of USD 43,718 million, but with a computation time of 9 days, 
while the MDMS required only 23.1 hours. The MDMS computation time was only slightly 
higher than that of the IGA (13.3 hours) when the latter was used in regulated GEP with the same 
case study used in this research.  

The results of the MDMS in both case studies show that the method is effective and feasible 
to solve the DGEP problem. The MDMS reduces the game theory-mixed strategy's computation 
time by about 90% in the small power system with seven power plants and in the big power 
system with 120 power plants. Therefore, the problem of DGEP implementation in big power 
systems can be solved by using the MDMS, 
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