
 International Journal on Electrical Engineering and Informatics - Volume 13, Number 4, December 2021

Real-time Human Tracking System using Histogram Intersection Distance
in Firefly Optimization Based Particle Filter

Devira Anggi Maharani, Carmadi Machbub, Lenni Yulianti, and Pranoto Hidaya Rusmin

School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
deviraanggi@students.itb.ac.id, carmadi@lskk.ee.itb.ac.id, lenni@lskk.ee.itb.ac.id,

pranoto@lskk.ee.itb.ac.id

Abstract: Real-time human tracking in a video have numerous applications. For security and
surveillance application, the tracking system with PTZ (Pan, Tilt, and Zoom) camera is expected
to track an object correctly regardless of the object orientation. Numerous studies reported that
Particle Filter (PF) is reliable for color object tracking. However, the PF algorithm still suffers
from impoverishment and degeneration in the resampling process. These problems can be
resolved by combining the PF with Firefly Optimization (FO) in the resampling process. This
research proposes the use of Histogram Intersection distance to build a likelihood function in PF
to achieve real-time implementation. The Firefly Optimization Algorithm-based Particle Filter
(FOAPF) with Histogram Intersection distance was compared to FOAPF with Bhattacharyya
distance, resulting in lower RMSE (Root Mean Square Error) in tracking TB datasets. The result
shows that when the Histogram Intersection distance was implemented, a faster average time of
1.8 ms was achieved than 1.9 ms when using Bhattacharyya distance. It shows the time result
slightly different. The FOAPF with Histogram Intersection distance results in the TB datasets
perform a low RMSE of 4.96 and 12.07, and private datasets show a low RMSE of 16.92 and
8.80, with the real-time implementation of 30 FPS and 50 particles. The comparison presents the
successful implementation of the proposed method as a tracker to enhance human movement
tracking with real-time implementation.

Keywords: Particle Filter, Histogram Intersection Distance, Firefly Algorithm, Real-time Human
Tracking

1. Introduction
The use of a PTZ camera in surveillance and security systems is increasing in popularity.

This PTZ camera has a limited field of view (FOV) when it zooms into an object to generate a
high frame per second (FPS), which becomes very important. The real-time implementation
depends on the FPS result, and we know that the visual-based moving object tracking system
became a research topic deserving more exploration. Nowadays, many popular tracking methods
have been developed, such as [1][2], the recursive filter that measures the state of each time step
to determine the location of a moving object. Even recursive filters use sequentially processed
data rather than data stored in a data set. One approach for resolving this issue is the use of PF
[3]. Numerous studies reported that PF is reliable for color tracking [4]–[6]. The Particle Filter
variation of the Kalman Filter [7] approach [3] deals with nonlinear problems and non-gaussian
distributions [5]. The use of color features has been reported by several studies [8]–[10]. The
color feature is more commonly employed as a target observation model because it is faster to
calculate and resistant to target distortion, rotation, and partial occlusion. As an example, a study
mentioned in a 2002 lecture note [11] established a target distribution with HSV (Hue,
Saturation, Value) color space for multitarget tracking. However, the computational process of
PF is high. High accuracy in PF can be accomplished by increasing the number of particles,
which causes high-cost computational activity[12]. Therefore, there is an opportunity for
improvement of the PF in using less particle distribution.

Despite the success of the application, especially in visual tracking fields, the PF algorithm
still suffers from degeneracy and impoverishment issues [13]–[15]. Where resampling is
intended to solve the problem of degeneracy, however, it also causes sample impoverishment.
When impoverishment of sample appears, it is very dominant on the PF algorithm to provide the

 Received: August 17th, 2020. Accepted: October 13rd, 2021
 DOI: 10.15676/ijeei.2021.13.4.7

853

correct target state information. In the resampling phase, the K-Means machine learning
clustering algorithm picks one particle from each cluster as the most important particle. [16].
This study [17] improved their samples by categorizing the particles according to their weights.
Using adaptive fission PF and the solution factor, this study [18] increased particle diversity, the
Auxiliary Particle Filter (APF) introduces resampling with the particle index as an additional
variable [19]. The resampling procedure was the subject of these studies. However, the issue of
sample degradation has not been entirely resolved.

The development of optimization algorithms has accelerated in recent years, and they have
been successfully applied to a variety of optimization issues. Adopt Particle Swarm Optimization
(PSO) [20], GA (Genetic Algorithm), Nomadic People Optimizer[21], Firefly algorithm [22],
and Global-best Local Neighbourhood oriented Particle Swarm Optimization (GbLN-PSO) [23]
used to solve optimization issues with attempting to identify the most optimum point by adjusting
parameters. Previous researches stated that the Firefly Algorithm outperforms both PSO and GA
because it gives better and faster convergence to optimal conditions [24]. Since the advent of
this algorithm, it has succeeded in solving optimization problems, such as structural
optimization, image compression, and feature assortment [25]–[30].

Several previous studies proposed the Firefly algorithm to improve the Particle filter
algorithm. The study in [22] proposed the use of state model position in pixel coordinate with
scale parameter and Bhattacharyya distance as a measurement model. Another study performed
simulation of multi-target tracking with different state and measurement model [31], and a
simulation of tracking a ‘snake- like’ maneuvering anti-ship missile with different computation
model [32]. The use of Histogram Intersection distance was 3–4 times faster than the
Bhattacharyya distance due to simpler computation [33]. Fewer processor operations, time, and
resources are valuable in real-time embedded processing with a multitasking environment.
Therefore, this article proposes Firefly optimization using Histogram Intersection distance-based
Particle Filter Algorithm for real-time human tracking applications. The contributions that
should be highlighted are:
• We propose a real-time FOAPF to optimize particle distributions with minimal iteration and fix

the problems of degeneracy and impoverishment by moving particles to a higher likelihood
area according to the FO technique.

• In the likelihood function, we design using a Histogram Intersection distance instead of the
Bhattacharyya distance.

2. Preliminary Knowledge
The Particle Filter approach for monitoring moving objects is a recursive application of

Bayesian estimation to create a posterior probability distribution of the target state using prior
information. This technique can provide good numerical predictions for cases involving
nonlinear systems, such as object tracking in sequence videos [13]. The dynamic of the target is
a first-order Markov model in most cases in equations (1) and (2). Arulampalam gives a
mathematical explanation of a particle filter [3].

𝐱𝐱𝑛𝑛 = f𝑛𝑛(𝐱𝐱𝑛𝑛−1, 𝐠𝐠𝑛𝑛) (1)
and stochastic measurement process:

𝒚𝒚𝑛𝑛 = h𝑛𝑛(𝐱𝐱𝑛𝑛, 𝐯𝐯𝑛𝑛) (2)
At the time 𝒏𝒏, 𝐱𝐱𝑛𝑛as a not-observable state, 𝐯𝐯𝑛𝑛 denotes measurement noise vectors, and 𝐠𝐠𝑛𝑛 is

a dynamic process noise. Using the posterior probability distribution to find solutions
𝑝𝑝(𝐱𝐱𝑛𝑛|𝐲𝐲1:𝑛𝑛)target in each frame. Equation (3) could be used to predict and update the target state
[3]:

𝑝𝑝(𝐱𝐱𝑛𝑛|𝒚𝒚1:𝑛𝑛−1) = ∫ 𝑝𝑝(𝐱𝐱𝑛𝑛|𝐱𝐱n−1)𝑝𝑝(𝐱𝐱𝑛𝑛−1|𝒚𝒚1:𝑛𝑛−1)𝑑𝑑𝐱𝐱𝑛𝑛−1 (3)

𝑝𝑝(𝐱𝐱𝑛𝑛|𝒚𝒚1:𝑛𝑛) =
𝑝𝑝(𝐲𝐲𝑛𝑛|𝐱𝐱𝑛𝑛)𝑝𝑝(𝐱𝐱𝑛𝑛|𝐲𝐲1:𝑛𝑛−1)

𝑝𝑝(𝐲𝐲𝑛𝑛|𝐲𝐲1:𝑛𝑛−1)

Devira Anggi Maharani, et al.

854

With normalization constant:
𝑝𝑝(𝒚𝒚𝑛𝑛|𝒚𝒚1:𝑛𝑛−1) = ∫ 𝑝𝑝(𝒚𝒚𝑛𝑛|𝒙𝒙𝑛𝑛)𝑝𝑝(𝒙𝒙𝑛𝑛|𝒚𝒚1:𝑛𝑛−1)𝑑𝑑𝒙𝒙𝑛𝑛 (4)

By applying a Bayesian recursive filter, the target probability density function 𝑝𝑝(𝐱𝐱𝑛𝑛|𝒚𝒚1:𝑛𝑛)

which is tracked can be found. In nonlinear and non-gaussian systems, analytical solutions are
difficult to find [13], thus the Particle Filter concept was introduced. The Particle Filter concept
represents the posterior probability density function by providing the weight of each particle
{𝐱𝐱𝑛𝑛𝑖𝑖 ,𝐰𝐰𝑛𝑛

𝑖𝑖 }𝑖𝑖=1𝑁𝑁 with Monte Carlo simulation. Each sample 𝐱𝐱𝑛𝑛 and weights of 𝐰𝐰𝑛𝑛 denotes the
quality of the sample and indicates the hypothesis of the state target. The mean state estimate
and the resampling procedure, both dependent on the weight of the particle, are two operations
carried out by the Particle Filter (calculated based on the observation model).

A. Sequential importance sampling

Because sampling the posterior probability density function 𝑝𝑝(𝐱𝐱0:𝑛𝑛|𝐲𝐲1:𝑛𝑛) of the true target is
challenging, and sequential importance sampling was used. To determine the posterior
probability density, use sequence sampling and sequential analysis methods in statistics.
Assuming that the importance of density function can be decomposed into equation (5) [34]:

𝑞𝑞(𝐱𝐱0:𝑛𝑛|𝐲𝐲1:𝑛𝑛) = 𝑞𝑞(𝐱𝐱𝑛𝑛|𝐱𝐱0:n−1, 𝐲𝐲1:𝑛𝑛)𝑞𝑞(𝐱𝐱0:𝑛𝑛−1|𝐲𝐲1:𝑛𝑛−1) (5)

The posterior probability distribution analytic formula currently is:
𝑝𝑝(𝐱𝐱0:𝑛𝑛|𝐲𝐲1:𝑛𝑛) = 𝑝𝑝�𝐱𝐱0:𝑛𝑛,𝐲𝐲𝑛𝑛|𝐲𝐲1:𝑛𝑛−1�

𝑝𝑝(𝐲𝐲𝑛𝑛|𝐲𝐲1:𝑛𝑛−1)
 (6)

=
𝑝𝑝(𝐲𝐲𝑛𝑛|𝑥𝑥0:𝑛𝑛|𝐲𝐲1:𝑛𝑛−1)𝑝𝑝(𝐱𝐱0:𝑛𝑛|𝐲𝐲1:𝑛𝑛−1)

𝑝𝑝(𝐲𝐲𝑘𝑘|𝐲𝐲1:𝑛𝑛−1)

=

𝑝𝑝(𝐲𝐲𝑛𝑛|𝐱𝐱0:𝑛𝑛, 𝐲𝐲1:𝑛𝑛−1)𝐩𝐩(𝐱𝐱𝑛𝑛|𝐱𝐱0:𝑛𝑛−1,𝐲𝐲1:𝑛𝑛−1)
 𝑝𝑝(𝐱𝐱0:𝑛𝑛−1|𝐲𝐲1:𝑛𝑛−1)
𝑝𝑝(𝐳𝐳𝑛𝑛|𝐲𝐲1:𝑛𝑛−1)

Based on Markov's law:

= 𝑝𝑝(𝒚𝒚𝑛𝑛|𝒙𝒙𝑛𝑛)𝑝𝑝(𝒙𝒙𝑛𝑛|𝒙𝒙:𝑛𝑛−1) 𝑝𝑝(𝒙𝒙0:𝑛𝑛−1|𝒚𝒚1:𝑛𝑛−1)
𝑝𝑝(𝒚𝒚𝑛𝑛|𝒚𝒚1:𝑛𝑛−1)

 (7)

Therefore 𝐰𝐰𝑛𝑛
𝑖𝑖 weights can be expressed recursively:

𝒘𝒘𝑛𝑛
𝑖𝑖 ∝

𝑝𝑝�𝒙𝒙0:𝑛𝑛
𝑖𝑖 |𝒚𝒚1:𝑛𝑛�

𝑞𝑞�𝒙𝒙0:𝑛𝑛
𝑖𝑖 |𝒚𝒚1:𝑛𝑛�

𝒘𝒘𝑛𝑛−1
𝑖𝑖 ∝

𝑝𝑝�𝒚𝒚𝑛𝑛|𝒙𝒙𝑛𝑛𝑖𝑖 �𝑝𝑝�𝒙𝒙𝑛𝑛𝑖𝑖 |𝒙𝒙𝑛𝑛−1
𝑖𝑖 �

𝑞𝑞�𝒙𝒙𝑛𝑛𝑖𝑖 |𝒙𝒙0:𝑛𝑛−1
𝑖𝑖 ,𝒚𝒚1:𝑛𝑛�

 (8)

In this case, 𝑞𝑞(𝐱𝐱𝑛𝑛|𝐱𝐱0:𝑛𝑛−1, 𝐲𝐲1:𝑛𝑛) = 𝑞𝑞�𝐱𝐱𝑛𝑛|𝐱𝐱𝑛𝑛−1𝑖𝑖 , 𝐲𝐲𝑛𝑛� then :

𝒘𝒘𝑛𝑛
𝑖𝑖 ∝ 𝒘𝒘𝑛𝑛−1

𝑖𝑖 𝑝𝑝�𝒚𝒚𝑛𝑛|𝒙𝒙𝑛𝑛𝑖𝑖 �𝑝𝑝�𝒙𝒙𝑛𝑛𝑖𝑖 |𝒙𝒙𝑛𝑛−1
𝑖𝑖 �

𝑞𝑞�𝒙𝒙𝑛𝑛𝑖𝑖 |𝒙𝒙𝑛𝑛−1
𝑖𝑖 ,𝑦𝑦𝑛𝑛�

 (9)

The posterior probability density function 𝑝𝑝(𝐱𝐱𝑛𝑛|𝐲𝐲1:𝑛𝑛):

𝑝𝑝(𝐱𝐱𝑛𝑛|𝐲𝐲1:𝑛𝑛) = � 𝐰𝐰𝑛𝑛
~𝑖𝑖𝛿𝛿(𝐱𝐱𝑛𝑛 − 𝐱𝐱𝑛𝑛𝑖𝑖)𝑁𝑁

𝑖𝑖=1 (10)

Where 𝑵𝑵 equally the number of particles, with 𝑁𝑁 → ∞, and as a result, the actual target state
probability density of the posterior is becoming closer 𝑝𝑝(𝐱𝐱𝑛𝑛|𝐲𝐲1:𝑛𝑛).

B. Importance Density Function

Importance Density Function 𝑞𝑞(𝐱𝐱𝑛𝑛|𝐱𝐱𝑛𝑛−1, 𝐲𝐲𝑛𝑛) associated with the effective sample size of the
Particle Filter as in the algorithm [34]:

Real-time Human Tracking System using Histogram Intersection Distance

855

𝑞𝑞�𝐱𝐱𝑛𝑛|𝐱𝐱𝑛𝑛−1𝑖𝑖 , 𝐲𝐲𝑛𝑛� = 𝑝𝑝�𝐱𝐱𝑛𝑛|𝐱𝐱𝑛𝑛−1𝑖𝑖 , 𝐲𝐲𝑛𝑛� (11)

=
𝑝𝑝�𝐲𝐲𝑛𝑛|𝐱𝐱𝑛𝑛𝑖𝑖 , 𝐱𝐱𝑛𝑛−1𝑖𝑖 �𝑝𝑝�𝐱𝐱𝑛𝑛𝑖𝑖 |𝐱𝐱𝑛𝑛−1𝑖𝑖 �

𝑝𝑝�𝑦𝑦𝑛𝑛𝑖𝑖 |𝐱𝐱𝑛𝑛−1𝑖𝑖 �

=
𝑝𝑝(𝐲𝐲𝑛𝑛|𝐱𝐱𝑛𝑛𝑖𝑖)𝑝𝑝�𝐱𝐱𝑛𝑛𝑖𝑖 |𝐱𝐱𝑛𝑛−1𝑖𝑖 �

𝑝𝑝�𝑦𝑦𝑛𝑛𝑖𝑖 |𝐱𝐱𝑛𝑛−1𝑖𝑖 �

The updated particle weights:

𝐰𝐰𝑛𝑛
𝑖𝑖 = 𝐰𝐰𝑛𝑛−1

𝑖𝑖 𝑝𝑝�𝑦𝑦𝑛𝑛|𝐱𝐱𝑛𝑛−1𝑖𝑖 � (12)

𝐰𝐰𝑛𝑛
𝑖𝑖 = 𝐰𝐰𝑛𝑛−1

𝑖𝑖 �𝑝𝑝(𝐲𝐲𝑛𝑛|𝐱𝐱𝑛𝑛𝑖𝑖)𝑝𝑝�𝐱𝐱𝑛𝑛𝑖𝑖 |𝐱𝐱𝑛𝑛−1𝑖𝑖 �𝑑𝑑𝐱𝐱𝑛𝑛𝑖𝑖

The importance probability density function has to be sampled from 𝑞𝑞�𝐱𝐱𝑛𝑛|𝐱𝐱𝑛𝑛−1𝑖𝑖 , 𝐲𝐲𝑛𝑛�, and
each new state is integrated to acquire an effective distribution; the prior probability density
function is reflected as an importance density function:

𝑞𝑞�𝐱𝐱𝑛𝑛|𝐱𝐱𝑛𝑛−1𝑖𝑖 , 𝐲𝐲𝑛𝑛� = 𝑝𝑝�𝐱𝐱𝑛𝑛𝑖𝑖 |𝐱𝐱𝑛𝑛−1𝑖𝑖 � (13)

So that the weight of the particles is updated:
𝒘𝒘𝑛𝑛
𝑖𝑖 = 𝒘𝒘𝑛𝑛−1

𝑖𝑖 𝑝𝑝(𝒚𝒚𝑛𝑛|𝒙𝒙𝑛𝑛𝑖𝑖) (14)

C. Resampling process

Most of the particle weights become very small or even zero with the iteration process [34].
Calculating particles with small weights takes time. The importance variance weight will
progressively grow, enhancing the posterior target probability density function. One of the most
common methods has been to employ a good recommendation distribution and resampling
technology. This equation (15) can be used to determine the degree of particle degradation based
on weight [3].

𝑁𝑁�𝑒𝑒𝑒𝑒𝑒𝑒 = 1

� �𝒘𝒘𝑛𝑛𝑖𝑖 �
2𝑁𝑁

𝑖𝑖=1

 (15)

According to the formula above, the higher the particle weight, the fewer the effective

particles are, and particle weights can degrade. The most common approach for calculating
particle weights is the uniform sampling 𝑤𝑤𝑛𝑛𝑖𝑖 = 1

𝑁𝑁� . Although resampling procedures can
minimize the impacts of weight degeneracy, a new problem known as sample impoverishment
will emerge after the resampling step. When the number of particles with significant weights
grows very small, and low-weight particles are eliminated during the resampling process, this
issue arises. As a result of the resampling procedure, weight degeneracy becomes sample
impoverishment. It could be done by moving particles employing genetic algorithms or the
Firefly optimization technique. As a result, low-weight particles can be maintained, and estimate
accuracy can be achieved only with a few particles.

In this implementation, the selected state consists of the target position (𝐱𝐱𝑛𝑛, 𝐲𝐲𝑛𝑛) and target
velocity (𝑥𝑥′𝑛𝑛 ,𝑦𝑦′𝑛𝑛) and scale of the target change 𝑠𝑠 then, 𝐱𝐱𝒏𝒏 = [𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑥𝑥′𝑛𝑛 𝑦𝑦′𝑛𝑛 𝑠𝑠]𝑇𝑇 .
Assuming that the target being tracked is constantly moving and there is no sudden movement,
the system model equation can be approached with a constant velocity model. 𝐱𝐱𝑛𝑛+1 = 𝐴𝐴 𝒙𝒙𝑛𝑛−1 +
𝒈𝒈𝑛𝑛. Where 𝐴𝐴 is the transition matrix.

3. Histogram Intersection distance in Particle Filter Algorithm with Firefly Algorithm
Optimization
A. Particle Filter with Firefly Algorithm Optimization

Since its invention [35], Firefly Algorithm has been developed by several types of research.
For instance, [31] Firefly Algorithm was used to track multitarget, [27][22] to do object tracking,

Devira Anggi Maharani, et al.

856

and simulation [32]. According to Yang [35] the Firefly algorithm was enthused by firefly social
behavior and interaction in their group through the light on their tail. Generally, fireflies generate
short and periodic flashes of light that have unique patterns in each species. The sparkling light
of fireflies has two functions: attracting other fireflies to be a couple and trapping.

The light intensity 𝐼𝐼 with specific gaps 𝑟𝑟 from a flashes light source is inversely proportional
with the square of the gap, which means the intensity of the light will reduce if the gap 𝑟𝑟 increase.
It can be stated as 𝐼𝐼 ∝ 1

𝑟𝑟2
. Besides, the air can absorb light; therefore, as distance increases, the

light weakens. Because of these two phenomena, fireflies can only be seen from a short distance.
Generally, this condition is good enough for fireflies to communicate. The firefly characteristics
can be seen as more ideal and adapted into the algorithm by the first originator Xin-She Yang
[24], who named Firefly Algorithm (FA) in 2010. This FA has three rules, according to Yang,
specifically:
• Every firefly is unisex and will be involved with each other.
• The attractiveness of fireflies is related to flashes of light intensity belonging. Fireflies with less

bright flashes of light will be involved and move toward more luminous fireflies. If no fireflies
are shining brighter than themselves, they will move randomly.

• The objective function determines the intensity of fireflies light. For a maximization problem,
the light intensity is related to the object value. Other appearances of light intensity can be
described in a similar method using a fitness equation.

The attractiveness of fireflies is related to flashes of light intensity, which others can see. The
attractiveness is expressed as [24]:

𝛽𝛽(𝑟𝑟) = 𝛽𝛽0𝑒𝑒−𝛾𝛾𝛾𝛾
2 (16)

where 𝛽𝛽(𝑟𝑟) as the attractiveness of fireflies at specific distance 𝑟𝑟, 𝛽𝛽0 is the attractiveness of
fireflies at 𝑟𝑟 = 0, 𝛾𝛾 is coefficient of light absorption, and 𝑟𝑟 is the distance between the source
fireflies, which has the brightest light and other fireflies who see them. Distance between two
fireflies 𝑖𝑖 and 𝑗𝑗 in the coordinate position 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 are Cartesian distance as [24]:

𝑟𝑟𝑖𝑖𝑖𝑖 = �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� = �∑ �𝑥𝑥𝑖𝑖,𝑘𝑘 − 𝑥𝑥𝑗𝑗,𝑘𝑘�
2𝑑𝑑

𝑘𝑘=1 (17)

Since knowing the 𝑥𝑥𝑖𝑖,𝑘𝑘 as a 𝑘𝑘 − component in 𝑥𝑥𝑖𝑖 coordinate of fireflies 𝑖𝑖, the movement of

fireflies 𝑖𝑖 which is attracted to fireflies 𝑗𝑗 (which are brighter or have higher attractiveness) [24]
are expressed as

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝛽𝛽0𝑒𝑒−𝛾𝛾𝛾𝛾
2�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖� + 𝛼𝛼 �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1

2
� (18)

Rand is the function of generating random numbers with uniform distribution with a range

of [0,1]. Generally, 𝛽𝛽0 = 1 and 𝛼𝛼 𝜖𝜖 [0,1]. The randomization process can be carried out using
normal distribution 𝑁𝑁(0,1) or another distribution. The FOAPF Algorithm is added to move
fireflies to come near the brightest fireflies, which has the least distance of color histogram. The
flowchart of these algorithms is shown in Figure 1.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖)𝑀𝑀
𝑖𝑖−1

𝑀𝑀

2
 (19)

The Firefly Algorithm has been utilized for optimization in PF. We tested our algorithm with

three datasets and showed the performance of the proposed algorithm in tracking the object
correctly. RMSE value, in (19), will be used to measure discrepancy from the ground truth. The
smaller RMSE value indicates that our proposed algorithm results approach the actual value.

Real-time Human Tracking System using Histogram Intersection Distance

857

Figure 1. Flowchart of FOAPF

B. Histogram Intersection distance in Particle Filter algorithm

The likelihood function used is based on the color of the target being tracked. We can measure
the similar distance between the target object and the searched target with Histogram Intersection
distance [36], as shown in Fig. 2.

Figure 2. Histogram Intersection distance

∩ (𝑝𝑝𝑐𝑐 ,ℎ𝑐𝑐) = ∑ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑝𝑝𝑐𝑐,𝑚𝑚,ℎ𝑐𝑐,𝑚𝑚�𝐾𝐾
𝑚𝑚=1

∑ ℎ𝑐𝑐,𝑚𝑚
𝐾𝐾
𝑚𝑚=1

 (20)

where ℎ𝑐𝑐 as a color histogram of reference and 𝑝𝑝𝑐𝑐 as a color hypotheses histogram of particle which
established at time step 𝑘𝑘. Considered in (20), normalized histograms ∩ (𝑝𝑝𝑐𝑐 , ℎ𝑐𝑐) = 1, indicated the
perfect similarity between hypotheses histogram and reference histogram, and vice versa as in [33].
In equation (20), the 𝑚𝑚𝑚𝑚𝑚𝑚 fuction acquires two arguments of two values an takes a smallest one and
divided it by the number of histogram reference pixels. To achieve the Histogram Intersection
distance 𝑑𝑑𝑐𝑐, make a complement as in equation (21):

𝑑𝑑𝑐𝑐[𝑝𝑝𝑐𝑐 , ℎ𝑐𝑐] = 1 −∩ (𝑝𝑝𝑐𝑐 , ℎ𝑐𝑐) (21)

Devira Anggi Maharani, et al.

858

 We use a similar distance with Histogram Intersection distance instead of Bhattacharyya
distance as in equation (23):

𝜌𝜌[𝑝𝑝𝑐𝑐 , ℎ𝑐𝑐] = ∑ �𝑝𝑝𝑐𝑐,𝑚𝑚, ℎ𝑐𝑐,𝑚𝑚
𝐾𝐾
𝑚𝑚=1 (22)

𝑑𝑑𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑝𝑝𝑐𝑐 , ℎ𝑐𝑐] = ∑ �1 − 𝜌𝜌[𝑝𝑝𝑐𝑐 , ℎ𝑐𝑐]𝐾𝐾
𝑚𝑚=1 (23)

Next, color likelihood is calculated by the formula [11]:

𝑝𝑝(𝒛𝒛𝑘𝑘|𝒙𝒙𝑘𝑘𝑖𝑖) ∝ 𝑒𝑒𝑒𝑒𝑒𝑒�−𝜆𝜆 × 𝑑𝑑𝑐𝑐
2� (24)

Based on [11], due to the consistent exponential behavior, 𝜆𝜆 = 25 in this experiments. The
equation (24) as a likelihood function to calculate the state estimates.

4. Dataset

This study uses four datasets and is divided into two types: two private datasets and two the
TB dataset [37][38]. This private dataset consists of two categories, fast-moving objects, and
slow-moving objects. Researchers commonly use the TB dataset in computer vision, and first,
we were converted into a video format. We used the TB dataset to analyze when the object had
partial occlusion and total occlusion.

5. Overall System Architectures

After we have designed the FOAPF method, the proposed system is shown in Fig. 3. This
implementation using PTZ Camera as a sensor for tracking and open-source libraries [39]. The
ROI will be selected manually for testing the proposed algorithm. Moreover, it will be compared
to vanilla PF. The proposed algorithm will be compared with five popular methods, i.e., Vanilla
PF, Kernelized Correlation Filter (KCF), Minimum Output Sum of Square Error (MOSSE),
Continuously Adaptive Mean Shift and Kalman Filter (Cam-shift Kalman Filter), Tracking
Learning Detection (TLD) to know the performance. The pseudocode of the FOAPF with
Histogram Intersection distance shows in Fig. 3.

Figure 3. The pseudocode of FOAPF with Histogram Intersection distance

6. Experimental Results

The PTZ camera produces 9120x540 pixels for each frame with a light intensity of 1200
LUX in the real-time implementation. Therefore, to achieve the real-time implementation, each
frame was resized into 640x360. This image size is assumed to be sufficient to track the moving
object with a real-time application. The maximum speed produced by PTZ Camera is 30-FPS.

FOAPF Algorithm
Particle sampling with 𝑁𝑁 particle and calculate weight
Make a prediction based on the state model {𝐱𝐱n−1

i ,𝐰𝐰n−1
i }

Updating particle based on the observation model 𝒚𝒚𝑛𝑛
Calculate histogram intersection distance 𝑑𝑑𝑖𝑖 at 𝑥𝑥𝑖𝑖(𝑖𝑖 = 1,2,3, …𝑛𝑛)
Create a population of fireflies
Define γ, α, and 𝛽𝛽0
While (t < the number of iteration)
Get the firefly location 𝑥𝑥𝑗𝑗 that has minimum histogram intersection distance (𝑑𝑑𝑗𝑗)

For i=1 in the total number of fireflies
Move firefly 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑗𝑗
Calculate 𝑟𝑟 distance between fireflies
Calculate and update the attractiveness 𝛽𝛽(𝑟𝑟) with a distance 𝑟𝑟

End for i
Update the firefly position
End while
Normalize weight
Iteration from prediction step

Real-time Human Tracking System using Histogram Intersection Distance

859

The observation technique in Vanilla PF is based on color features. Histogram value has been
generally used. The color histogram for each particle will be calculated with uniform distribution
as the initial distribution particle. The distribution of these particles is spread around the Initial
Region of Interest (ROI). This research was conducted on our private dataset and TB dataset
[37][38]. The types of data sets are tracking slow-moving human datasets, fast-moving human
datasets, and TB datasets.

A comparison of algorithms between Vanilla PF and FOAPF is the determining technique to
get the optimum likelihood function from the target being tracked. The color histogram of each
particle is computed for each time step and compared to the model target being tracked with the
histogram intersection equation calculated as in (21). Each particle distribution 𝑥𝑥𝑖𝑖,𝑘𝑘 is the
component of 𝑘𝑘 particle in 𝑥𝑥𝑖𝑖 coordinate and fireflies 𝑖𝑖. The firefly movement or particles 𝑖𝑖 are
attracted to fireflies 𝑗𝑗 (brighter or has higher attractiveness) and compare their histogram value
with initial ROI or saved model. The condition of particle distribution before being optimized is
shown in Fig. 4. The purpose of adding this optimization algorithm is, with a few particles, all
particles are expected to approach the actual color histogram model value, which produces less
computational cost.

(a)

(b)

Figure 4. Particle Distribution: (a) Before optimization; (b)After optimization using Firefly
Algorithm.

FO Algorithm has parameters that should be set, such as 𝛽𝛽(𝑟𝑟) value, which is the

attractiveness of fireflies at a distance 𝑟𝑟 hence it should be updated until the system is
convergent. Based on the experiment, we tried to start the value of γ = 0, and the system failed
to track because based on equation (16), it will be constant and make 𝛽𝛽 = 𝛽𝛽0. Then, we start with
the value =0.1, and the system could track the object. We analyzed the range parameter of 𝛾𝛾 =
(0.1 − 1) and divided into ten parts with 0.1 intervals. After several experiments, we get the
best the 𝛾𝛾 value range is 0 > 𝛾𝛾 <= 0.3. The system fails to track the object when the value of
𝛾𝛾 > 0.3. The experiment results show that the track works well when the value of α is 0 > 𝛼𝛼 ≤
0.2. The value of 𝛽𝛽0 = 1 is attractiveness at 𝑟𝑟 = 0 or when the distance between two or more
fireflies equals 0. So, based on Yang, usually, the value of 𝛽𝛽0 = 1. Therefore, this paper also
uses the value 𝛽𝛽0 = 1. The parameter that should be set is 𝛾𝛾 = 0.3,𝛼𝛼 = 0.0001,𝛽𝛽0 = 1. As
noticed, Table 1 shows the result of attractiveness value in our video data set, particularly in
frame 12. This table shows that 200, 300, 400, 500, 600, 800, and 1000 particles acquired the
most rapid convergence with 𝑚𝑚 = 3. The attractiveness of firefly 𝛽𝛽(𝑟𝑟) was proportional to the
light intensity of other fireflies. 𝛽𝛽(𝑟𝑟) value used was based on (16) that is shown in Table 1.
Fireflies 𝑖𝑖 movement, which is attracted to fireflies 𝑗𝑗 (brighter), is essential to determine
convergence speed and how this Firefly Algorithm works.

However, the iteration process and the number of particles affect real-time tracking
performance. Therefore, the proposed FOAPF Algorithm needs only a one-time iteration.
Candidate particles or fireflies, which have high attractiveness compared to the target model
(fireflies 𝑗𝑗, which has brighter light), produce a smaller distance and vice versa.

Devira Anggi Maharani, et al.

860

Table 1. The results of the attractiveness value of fireflies
Iteration 𝜷𝜷(𝒓𝒓) with different numbers of particles

200 300 400 500 600 800 900 1000
m=1 0.87 0.85 0.88 0.85 0.86 0.91 0.93 0.88
m=2 1.00 0.97 1.03 0.96 0.99 1.12 1.15 1.04
m=3 1.02 0.99 1.06 0.98 1.01 1.17 1.21 1.07
m=4 1.02 0.99 1.06 0.98 1.02 1.18 1.23 1.08
m=5 1.02 0.99 1.06 0.98 1.02 1.18 1.24 1.08
m=6 1.02 0.99 1.06 0.98 1.02 1.18 1.24 1.08
m=7 1.02 0.99 1.06 0.98 1.02 1.18 1.24 1.08
m=8 1.02 0.99 1.06 0.98 1.02 1.18 1.24 1.08
m=9 1.02 0.99 1.06 0.98 1.02 1.18 1.24 1.08
m=10 1.02 0.99 1.06 0.98 1.02 1.18 1.24 1.08

To begin the comparison, we chose four challenging videos. These videos show various objects

in difficult settings, quick and slow motions, low resolution, and partial or full occlusions. First, we
used the Histogram Intersection distance to calculate the likelihood function, tested on the Panda
dataset from TB dataset [38]. This video is a partially or fully occluded target type with low
resolution. The RMSE results with the proposed algorithm as in Fig 5 (a). and 5 (b). The real-time
implementation could be achieved with up to 50 distributions of particles.

Figure 5 (a). RMSE of FOAPF with Bhattacharyya Distance (Panda dataset)

Figure 5 (b). RMSE of FOAPF with Histogram Intersection distance (Panda dataset)

 Table 2 shows that with 50 particles and 5.02 pixels RMSE, using FOAPF with Bhattacharyya
Distance could achieve real-time implementation with a specific processor. With 50 particles of
FOAPF and Histogram Intersection distance, a lower RMSE of 4.96 and 30 FPS is obtained. It
shows that the proposed method could enhance the tracking accuracy (shows in lower RMSE
value). We chose the Histogram Intersection distance rather than the Bhattacharyya distance
because, with lower RMSE, it ran up to 1.8 ms. While using Bhattacharyya, it ran up to 1.9 ms. It
shows in FPS value with distribution particle of 70-500.

Real-time Human Tracking System using Histogram Intersection Distance

861

Table 2. RMSE tracker with FOAPF (Panda dataset)

Number
of

Particles

RMSE of
FOAPF with
Histogram

Intersection
Distance

FPS

RMSE of
FOAPF with

Bhattacharyya
Distance

FPS

20 5.95 30 6.96 30
30 5.28 30 5.97 30
50 4.96 30 5.02 30
70 4.81 22 5.00 21
90 4.74 17 4.96 16

100 4.74 16 5.00 15
200 4.64 9 4.87 9
300 4.64 6 4.81 5
500 4.65 3 4.91 3

 Figure 6 shows the BB (Bounding Box) result of the proposed method on the Panda dataset.
Even if the target is partially/fully occluded and has low-resolution environments, the system can
still track the target correctly.

Figure 6. The BB results of FOAPF on Panda Dataset.

After we test the panda dataset, we get a low RMSE of FOAPF with the Histogram

Intersection distance. Therefore, we test the other three videos with the same parameters, the
models, and the likelihood function (Histogram Intersection distance) in Vanilla Particle Filter
and FOAPF. RMSE values between Vanilla PF without optimization algorithm in slow human
movement tracking dataset are shown in Figure 7, and FOAPF Algorithm is in Figure 8.

Figure 7. RMSE of Vanilla PF

The Vanilla PF produces the smallest RMSE with 500 particle distributions. However, with

this result, the real-time system was not achieved. The distribution of 50 particles has reached
30 FPS. It means the real-time system has been reached a 19.83 RMSE value. Therefore, the
FOAPF algorithm was tested to generates RMSE, as in Figure 8.

Devira Anggi Maharani, et al.

862

Figure 8. RMSE of FOAPF result

More detailed RMSE values are shown in Table 3. The RMSE result with a different number

of particle distributions using Vanilla PF and FOAPF Algorithm is presented. Based on Table 3,
the RMSE value of FOAPF was smaller than Vanilla PF Algorithm with no optimization. This
method uses a Histogram Intersection to calculate the distance instead of using the Bhattacharyya
distance.

Table 3. FPS and RMSE result between two algorithms in slow-moving human tracking

Number
of

Particles

Vanilla PF FOAPF

 RMSE FPS RMSE FPS
10 189.63 30 142.90 30
30 20.66 30 18.28 30
50 19.83 30 16.92 30
70 19.611 21 16.70 21
90 15.77 16 11.09 16
100 13.81 16 10.73 16
200 12.90 9 10.49 7
300 12.46 5 9.97 5
500 12.13 3 9.65 3

Figure 9. Slow human movement tracking

The Firefly Algorithm is particularly useful for estimating stability likelihood function in

human movement tracking with the PF Algorithm. FOAPF RMSE values of each particle almost
produce the same value because the optimization method for moving particles is only done in a
one-time iteration and shows significantly different values from Vanilla PF Algorithm. All
hypotheses of particle value can approximate the model position by looking for the most similar
color histogram. As shown, Fig. 9 represents slow-moving human tracking using FOAPF
Algorithm. Then, after being tested with the first dataset, the FOAPF Algorithm has shown that
it could produce an RMSE value of at least 9.65 with 500 particle distributions. However, in the
computational speed view, the maximal 30 FPS reached RMSE 16.92 with a distribution of 10-
50 particles implied with our data set so that the real-time implementation could be reached.

Real-time Human Tracking System using Histogram Intersection Distance

863

Afterward, the FOAPF and Vanilla PF were tested with a second data set (with the same

parameters as the first dataset). Fast human movement is in Figure 10 with a distance between
the object, and PTZ camera of around ±2𝑚𝑚 with lighting condition is 1200 LUX. The proposed
algorithm produced high FPS in fast-walking human tracking activity with less RMSE value, as
in Figure 11.

Figure 10. Fast human movement tracking

This algorithm was acceptable with our data set to produce low RMSE. With 10-200 particle

distribution, the best-performing model was chosen and compared to other algorithms. The
proposed algorithm was able to produce a near-real position value. Two threads are created to
increase computing speed and make fast-walking and slow-moving human to be tracked
correctly, which can run in parallel technique without waiting for other processes. This technique
is more responsive and economical in dividing memory and resources even though using part of
the program while executing another operation. The implementation used multi-threading and
NVIDIA GEFORCE 940MX core i5 GPU specifications, as shown in Table 4.

Figure 11. RMSE of different algorithms

The FOAPF Algorithm achieved a real-time process with 10-100 particle distributions with

a second data set. In this case, computational speed and accuracy were trade-offs so that by using
FOAPF, in tracking fast-walking human, the system had RMSE of 7.99 as in Table 4 with a
minimum computing speed of 16 FPS. This result shows that FPS achieves above minimum
value to reach a real-time implementation based on the previous study. Another result was 30
FPS, which means the proposed FOAPF produced a smaller RMSE value of 8.80 with 50 particle
distributions, as shown in Table 4.

Figure 12 shows that the KCF algorithm was not able to track fast human movements. The
speed suddenly decreased in the 21st frame. The object speed changed quickly from 177
pixels/sec to 42 pixels/sec.

Devira Anggi Maharani, et al.

864

Table 4. RMSE between Vanilla PF and FOAPF in fast-moving human tracking
Number of
Particles

Vanilla PF FOAPF

 RMSE FPS RMSE FPS
10 151.49 30 21.11 30
30 32.87 30 9.34 30
50 36.36 30 8.80 30
70 13.64 21 8.08 21
90 12.53 16 8.03 16

100 12.45 16 7.99 16
200 11.59 9 7.84 7
300 9.84 5 7.56 5
500 9.77 3 7.02 3

Figure 12. Human movement speed per pixel

Due to the complex background behind the target, as in Fig. 13 made the KCF algorithm in

extracting features has not enough time for the detection and tracking process. The image
captured was blurry because the object moved too fast with the camera distance to the object
±2𝑚𝑚, so the KCF algorithm could not detect the next target position.

Table 5. RMSE with several algorithms in fast-moving human tracking

 Vanilla PF FOAPF Cam-Shift
Kalman
Filter

KCF TLD MOSSE

RMSE 36.36 8.80 111.31 381 14.40 12.55

The reliability of the FOAPF Algorithm tested with a fast-walking target with an average
speed of 96 pixels/second. When the result is compared to several other methods, the proposed
method produces smaller RMSE, as shown in Table 5. Cam-shift Kalman Filter method produced
RMSE 111. 31. The result position has a slow response to the fast-walking human movement
because the modeling is assumed to be tracking objects with constant speed. The TLD [40] and
MOSSE [41] methods produce lower RMSE than the Cam-shift Kalman Filter and KCF [42]
methods. This FOAPF method is very reliable, and the speed of fireflies with only one iteration
can get near the fireflies with brighter light. Almost all particles or fireflies have a color
histogram value, which closes to the model.

Real-time Human Tracking System using Histogram Intersection Distance

865

Figure 13. Human movement speed per pixel

This algorithm was tested using the TB occlusion dataset [37] with the same parameter as the

first and second datasets for further validation. The RMSE value of the FOAPF Algorithm and
others are presented in Table 6. Cam-shift Kalman Filter shows the lowest RMSE value. It was
hard for the cam-shift algorithm as an observer in Kalman Filter to handle the occlusion case.
However, because of the severe occlusion, it could not detect and predict the actual object
location. The RMSE of the FOAPF Algorithm produced 12.07 with 50 distributions of particles
as in Table 6.

Table 6. RMSE tracker with FOAPF, Kalman-Filter and Vanilla PF Algorithm

 Vanilla
PF

FOAPF Cam-Shift Kalman
Filter

RMSE 24.99 12.07 49.25

The experiment result with TB dataset as in Fig. 14 shows a Firefly method for optimization

in PF can obtain the minimum objective function in the hypotheses area.

Figure 14. The BB results of FOAPF on TB Occlusion Dataset.

To achieve a real-time implementation, we utilize only one iteration in the Firefly algorithm

while there is a probability of getting local minimal conditions, and the RMSE result is shown
in Fig. 15.

Devira Anggi Maharani, et al.

866

Figure 15. RMSE of FOAPF on the TB dataset.

7. Discussion
This proposed method was designed with multi-threading to get a real-time process and less
particle distribution in the PF algorithm. We have tested in fast-moving objects and using Cam-
shift Kalman Filter. It cannot follow the target correctly. The detection technique between
Kalman Filter and PF is quite similar, which uses color distribution. However, an optimization
algorithm to find the color (like the object model) has been added to PF. The PF is a tracker that
repeatedly uses a state estimation technique based on the recursive Bayesian Filter (a prediction
and updating process).

Figure 16 (a). Illustration of the effect of likelihood weight values using the Histogram
Intersection and Bhattacharyya distance.

(b). Scatter of likelihood weight values with Histogram Intersection and Bhattacharyya
distance

Real-time Human Tracking System using Histogram Intersection Distance

867

The PF Algorithm is a nonlinear filtering method to execute the state estimation process using
the Bayes equation. Bayes equation has difficulties finding an analytical solution so that it uses
the Monte Carlo sampling technique of selected density proposal and weighs according to the
observed value. The number of particle distributions in BB is the probability value to find the
actual object position. In this study, the selected color feature, measurement equation in the
updating process, uses Histogram Intersection in (20), which uses the color histogram
information captured by the camera sensor.

Figure 16(a) shows the comparison between weighting a Bhattacharyya distance
corresponding to Histogram Intersection distance. For a perfect match between histograms that
have been normalized is 𝑑𝑑𝑐𝑐 = 1. To achieve a dissimilarity measure, multiply the intersection
by the complement to get the Histogram Intersection distance as in equation (21). So, if we use
the dissimilarity function of the histogram intersection distance, plotting between histogram
intersection distance and Bhattacharyya distance is shown in Fig. 16(b). We chose the Histogram
Intersection distance distance rather than the Bhattacharyya distance because it ran up to 1.8 ms
and the Bhattacharyya with 1.9 ms. This result shows the time result slightly different, and in
real-time processing, this is quite useful.

This PF is a tracker with a detection process included in the measurement equation for the
updating process. Then, the measurement resulted in the updating process weighs the particles.
If the weight value is large, it means that the probability of the object in that location is also
large. The task of resampling is to remove particles that have insignificant weight and only focus
on significant-weighted particles. Then, this large, weighted particle will be broken down again.
In Fig. 17, the application of the Firefly Algorithm as optimization is to avoid the phenomenon
of sample degeneration and find the actual position object.

Figure 17. The proposed algorithm steps

The study results, tested on three different data sets, show that the FOAPF Algorithm can

produce the probability of each sample. It has a significant effect on the calculation of pdf
approximation. Therefore, by using 50 particles (few particles) and adding the optimization
process, the computation reaches the maximum capability of a PTZ camera of 30 FPS with a
relatively lower RMSE than the Vanilla PF. It can be concluded that this system can be applied
in real-time conditions with small RMSE.

8. Conclusion

The proposed method solves weight degradation and impoverishment particles in the Particle
Filter algorithm, affecting tracking accuracy. The pixels video produced by the PTZ camera uses
640x360, and it is done in 1200 LUX room lighting. This system has been succeeding in tracking
the fast-moving object wherever the object moves and is oriented. The research aims to achieve
real-time implementation for object tracking using a small particle distribution combined. This
method results in PF with fewer particle distribution, and when adding FO, it can be applicable

Devira Anggi Maharani, et al.

868

and very reliable if implemented for real-time fast-walking human tracking. Using a Histogram
Intersection distance with Firefly Algorithm makes most particles move to high probability areas.
It can maintain the weight degradation and impoverishment with a small particle distribution of
50 particles and achieve real-time implementation. Real-time color tracking is based on FOAPF
and multi-threading in fast-walking human tracking. The average speed of 96 pixels/sec with the
distance between objects and a camera of 2 m. The result achieves RMSE as low as 8.80 by
distributing 50 particles in PTZ camera maximum of 30 FPS. In slow-moving human tracking
presents RMSE of 16.92, and the TB dataset shows RMSE values of 4.96 and 12.07. According
to the RMSE result, the proposed FOAPF as a color tracker with few particle distributions can
also enhance human movement tracking with real-time implementation.

9. Acknowledgement

This research is a part of Research, Community Services, and Innovation program (Program
Penelitian, Pengabdian kepada Masyarakat dan Inovasi / P3MI 2020) funded by Institute for
Research and Community Services at the Institut Teknologi Bandung (LPPM ITB).

10. References
[1] J. Shin, H. Kim, D. Kim, and J. Paik, “Fast and robust object tracking using tracking failure

detection in kernelized correlation filter,” Appl. Sci., vol. 10, no. 2, 2020, doi:
10.3390/app10020713.

[2] B. Zhou and T. Wang, “Adaptive context-aware and structural correlation filter for visual
tracking,” Appl. Sci., vol. 9, no. 7, 2019, doi: 10.3390/app9071338.

[3] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for
online nonlinear/nongaussian bayesian tracking,” in Bayesian Bounds for Parameter
Estimation and Nonlinear Filtering/Tracking, 2007, vol. 50, no. 2, pp. 723–737, doi:
10.1109/9780470544198.ch73.

[4] L. Yulianti, B. R. Trilaksono, A. S. Prihatmanto, and W. Adiprawita, “Particle filter-based
multitarget multicamera tracking system utilizing random finite sets and distributed
estimation process,” Int. J. Electr. Eng. Informatics, vol. 8, no. 3, pp. 675–695, 2016, doi:
10.15676/ijeei.2016.8.3.14.

[5] Y. Wang et al., “Particle Filter Vehicles Tracking by Fusing Multiple Features,” IEEE
Access, vol. 7, pp. 133694–133706, 2019, doi: 10.1109/access.2019.2941365.

[6] H. Chu, K. Wang, and X. Xing, “Target Tracking via Particle Filter and Convolutional
Network,” J. Electr. Comput. Eng., vol. 2018, 2018, doi: 10.1155/2018/5381962.

[7] D. A. Maharani, C. Machbub, and P. H. Rusmin, “Enhancement of Missing Face Prediction
Algorithm with Kalman Filter and DCF-CSR,” in Proceedings of the International
Conference on Electrical Engineering and Informatics, 2019, vol. 2019-July, pp. 395–399,
doi: 10.1109/ICEEI47359.2019.8988867.

[8] K. Nummiaro, E. Koller-Meier, and L. Van Gool, “An adaptive color-based particle filter,”
Image Vis. Comput., vol. 21, no. 1, pp. 99–110, 2003, doi: 10.1016/S0262-8856(02)00129-
4.

[9] S. Wildermann and J. Teich, “3D person tracking with a color-based particle filter,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 4931 LNCS, pp. 327–340, 2008, doi: 10.1007/978-3-540-78157-8_25.

[10] M. T. N. Truong and S. Kim, “Parallel implementation of color-based particle filter for
object tracking in embedded systems,” Human-centric Comput. Inf. Sci., vol. 7, no. 1, 2017,
doi: 10.1186/s13673-016-0082-1.

[11] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based probabilistic tracking,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 2350, pp. 661–675, 2002, doi: 10.1007/3-540-47969-4_44.

[12] Z. Wang, B. Chen, and J. Wu, “Effective Inertial Hand Gesture Recognition Using Particle
Filtering Based Trajectory Matching,” J. Electr. Comput. Eng., vol. 2018, pp. 1–9, 2018,
doi: 10.1155/2018/6296013.

Real-time Human Tracking System using Histogram Intersection Distance

869

[13] P. Chiranjeevi and S. Sengupta, “Rough-Set-Theoretic Fuzzy Cues-Based Object Tracking
under Improved Particle Filter Framework,” IEEE Trans. Fuzzy Syst., vol. 24, no. 3, pp.
695–707, 2016, doi: 10.1109/TFUZZ.2015.2471811.

[14] X. Qiang, Y. Zhu, and R. Xue, “SVRPF: An Improved Particle Filter for a Nonlinear/Non-
Gaussian Environment,” IEEE Access, vol. 7, pp. 151638–151651, 2019, doi:
10.1109/ACCESS.2019.2947540.

[15] D. A. Maharani, C. Machbub, L. Yulianti, and P. H. Rusmin, “Particle filter based single
shot multibox detector for human moving prediction,” in 2020 IEEE 10th International
Conference on System Engineering and Technology, ICSET 2020 - Proceedings, 2020, pp.
7–11, doi: 10.1109/ICSET51301.2020.9265355.

[16] W. Yang, L. Song, C. A. T. Tee, Y. Zheng, and Y. Liu, “Unsupervised learning grouping-
based resampling for particle filters,” IEEE Access, vol. 7, pp. 127265–127275, 2019, doi:
10.1109/ACCESS.2019.2937586.

[17] M. S. Sharifian, A. Rahimi, and N. Pariz, “Classifying the weights of particle filters in
nonlinear systems,” Commun. Nonlinear Sci. Numer. Simul., vol. 31, no. 1–3, pp. 69–75,
2016, doi: 10.1016/j.cnsns.2015.05.021.

[18] X. Han, H. Lin, Y. Li, H. Ma, and X. Zhao, “Adaptive Fission Particle Filter for Seismic
Random Noise Attenuation,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 9, pp. 1918–
1922, 2015, doi: 10.1109/LGRS.2015.2438229.

[19] M. S. Haque, S. Choi, and J. Baek, “Auxiliary particle filtering-based estimation of
remaining useful life of IGBT,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2693–2703,
2018, doi: 10.1109/TIE.2017.2740856.

[20] W. C. Cheng, “PSO algorithm particle filters for improving the performance of lane
detection and tracking systems in difficult roads,” Sensors (Switzerland), vol. 12, no. 12,
pp. 17168–17185, 2012, doi: 10.3390/s121217168.

[21] S. Q. Salih and A. R. A. Alsewari, “A new algorithm for normal and large-scale
optimization problems: Nomadic People Optimizer,” Neural Comput. Appl., vol. 32, no.
14, pp. 10359–10386, 2020, doi: 10.1007/s00521-019-04575-1.

[22] M. L. Gao, L. L. Li, X. M. Sun, L. J. Yin, H. T. Li, and D. S. Luo, “Firefly algorithm (FA)
based particle filter method for visual tracking,” Optik (Stuttg)., vol. 126, no. 18, pp. 1705–
1711, 2015, doi: 10.1016/j.ijleo.2015.05.028.

[23] Z. Musa, M. Z. Salleh, R. A. Bakar, and J. Watada, “GbLN-PSO and model-based particle
filter approach for tracking human movements in large view cases,” IEEE Trans. Circuits
Syst. Video Technol., vol. 26, no. 8, pp. 1433–1446, 2016, doi:
10.1109/TCSVT.2015.2433172.

[24] X. S. Yang, “Firefly algorithm, stochastic test functions and design optimization,” Int. J.
Bio-Inspired Comput., vol. 2, no. 2, pp. 78–84, 2010, doi: 10.1504/IJBIC.2010.032124.

[25] X. S. Yang, S. S. S. Hosseini, and A. H. Gandomi, “Firefly Algorithm for solving non-
convex economic dispatch problems with valve loading effect,” in Applied Soft Computing
Journal, 2012, vol. 12, no. 3, pp. 1180–1186, doi: 10.1016/j.asoc.2011.09.017.

[26] J. Jumadinova and P. Dasgupta, “Firefly-inspired synchronization for improved dynamic
pricing in online markets,” in Proceedings - 2nd IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, SASO 2008, 2008, pp. 403–412, doi:
10.1109/SASO.2008.26.

[27] M. L. Gao, X. H. He, D. S. Luo, J. Jiang, and Q. Z. Teng, “Object tracking using firefly
algorithm,” IET Comput. Vis., vol. 7, no. 4, pp. 227–237, 2013, doi: 10.1049/iet-
cvi.2012.0207.

[28] Y. Tsukamoto, Y. Matsumoto, and T. Wada, “Tracking a firefly -a stable likelihood
estimation for variable appearance object tracking-,” Proc. - Int. Conf. Pattern Recognit.,
pp. 2–5, 2008, doi: 10.1109/icpr.2008.4761478.

[29] A. Liu, K. Chen, Q. Liu, Q. Ai, Y. Xie, and A. Chen, “Feature selection for motor imagery
EEG classification based on firefly algorithm and learning automata,” Sensors
(Switzerland), vol. 17, no. 11, 2017, doi: 10.3390/s17112576.

Devira Anggi Maharani, et al.

870

[30] P. Wu, S. Su, Z. Zuo, X. Guo, B. Sun, and X. Wen, “Time difference of arrival (TDOA)
localization combining weighted least squares and firefly algorithm,” Sensors
(Switzerland), vol. 19, no. 11, 2019, doi: 10.3390/s19112554.

[31] M. Tian, Y. Bo, Z. Chen, P. Wu, and C. Yue, “Multi-target tracking method based on
improved firefly algorithm optimized particle filter,” Neurocomputing, vol. 359, no. xxxx,
pp. 438–448, 2019, doi: 10.1016/j.neucom.2019.06.003.

[32] W. Zhou, L. Liu, and J. Hou, “Firefly Algorithm-Based Particle Filter for Nonlinear
Systems,” Circuits, Syst. Signal Process., vol. 38, no. 4, pp. 1583–1595, 2019, doi:
10.1007/s00034-018-0927-0.

[33] P. Dunne and B. Matuszewski, “Choice of similarity measure, likelihood function and
parameters for histogram based particle filter tracking in CCTV grey scale video,” Image
Vis. Comput., vol. 29, no. 2–3, pp. 178–189, 2011, doi: 10.1016/j.imavis.2010.08.013.

[34] T. Wang, W. Wang, H. Liu, and T. Li, “Research on a face real-time tracking algorithm
based on particle filter multi-feature fusion,” Sensors (Switzerland), vol. 19, no. 5, 2019,
doi: 10.3390/s19051245.

[35] X. S. Yang, “Firefly algorithms for multimodal optimization,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5792 LNCS,
pp. 169–178, 2009, doi: 10.1007/978-3-642-04944-6_14.

[36] M. J. Swain and D. H. Ballard, “Color indexing,” Int. J. Comput. Vis., vol. 7, no. 1, pp. 11–
32, 1991, doi: 10.1007/BF00130487.

[37] “http://cvlab.hanyang.ac.kr/tracker_benchmark/seq/FaceOcc1.zip.” .
[38] “http://cvlab.hanyang.ac.kr/tracker_benchmark/seq/Panda.zip.” .
[39] Bradski G, “The OpenCV library,” Dr. Dobb’s J. Softw. Tools, vol. 25, no. 120, pp. 122–

125, 2000.
[40] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1409–1422, 2012, doi:
10.1109/TPAMI.2011.239.

[41] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object tracking using
adaptive correlation filters,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., pp. 2544–2550, 2010, doi: 10.1109/CVPR.2010.5539960.

[42] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with kernelized
correlation filters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 583–596,
2015, doi: 10.1109/TPAMI.2014.2345390.

Devira Anggi Maharani received B.Sc. and M.Sc degrees from Politeknik
Negeri Malang and Institut Teknologi Bandung, in 2015 and 2018. As a
doctoral student at Institut Teknologi Bandung, her research projects explore
the computer vision and control, especially in real-time implementation of
object tracking to Instrumentation and Control.

Carmadi Machbub received his Bachelor degree in electrical engineering
from Institut Teknologi Bandung (ITB) in 1980, DEA in Control Engineering
and Industrial Informatics in 1988 and Doctoral degree in Engineering
Sciences majoring in Control Engineering and Industrial Informatics from
Université de Nantes/Ecole Centrale de Nantes in 1991. He is now professor
and Head of Control and Computer Systems Research Division, School of

Real-time Human Tracking System using Histogram Intersection Distance

871

Electrical Engineering and Informatics, ITB. His current research interests are in control,
machine perception and intelligent systems.

Lenni Yulianti received her Bachelor (Cum Laude), Master’s, and Doctoral
degree in Electrical Engineering from Institut Teknologi Bandung (ITB),
School of Electrical Engineering and Informatics in Indonesia. She is currently
a lecturer and a researcher in the School of Electrical Engineering and
Informatics, ITB. Her research interests include statistical signal processing,
visual-based tracking, state estimation, control system, and implementation of
machine learning

Pranoto Hidaya Rusmin was born in Magelang, Indonesia in 1972. He
received B.Eng., M.Eng., and Doctor degrees in electrical engineering from
Institut Teknologi Bandung (ITB), Indonesia, in 1996, 1999, 2009,
respectively. Since 1998, he is a Lecturer at School of Electrical Engineering
and Informatics ITB, Indonesia. His research interest is Internet Congestion
Control.

Devira Anggi Maharani, et al.

872

