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Abstract: The study is objected to investigate the response of a magnetorheological 
brake (MRB) system under thefree move inertial mass. The disk-type MRB comprises 
of a rotating disk immersed in magnetorheological fluids (MRFs) and surrounded by an 
electromagnet coil. The magnetized coil causes a solidification of the MR fluid so that 
the shear stress between the moving part and static part increases resulting in the 
decrement speed of the moving parts. The shear stress can be varied by applying 
different electric current to the coil. The study began with the part design using the3D 
modeling software, followingbythe magnetostatic analysis. The flux density across the 
magnetorheological fluid could be predicted through this finite element magnetic 
simulation. The quantity of magnetic flux was then used to predict the shear stress 
between static and moving parts. The fabricated MRB was integrated onto a test rig 
which employs load cell and speed sensor as well as completely instrumented with data 
acquisition.Since the MRB test rig performed a simple free rotation system, a linear 
second order differential equation was derived to model the stopping time and braking 
torque behaviors. The equation of motion was built in a Simulink model, and the 
simulation results were compared to the real measurement. The achievable braking 
torque was also presented based on theaverage value from the load cell. 
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1. Introduction 
 Vehicle performance, safety, and cost have been becoming a major focus in theautomotive 
industry for many years due its potential improvement. In terms of cost and safety, automotive 
engineers were struggled to develop high safety vehicle with low production cost [1,2]. A 
common effort to achieve this aim is by minimizing the number of parts used in avehicle. X-
by-wire is one of thetopics as a solution for this recent automotive issue. In a vehicle, x-by-
wire has been employed in several segments for example steering and braking systems. The x-
by-wire means the replacement of conventional mechanical apparatuses by electrical systems 
[3,4]. This discussion relates to the braking system as one of x-by-wire implementation that is 
so called brake-by-wire system. The primary goal of this study is the development of an 
actuator for abrake-by-wire system that utilizes magnetorheological fluids (MRFs). 
 The brake-by-wire system can be realized by replacing the mechanical components that 
connect the brake units on each wheel and the brake pedal with electrical parts. According to 
[5], the conventional hydraulic brake system has been firstly used on the brake-by-wire system 
that still utilized for failure safety requirements. All the brake control functions are 
implemented in one main electronic control unit. Meanwhile, the hydraulic system is required 
for security reasons to certify braking in case of the electrical failures [6]. There are several 
benefits of implementing thebrake-by-wire system. The delay between the time brake pedals 
pressed by the driver and the corresponding brake response of a conventional hydraulic brake  
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exhibits 200-300 ms[6]. The delay caused by the pressure growthis restricted by head losses 
within the hydraulic lines. The use of electric brake system has the potential to reduce this time 
delay drastically, resulting in a reduction in braking time and distance. Besides that, the 
properties and behaviors of the brake will be easy to adapt by simply changing software 
parameters and electrical outputs instead of adjusting mechanical components [7]. 
 MRFsare suspension containing fine iron particles of 1-20 microns in diameter dispersed in 
carrier fluids typically mineral oil with surfactant. The portion of magnetizable particles within 
the fluid carrier achieves 40% volume fraction[8]. When the fluid is subjected to a magnetic 
field, the magnetizable particles become magnetically dipoles and start to align along the fluxes 
as shown in Figure 1. The particles within the MRFs liquid carriedare trapped between the 
dipoles; hence, the movement of the fluid is restricted by particle chains thus increasing its 
viscosity. The fluid stiffens in the presence of magnetic fields in a fraction of milliseconds and 
behaves as a non-Newtonian Fluid. When the magnetic field is released, it displays a 
Newtonian fluid behavior. This irreversibility is often used for semi-active devices that need 
hydraulic and rheological behaviors such as semi-active vibration absorbers [9,10].  
 

 
Figure 1. Aligning process of magnetizable particle within MRFs 

 
 It is important to note that this work utilizes MRFs as part of the magnetorheological brake-
by-wire actuator. In fact, there is another type of fluids namely Electrorheological fluids 
(ERFs) which have the same principle work with the MRFs. ERFs is also a linear viscous 
liquid whose rheological behavior changes under the influence of an applied electric field, 
instead of a magnetic field. However, there are many drawbacks to ER fluid, including 
relatively small rheological changes and extreme property changes in temperature. Due to the 
drawbacks of ER fluids that require high control voltages, incapability in producing high shear 
forces and are susceptible to contaminants, they are not ideally suitable for automotive 
applications [10,11]. 
 The rapid response of the MRFs has made this smart fluid becoming most alternative 
choice in many applications that need interface electromechanically such as clutch, damper, 
brakes, haptic device and so on [12]. Among those application, MRB is considered to be one of 
most interested topic in magnetorheological devices fields. The application of MRFs in the 
braking system is a relatively recent topic. MRB implements the most basic working mode of 
the MRFs namely shear mode. The braking effect is taken from the benefit of field dependent 
viscosity changing which causes frictions between static and moving parts. In order to enhance 
the performance of MRB, many types of MRB have been proposed and evaluated such as disc-
type, drum-type and a combination of disc-type and drum-type MRBs as well as T-shaped 
MRBs [13,14]. In this work, disk-type MRB was proposed and investigated its performance. 
Some previous works on MR brake can be found in many literatures. Park et al. presented a 
design optimization procedure using simulated annealing combined with finite element 
simulations involving magnetostatic, fluid flow, and heat transfer analysis [4]. In 2008, The 
same group [6] continued their studies on MRFs selection for MRB application, magnetic 
circuit design and torque requirements for automotive application. Followed by Jolly et al.[10], 
in which the work focused on investigation of practical design criteria for MRB such as 
material selection, sealing, working surface area, viscous torque generation, and MRFs 
selection for basic automotive braking system. 
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Table 1. List of components 
Num Item Quantity Materials 

1 Wall / Body 2 pcs Mild steel 
2 Shaft 1 pcs Aluminium alloys A6xxx 
3 Disk 1 pcs Mild steel 
4 Bobin 1 pcs Aluminium alloys A6xxx 
5 Coil 1 set Bronze wire dia. 0.45 mm 
6 MRF unit volume MRF-132AD 
7 Deep groove ball bearing 2 pcs standard 
8 Oil seal 2 pcs standard 

 
  

Table 2. Properties of MRF-132AD 
Property Value/ limits 
Base fluid Hydrocarbon 

Operating temperature ,-40 to 130 (°C)' 
Density 3050 (kg/m3) 

Color Dark gray 
Weight percent solid 80.98 (%) 

Specific heat at 25 (°C) 800 (J/kg K) 
Thermal conductivity at 25 (°C) 0.25-1.06 (W/m K) 

Flash point >150 (>320) 
Viscosity (slope between 800 and 500 Hz at 40 °C) 0.112 ± 0.02 

k 0.269 (pa m/A0 
β 1 

 
 

 
Figure 3. Yield stress versus magnetic field strength 

 
 The static body (MRB wall) has the primary function of enclosing the MR fluid inside the 
brake prototype. FourViton lip seals are placedbeside these ball bearings to avoid a fluid 
leaking. For measurement needs, the static body is designed to be freely swinging relatives to 
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the rotor. In fact, the static wall is fixed to the load sensor during operations. The static body is 
supported by the two roller bearings that are mounted in the apparatus frame. On the other 
hand, the housing is used for attaching the electromagnetic coil as well as its base. 
 The samples of tested MR fluids in this study are hydro-carbon based MRF-132AD fluid 
manufactured by Lord Corporation. The properties of MRF-132AD can be seen on Table 2. 
This fluid has a nearly linear experimental stress rate curve that is well approximated by the 
Bingham model. The fluid type was chosen mainly due to its higher temperature resistance 
characteristics. The relationship between the shear yield stress and flux intensity of the MRF-
132AD is depicted in Figure 3. This relationship is useful for MRB torque estimation through 
theoretical analysis. 
 
3. Mathematical Model 
 The essential magnetic field dependent fluid characteristics of MR fluids can be described 
by a simple Bingham plastic model [8,15]. By using the constitutive equation for a Bingham 
plastic fluid, the total shear stress (τ) is stated as follows (Eq. 1), 
 

߬ ൌ ߬ு ൅ ሶߛ௣ߤ  (1) 
 
where ߬ு is the yield stress due to the applied magnetic field H, ߤ௣ is the constant plastic 
viscosity which is considered equal to the off state (no magnetic field) viscosity of the fluid, 
and ߛሶ  is the shear strain rate. Here, the plastic viscosity is defined as the slope between the 
shear stress and shear stress rate, which is the traditional relationship for Newtonian fluids. 
 Based on Eq. (1) and the given geometrical configuration shown in Figure 2, the braking 
torque which is caused by the friction on the interfaces between the MR fluid and the solid 
surface within the MR brake can be written as [4,8]; 
 

௕ܶ ൌ ܰߨ2 ׬ ௥೥ݎଶ݀ݎ߬
௥ೢ ൌ ܰߨ2 ׬ ൫߬ு ൅ ݎଶ݀ݎሶ൯ߛ௣ߤ

௥೥
௥ೢ  (2) 

 
whereN is the number of surfaces of the brake disk in contact with the MR fluid, r is the 
difference between inner and outer radii of the brake disk. The yield stress and shear strain rate 
are defined as; 
 

ሶߛ ൌ ௥ఠ
௛

and ߬ு ൌ  ఉ (3)ܪ݇
 
where ω is the angular velocity of the rotating disk, h is the thickness of the MR fluid gap, H is 
the magnetic field intensity, and k and β are constant parameters that approximate the 
relationship between the magnetic field intensity and the yield stress for the MR fluid. Then, 
Eq. (2) can be rewritten as; 
 

௕ܶ ൌ ܰߨ2 ׬ ቀ݇ܪఉ ൅ ௣ߤ
௥ఠ
௛
ሶ ቁ ௥೥ݎଶ݀ݎ

௥ೢ  (4)
  

 The applied magnetic field H can be generated inside the MR brake when current i is 
presented to the electromagnet coil as, 
 

ܪ ൌ ݅ߙ  (5) 
 

where ߙ is a proportional gain. By performing the integration in Eq. (3) and substituting Eq. 
(1), it can be understood that the resulting braking torque is contributed by two torque element. 
First is torque due to the yield stress induced by the applied magnetic field (TH) and another is 
torque due to the friction and viscosity of the MR fluid (Tμ). Both torque elements are 
expressed as follows [16], 
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ுܶ ൌ
ଶగ
ଷ
௭ଷݎሺߙ݇ܰ ൅ ௪ଷሻ݅ݎ ൌ ௜ܶ݅ (7) 

ఓܶ ൌ
గ
ଶ௛
௭ସݎ௣ሺߤܰ ൅ ሶߠ௪ସሻݎ ൌ ௩ܶߠሶ  (8) 

 
where ߠሶ  is the rotational speed of the disk. ݎ௪ and ݎ௭ are the inner and outer radii of the brake 
disk, respectively. In other way, the total braking torque outputted by the MR brake can be 
written as follows, 
 

௕ܶ ൌ ுܶ ൅ ఓܶ (9) 
 

 Next, the net or effective MRB dynamic response is derived by using the free body diagram 
as shown in Figure 4. During rotation, the inertial load will generate a constant loading or 
falling load as stated by Tan et al.[17]. Refer to Figure 3, the TL term is the loading torque that 
acts on the output rotor of the MR brake. This loading torque is generated due to the inertial 
effect of the rotating mass (m) about the radius (ri) of the load cylinder. The TL term is 
mathematically expressed in Eq. (8). Physically, the total output MR braking torque (Tb) is 
used to overcome the torque generated by the falling load (TL). This will result in a net torque 
which is used to decelerate the all inertial loads (J) coupled rigidly to the drum shaft of the MR 
brake. The falling load (TL) can be written as, 
 

௅ܶ ൌ  ଵ (8)ݎ݃݉
 
By observing the free body diagram, the MR effective braking torque is shown in Eq. (9) as 
follows. 
 

௕ܶ െ ௅ܶ ൌ െߙܬெோ (9) 
 

 In Eq. (9), the total moment of inertias of the MR brake (J) consists of rotor drum shaft, 
four bearing inner parts, a sprocket, a pulley and the inertial load. Therefore, the total output 
inertia (J) of the MR brake is expressed in the Eq. (10). 
 

ܬ ൌ ௥௢௧௢௥ܬ ൅ ௦௣௥௢௖௞௘௧ܬ ൅ ௣௨௟௟௘௬ܬ ൅ ௕௘௔௥௜௡௚௦ܬ4 ൅  ௟௢௔ௗ (10)ܬ
 
 The total moment inertia is approximately about 0.932 kg m2. By substituting Eqs. (7) and 
(8) into Eq. (9), the Eq. (11) can be written as follows. 
 

ଵݎ݃݉ െ ൫ ுܶ ൅ ఓܶ൯ ൌ ሷߠܬ  (11) 
 

 

 
Figure 4. The free body diagram of MRB apparatus 
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4. Magnetostatic Analysis 
 To minimize the error calculation of the MR brake, a simulation based finite element model 
(FEM) is developed using FEMM software (the software can be obtained freely from the 
internet). The finite element analysis in this study consists of a magnetostatics simulation 
which gives the pattern of magnetic flux density and field intensity. This is useful for the 
beginning step of design in which the designer can estimate the magnetic field distribution 
within the MR brake. Furthermore, there is no record from the previous works that reported 
about real measurement of flux density within the MRB. This fact indeed one of limitation in 
MRFs based device design. Therefore, the magnetostatic simulation is very useful at the initial 
stage of MRB design. The value of flux density obtained from the simulation can then be used 
for theoretical prediction of the braking torque. 
 The first step in the finite element modeling is to define the brake geometry. Since the 
problem is axisymetric, meaning that the geometry, material properties and all loads are all 
consistent along the tangential direction, only the cross-sectional is modeled [4]. This way, the 
solution becomes a two-dimensional problem, allowing the use of FEMM plane elements. The 
method reduces the computational cost of each simulation. On the preliminary stage of 
simulation, the material assignment should be done carefully. In this case, the magnetic 
properties of the raw materials used in the MRB have been provided in the FEMM except 
MRF-132AD properties. The nonlinear magnetic saturation behavior of the MRFs can be 
referred to the Figure 5. 
 

 
Figure 5. Flux density versus field intensity of MRF-132AD 

 
 Figures 6 and 7 present the preliminary result of the finite element simulation.Figure 6 
shows the magnetic flux lines distribution in disk-type configuration. The lines represent the 
distribution of magnetic flux covered area within the MR brake. From the figure, the gap 
around the drum circumference can be influenced well by the electromagnet coil. The result is 
simulated based on 1 Ampere of applied electric current to the coil. From the figure, it can be 
seen that the flux lines become weaker when it is far from the magnet source. The color line 
shows the different value of the flux density. In that area, the Relatively Moveable Poles 
(direct-shear modes) of magnetorheological fluid are utilized because of the high concentration 
of the flux line. 
 The finite element simulation presents the magnetic flux density in effective braking area. 
The magnetic flux density is measured in Tesla (T). This parameter will influence the magnetic 
shear stress within the magnetized area. The more current applied to the coil, the bigger the 
magnetic flux density is produced. By applying 1 A DC current, the pattern of flux density 
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value in MR fluids region is shown in Figure 7. It can be concluded that the most effective area 
of the designed MR Brake is in radial side better than annular area. 
 

 
Figure 6. Flux lines distribution at 1 A current applied 

 

radial 

annular 

 
Figure 7. Flux pattern within the MRFs gap 

 
5. Testing Facility 
 Figure 8 illustrates the MR brake test rig facility. An AC motor is coupled to the input shaft 
or rotor of the MR brake via an A-type V-belt. The belt is tensioned to drive the rotating 
system until reaching the desired velocity and is released when the electric current is applied. 
The housing of this MR brake is coupled to a load cell via an arm which has the length of 238 
mm. In this equipment, the load cell is employed for braking torque measurement. A speed 
sensor that commonly used as ABS speed sensor is utilized for measuring drum rotational 
speed. The MR brake test rig is equipped with an I/O device for data processing. The 
Integrated Measurement and Control (IMC) device provides signal processing of the sensory 
system. These signals are digitally processed and stored in a personal computer using FAMOS 
control software. IMC device is connected to the personal computer using NetBEUI protocol. 
A DC power supply manufactured by GW-INSTEK is used for supplying static electric 
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Figure 11. Responses of stopping time in various currents 

 

 
(a). Applied current 0.5 Amp     

 

 
(b) Applied current 1 Amp 
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(c) Applied current 1.5 Amp 

 

 
(d) Applied current 2 Amp 

Figure 12. Comparison between simulation and experiment results of stopping time 
 

7. Braking Torque Achievement 
 In this section, the behavior of the MRB torque responses are studied in order to know 
capability the of the MRB in generating torque. The torque recorded by the load cell is the total 
torque response generated by the MRB. The experimental results of retarding torque in time 
domain are displayed in Figure 13. From the figure, it can be noted that to get the shorter 
stopping time in constant inertial load which has initial rotating speed, the higher torque should 
be applied. On the other way, by increasing current applied to the MR brake coils, the bigger 
braking torque can be obtained. This fact agrees with the velocity response, in which the higher 
electric current allows the MRB to generate larger MR effective braking torques to decelerate 
the loads more rapidly. The average braking torque of each current supplied is also calculated. 
The relation between the average braking torque and current is shown in Figure 14. From the 
figure, it can be seen that the torque increases gradually as the increasing current. 
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Figure 13. Braking torque in time domain 

 

 
Figure 14. Average braking torque in various applied currents 

 
8. Conclusion 
 A MRBtest rig whichwas instrumented with several sensors has been developed. The 
mathematical model of the braking system has also been derived based on the free body 
diagram. To study the influence of electric current to the magnetic flux, the finite element 
model simulation was performed using FEMM. From this modeling, the behaviors of magnetic 
flux lines, intensity and density have been obtained. The MRB behavior was studied in this 
paper through simulation and experimental works. By using the energized MRB to overcome 
the loading torques and inertias, the velocity and torque responses of the MRB could be 
measured by the speed and load sensors respectively. In this work, the simulation results of 
velocity responses have been compared with the experimental results. The closeness of the 
results indicated that the mathematical models of braking system were validated. Generally, it 
can be concluded that the increasing current applied to the MRB coils will shorten the stopping 
time as the effect of the increasing braking torque. 
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