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Abstract: Over two decades, the PID (or fractional-order PID) controller was introduced and 

demonstrated to perform the better responses in comparison with the conventional integer-

order PID controller. The PID controller consists of five parameters, i.e. proportional gain 

(Kp), integration gain (Ki), derivative gain (Kd), integration order () and derivative order (). 

Effects of the PID parameter tuning on the system responses are studied and summarized in 

this paper. Based on the modern optimization, designing the optimal PID controller for an 

induction motor speed control system by using the cuckoo search (CS), one of the most 

efficient metaheuristic optimization search techniques, is proposed. Five parameters of the 

PID controller will be optimized by the CS to meet the response specifications of the three-

phase induction motor (3-IM) speed control system which is defined as particularly constraint 

functions. Results obtained by the PID controller are compared with those obtained by the 

conventional PID controller designed by Ziegler–Nichols tuning rule, Cohen–Coon tuning rule 

and the PID controller designed by the CS. As simulation results, it was found that the PID 

controller designed by the CS can provide faster and smoother speed responses than others, 

significantly. The stability of the 3-IM speed controlled system with the PID controller 

designed by the CS is also investigated. 
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1. Introduction 

Based on the fractional calculus, the PID (or fractional-order PID) controller was firstly 

proposed by Podlubny in 1994 [1, 2] as an extended version of the conventional integer-order 

PID controller. The PID controller possesses five tuning parameters: proportional gain (Kp), 

integration gain (Ki), derivative gain (Kd), integration order () and derivative order (), 

whereas the conventional PID controller consists of only three tuning parameters: proportional 

gain (Kp), integration gain (Ki) and derivative gain (Kd). Podlubny proved the superiority of the 

PID to the conventional PID controller when applied for control systems [1, 2]. Once the 

PID is compared with the conventional PID controller, there are two extra parameters  and 

 making the PID controller more efficient, but more complicate than the conventional PID 

controller in design and implementation procedures. By literatures, the PID controller has 

been successfully conducted in many applications, for instance, process control [3], automatic 

voltage regulator [4], DC motor control [5], power electronic control [6], inverted pendulum 

control [7] and gun control system [8]. Several design and tuning methods for the PID 

controller have been consecutively launched, for example, rule-based methods [9, 10] and 

analytical methods [11, 12]. Review and tutorial articles of the PID controller providing the 

state-of-the-art and its backgrounds have been completely reported [13, 14]. Control theorists 

believe that since the conventional PID controller dominates the industry, the PID controller 

will gain increasing impact and wide acceptance. Based on real-world applications, fractional 

order control with the PID controller will be ubiquitous. Although, the effects of tuning PID 

parameters on the system responses  are  well-known  for  practicing engineers [15, 16], the 

effects of the PID controller on the system responses are not reported. 
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 Nowadays, control synthesis has been changed from the conventional paradigm to the new 

framework based on modern optimization using metaheuristics as an optimizer [17, 18]. By 

literatures, the cuckoo search (CS), firstly proposed by Yang and Deb in 2009, is one of the 

most powerful population-based metaheuristic optimization search techniques [19]. The CS 

was proved for the global convergent property [20] and successfully applied to many real-

world engineering problems, such as wind turbine blades [21], antenna arrays [22], power 

systems [23], travelling salesman problem [24], structural optimization problem [25], wireless 

sensor network [26], flow shop scheduling problem [27], job shop scheduling problem [28], 

model order reduction [29] and control systems [30]. The state-of-the-art and its applications of 

the CS have been reviewed and reported [31]. 

 In this paper, effects of the PID parameter tuning on the system responses are studies for 

practicing control engineers. An application of the CS to optimally design the PID controller 

for the 3-IM speed control system is then proposed. This paper is arranged as follows. After 

an introduction is provided in Section 1, fractional calculus, the PID controller and stability 

analysis of linear, time-invariant (LTI) fractional order system are briefly described in Section 

2. The CS algorithm is briefly described in Section 3. Study of the effects of the PID 

parameter tuning on system responses is performed in Section 4. Results and discussion of the 

CS-based PID design for the 3-IM speed control system are given in Section 5. Stability 

analysis of the 3-IM speed control system with the PID controller is investigated in Section 

6, while conclusions are given in Section 7. 

 

2. Fractional Order Control System 

 In this section, fractional calculus, the PID controller and stability analysis of linear, time-

invariant (LTI) fractional order system are briefly described as follows. 

 

A. Fractional Calculus 

 In fractional calculus, a generalization of integration and differentiation can be represented 

by the non-integer order fundamental operator 
ta D , where a and t are the limits of the 

operator. The continuous integro-differential operator is defined as expressed in (1), where   

 stands for the order of operation. There are three definitions used for the generally fractional 

differintegral. The first definition is Grunwald-Letnikov (GL) as stated in (2), where ][  is 

integer part and n is an integer satisfying the condition nn − 1 . The binomial coefficient 

is stated in (3), while the Euler’s gamma function )(  is defined by (4). 

  (1) 

  (2) 

  (3) 

  (4) 

 The second definition is Riemann-Liouville (RL) as expressed in (5), for nn − 1 . 

The third definition is Caputo definition as shown in (6), where n is an integer and 

nn − 1 . Among those, the Caputo definition is most popular in engineering applications 

[13]. 

  (5) 

  (6) 
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  (7) 

 For solving engineering problems, the Laplace transform is routinely conducted. The 

formula of the Laplace transform of the RL fractional derivative in (5) is stated in (7), for 

nn − 1 , where js   denotes the Laplace transform (complex) variable. Under zero 

initial conditions for order   (0 <  < 1), the Laplace transform of the RL fractional derivative 

in (5) can be expressed in (8). 

  (8) 

 

B. PID controller 

 The PID controller is an extended version of the conventional PID controller. It can be 

regarded as the general controller for all PID family members. The generalized transfer 

function of the PID controller is given by the differential equation as stated in (9), where u(t) 

is the control signal, e(t) is the error signal,  and   0, and  by the Laplace transform as 

expressed in (10). 

  (9) 

  (10) 

 Relationship between the conventional PID controller and the PID controller can be 

represented by a graphical way as visualized in Figure 1. In general, the range of fractional 

orders   ( and ) is varied from 0 to 2. However, in most research works, the range of  and  

is varied from 0 to 1. Referring to Figure 1, it was found as follows. 

 = 1,  = 0 (PD)

 = 2

 = 2

 = 0,  = 0 (P)

 = 0,  = 1 (PI)

 = 1,  = 1 (PID)





 
Figure 1. Relationship between PID and PID controllers 

 

if  = 0 and  = 0, it is the P controller, 

if  = 1 and  = 0, it is the PI controller, 

if  = 0 and  = 1, it is the PD controller and 

if  = 1 and  = 1, it is the PID controller. 

 

C. Stability of LTI Fractional Order System 

 In classical control theory, the LTI system is stable if the roots of the characteristic 

polynomial (or poles) are negative or have negative real parts if they are complex conjugate. It 

means that they are located on the left half of the complex plane. For the fractional order LTI 

case, the stability is different from the integer one. However, Matignon’s stability theorem 

based on the Riemann sheet can be utilized for stability analysis of both integer order LTI and 

fractional order LTI systems [13, 14, 32, 33]. 

 A general fractional order system can be formulated by a fractional differential equation as 

stated in (11) or by the corresponding transfer function of incommensurate real orders as 

expressed in (12), where ak (k = 0,…,n) and bk (k = 0,…,m) are constant, and k (k = 0,…,n) 
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and k (k = 0,…,m) are arbitrary real numbers which can be arranged as 

01   − nn  and . 

  
 (11) 

  (12) 

 The incommensurate order system can be transformed into the commensurate form by the 

multi-valued transfer function as stated in (13). This implies that every fractional order system 

can be expressed in the form of (13) and domain of the H(s) definition is a Riemann surface 

with v Riemann sheets [32, 33, 34, 35]. 

  (13) 

 For example, the Riemann surfaces of multi-valued functions 
2/1sw =  and 

3/1sw =
 are depicted in Figure 2(a) and Figure 2(b), respectively. 

 

 

                      (a) Functions 
2/1sw =                                     

 

(b) Functions 
3/1sw =  

Figure 2. Riemann surfaces 

 

 The Riemann surface of any fractional order system will be transformed into the Riemann 

sheets [32, 33, 34, 35]. The stability region of the fractional order system can be performed by 

the first (or principal) Riemann sheet on the complex w-plane as visualized in Figure 3.  
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(b)  q = 1 

Figure 3. Stability regions 

 

 For the case of commensurate-order systems, whose characteristic equation is a polynomial 

of the complex variable  = s, the stability condition is expressed in (14), where i are the 

roots of the characteristic polynomial P(s) = 0.  

  (14) 

 A commensurate-order system described by a rational transfer function in (15), where w = 

sq, q  +, (0 < q < 2), is stable if and only if the stability condition stated in (16) is satisfied, 

where wi are the roots of the characteristic polynomial P(w) = 0. 

  (15) 

  (16) 

 Referring to (12), the characteristic equation of the fractional order system can be 

formulated in (17). It may be rewritten as (18), where ui and vi are the integer numbers. Then, it 

can be transformed into the w-plane as (19), where w = s1/m and m is the least common multiple 

(LCM) of vi.  

  (17) 

  (18) 

  (19) 

 Let |arg(wi)| be the absolute phase of all roots wi. Roots in the s-plane have corresponding 

roots in the w-plane by the transformation s = wm.  
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 The condistion for stability is /2m < |arg(wi)| < /m. Condition for oscillation or undamped 

response is |arg(wi)| = /2m, otherwise the system is unstable. This means that if there is not 

root in the unstable region of the w-plane, the system will always be stable [32, 33, 34, 35]. 

 

3. CS Algorithm 

 The algorithm of the CS is briefly reviewed in this section. The CS algorithm is based on 

the general cuckoo bird’s behavior which can be described by three following idealized rules 

[19, 20].  

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest. 

• The best nests with high quality of eggs (solutions) will carry over to the next. 

• The number of available host nests is fixed, and a host can discover an alien egg with a 

probability pa ∈ [0, 1]. In this case, the host bird can either throw the egg away or abandon 

the nest, and build a completely new nest in a new location. 

 The last assumption can be approximated by a fraction pa of the n nests being replaced by 

new nests (with new random solutions at new locations). This means that each egg in a nest 

represents each solution, while a cuckoo egg represents a new solution. The worse solutions 

will be replaced by the new solution (cuckoo egg). Based on three rules, the CS algorithm 

proposed by Yang and Deb [19, 20], can be summarized by the flow diagram shown in Figure 

4. 

 

Start

Gen <= MaxGen

- n cuckoo find the new nests by Lévy flight 

  and lay their eggs in the random nests

Host bird find 

cuckoo’s egg ?

- m (m <= n) cuckoo’s egg is found by the host 

- m cuckoo find the new nests by Lévy flight again 

  and lay their eggs in the random nests 

- Formulate objective function f(x), x = (x1, x2,…,xd)
T

- Initialize search spaces

- Randomly generate initial solution x*

- Initialize MaxGen, Gen = 1

- Evaluate all cuckoo’s eggs via objective function f(x)

f(x)<f(x*)

- Update solution x* = x

- Update Gen = Gen + 1

Optimal solution 

found

Stop

yes

yes

yes

no

no

no

 
Figure 4. Flow diagram of CS algorithm 
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 New solutions x(t+1) for cuckoo i can be generated by using a Lévy flight as stated in (20), 

where  > 0 stands for the step size. A symbol   means entry-wise multiplications, while a 

symbol Lévy( )  represents a Lévy flight providing random walk with random step drawn 

from a Lévy distribution having an infinite variance with an infinite mean as expressed in (21). 

In the other hands, the step length s can be calculated by (22), where u and v are drawn from 

normal distribution as stated in (23). Standard deviations of u and v are expressed in (24). With 

fraction pa, the CS can effectively escape from any local entrapment.  

  (20) 

  (21) 

  (22) 

  (23) 

  (24) 

 

4. Effects of PID Controller 

 Starting from the basic control loop represented by the block diagram of closed-loop 

system with fractional-order control actions shown in Figure 5, the effects of the basic control 

actions of type Ksμ for  ∈ [−1, 1] will be examined. The basic control actions traditionally 

considered will be particular cases of this general case, in which: 

• = 0 : proportional action (P), 

• = −1 : integral action (I) and 

• = 1 : derivative action (D). 

Ks Gp(s)
E(s) U(s)

D(s)

R(s) C(s)

+
-

+

+

 
Figure 5. Closed-loop system with fractional-order control actions 

 

 For the fractional-order integral action,  ∈ (−1, 0), Figure 6 shows the integral control 

actions for a square wave error signal (regarded as an input signal) and  = 0,−0.2,−0.5,−1. As 

can be observed, the effects of the control action over the square wave error signal vary 

between the effects of a proportional action ( = 0, square wave) and an integral action ( = 

−1, straight lines curve). For intermediate values of , the control action increases for a 

constant error, which results in the elimination of the steady-state error, and decreases when the 

error is zero, resulting in a more stable system. 

 For the fractional-order derivative action,  ∈ (0, 1), Figure 7 shows the derivative control 

actions for the trapezoidal wave error signal (regarded as an input signal) and  = 0, 0.2, 0.5, 1. 

As can be observed, the effects of the control action over the trapezoidal wave error signal vary 

between the effects of a proportional action ( = 0, trapezoidal signal) and a derivative action 

( = 1, square signal). For intermediate values of , the control action corresponds to 

intermediate curves. It must be noted that the derivative action is not zero for a constant error, 

and the growth of the control signal is more damped when a variation in the error signal occurs, 

which implies a better attenuation of high-frequency noise signals [32]. 
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Figure 6. Integral control actions 
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Figure 7. Derivative control actions 

 

 The step-response of the PID controller can be depicted in Figure 8 – Figure 12. Once  = 

1 and  = 1, the PID controller is corresponding to the PID controller as shown in Figure 8. 

The portion a varies directly as Kp which results in speed up of the transient response and 

decreasing the steady-state error. The portion b varies directly as Kd to speed up the transient 

response and decrease the oscillation. The slope d varies directly as Ki to eliminate or decrease 

the steady-state error. 

 Once  is varied and  = 1, the step-responses of the PID controller are depicted in Figure 

9 – Figure 10. From Figure 9,  < 1, The exponential curve portion e varies inversely as . The 

less the value of , the more the curve portion e. For Figure 10,  > 1, The parabolic curve 

portion e varies directly as . The more the value of , the more the curve portion e. The 

effects of  will reinforce those of Ki to eliminate or decrease the steady-state error. 
 

a

b

d

t

unit-step input

u(t)

0  
Figure 8. Step response of PID 

( = 1 and  = 1) corresponding to conventional PID controller 
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a

b

t

u(t)

e

unit-step input

0           
Figure 9. Step response of PID 

( < 1 and  = 1) 

 

 

a

b

t

u(t)

e

unit-step input

0  
Figure 10. Step response of PID 

( > 1 and  = 1) 

 

a

b

d

t

u(t)

unit-step input

0   
Figure 11. Step response of PID                       

( = 1 and  < 1) 

 

a

b
d

t

u(t)

c

unit-step input

0  
Figure 12. Step response of PID 

( = 1 and  > 1) 
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 Once  = 1 and  is varied, the step-responses of the PID controller are depicted in Figure 

11 – Figure 12. From Figure 11,  < 1, The portion b varies directly as . The less the value of 

, the less the portion b. For Figure 12,  > 1, The portions b and c vary directly as . The 

more the value of , the more the portions b and c. The effects of  will reinforce those of Kd 

to speed up the transient response and decrease the oscillation of the system response. 

 Study of the effects of the PID parameter tuning on system responses is conducted by 

using the second-order prototype system as stated in (25), where  is a damping ratio and n is 

an undamped natural frequency.  

  (25) 

 Five tuning parameters of the PID controller are Kp, Ki, Kd,  and . By varying  = 0.7, 

0.8, 0.9, 1, 2, 3 and, n = 1, 2, 5, 10, the effects of increasing Kp (Ki and Kd are fixed,  =  = 

1) on system responses is shown in Figure 13. It was found that the rise time (tr) is decreased, 

the maximum percent overshoot (Mp) is increased, the settling time (ts) is minor changed and 

the steady-state error (ess) is decreased. 

 Figure 14 shows the effects of increasing Ki (Kp and Kd are fixed,  =  = 1) on system 

responses. It was found that tr is minor changed, Mp are ts are increased and ess is eliminated. 

From Figure 15, the effects of increasing Kd (Kp and Ki are fixed,  =  = 1) on system 

responses are plotted. It was found that tr is minor changed, Mp are ts are decreased and ess is 

not impact. 

 

 
Figure 13. Effects of increasing Kp 

 

 
Figure 14. Effects of increasing Ki 
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Figure 15. Effects of increasing Kd 

 

 
Figure 16. Effects of increasing  

 

 
Figure 17. Effects of increasing  

 

 Figure 16 shows the effects of increasing  (Kp, Ki and Kd are fixed,  = 1) on system 

responses. It was found that tr is minor changed, Mp and ts are increased and ess is decreased. 

From Figure 17, the effects of increasing  (Kp, Ki and Kd are fixed,  = 1) on system responses 

are plotted. It was found that tr is minor changed, Mp and ts are decreased and ess is minor 

changed. Results of the study of the effects of the PID parameter tuning on system responses 

are summarized in Table 1. 

 

 

 

CS-Based Optimal

648



 

 

Table 1. Effects of PID controller on system responses 

PID 

parameters 

Step responses 

Rise time 

(tr) 

Maximum percent 

overshoot (Mp) 

Settling time 

(ts) 

Steady-state error 

(ess) 

Increase Kp Decreased Increased Minimal impact Decreased 

Increase Ki Minimal impact Increased Increased Eliminated 

Increase  Minimal impact Increased Increased Decreased 

Increase Kd Minimal impact Decreased Decreased No impact 

Increase  Minimal impact Decreased Decreased Minimal impact 

 

5. CS-Based PID Controller Design 

 Problem formulation of the CS-based optimal PID controller design for the 3-IM speed 

control system is presented. For comparison, results obtained by the PID controller designed 

by the CS will be compared with those obtained by the conventional PID controller designed 

by Ziegler–Nichols (ZN) [36, 37], Cohen–Coon (CC) [38] tuning rules and the PID controller 

designed by the CS, respectively. In this section, the PID control loop, the 3-IM model, PID 

controller design by ZN and CC tuning rules, PID and PID controllers design  by the CS are 

consecutively proposed as follows. 

 

A. PID Control Loop 

 The PID control loop is represented by the block diagram as shown in Figure 18, where 

Gp(s) and Gc(s) are the plant and the PID controller models, respectively. The PID 

controller receives the error signal E(s) and produces the control signal U(s) to control the 

output signal C(s) and to regulate the disturbance signal D(s), referring to the reference input 

R(s). 

 

PID Plant
E(s) U(s)

D(s)

R(s) C(s)

+
-

+

+

Gc(s) Gp(s)

 
Figure 18. Closed-loop system with PID controller 

 

B. Induction Motor Model 

 In this work, a 0.37 kW, 1400 rpm, 50 Hz, 4-pole three-phase induction moter (3-IM) was 

conducted. Such the motor was tested as shown in Figure 19 to record its speed dynamics. By 

using MATLAB and system identification toolbox [39], the third-order transfer function was 

identified as given in (26). Good agreement between the model plot and the experimental speed 

(sensory data) can be observed in Figure 20. The plant model in (26) will be used as the plant 

Gp(s) in Figure 18.  

  (26) 
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Figure 19. 3-IM testing rig 

 

 
Figure 20. Model plot against sensory data 

 

C. PID Controller Design by ZN 

 Referring to Figure 18, once Gc(s) is the conventional PID controller, the model Gc(s) of the 

conventional PID controller is expressed in (27), where Kc is controller gain, i is integral time 

constant and d is derivative time constant. For the first method of ZN tuning rule [36, 37], the 

delay time L and time constant T of the S-shaped curve obtained from the open-loop step 

response of the plant Gp(s) are requested. Once L and T are obtained, the PID parameters (Kc, i 

and d) in (27) can be determined from Table 2. 

  (27) 

 

Table 2. ZN tuning rule based on S-shaped step response of plant 

Controllers 
Parameters 

Kc i d 

P T/L  0 

PI 0.9T/L L/0.3 0 

PID 1.2T/L 2L 0.5L 

  

 From the 3-IM model in (26) and its open-loop step response in Figure 20, it was found 

that L = 0.0574 sec. and T = 0.4344 sec. The PID parameters can be calculated: Kc = 1.2T/L = 

9.0815, i = 2L = 0.1148 sec. and d = 0.5L = 0.0287 sec. Therefore, the PID controller 

designed by the ZN tuning rule for the 3-IM speed control system is stated in (28). 

  (28) 

 The step-input responses of the 3-IM speed control system without and with the PID 

controller designed by the ZN tuning rule are depicted in Figure 21, while the step-disturbance 
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response of the 3-IM speed control system with the PID controller designed by the ZN tuning 

rule is plotted in Figure 22. 

 

 
Figure 21. Step-input responses of the 3-IM speed controlled system without and with the PID 

controller designed by the ZN 

 

 
Figure 22. Step-disturbance response of the 3-IM speed controlled system with the PID 

controller designed by the ZN 

 

 From Figure 21, the step-input response of the 3-IM speed control system without 

controller provides tr = 0.51 sec, Mp = 0%, ts = 0.75 sec. and ess = 0, while that of the 3-IM 

speed controlled system with PID controller designed by ZN tuning rule gives tr = 0.09 sec, Mp 

= 56.14%, ts = 1.23 sec. and ess = 0. From Figure 22, the 3-IM speed controlled system with 

PID controller designed by the ZN tuning rule can regulate the step load disturbance. It yields 

the maximum percent overshoot from load disturbance regulation Mp_reg = 9.81% and the 

regulating time treg = 0.54 sec.  

 

D. PID Controller Design by CC 

 The CC tuning rule [38] requires the delay time L and time constant T of the S-shaped 

curve obtained from the open-loop step response of the plant Gp(s). Once L and T are 

measured, the PID parameters (Kc, i and d) in (27) can be determined from Table 3. 

 The 3-IM model in (26) and its open-loop step response in Figure 20 provide L = 0.0574 

sec. and T = 0.4344 sec. Therefore, the PID controller designed by the CC tuning rule for the 

3-IM speed control system is stated in (29). 

  (29) 

 The step-input responses of the 3-IM speed control system without and with the PID 

controller designed by the CC tuning rule are depicted in Figure 23, while the step-disturbance 
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response of the 3-IM speed control system with the PID controller designed by the CC tuning 

rule is plotted in Figure 24. 

 From Figure 23, the step-input response of the 3-IM speed controlled system with PID 

controller designed by the CC tuning rule provides tr = 0.09 sec, Mp = 61.24%, ts = 1.62 sec. 

and ess = 0. From Figure 24, the 3-IM speed controlled system with PID controller designed 

by the CC tuning rule can regulate the step load disturbance. It gives Mp_reg = 9.54% and treg = 

0.53 sec.  

 

Table 3. CC tuning rule based on S-shaped step response of plant 

Controllers 
Parameters 

Kc i d 

P 
 

  0  

PI 
  

0  

PD 
 

  
 

PID 
   

  

 
Figure 23. Step-input responses of the 3-IM speed controlled system without and with the PID 

controller designed by the CC 

 

 
Figure 24. Step-disturbance response of the 3-IM speed controlled system with the PID 

controller designed by the CC 

 

E. PID Controller Design by CS 

 Based on modern optimization framework, application of the CS to design an optimal PID 

controller for 3-IM speed control system can be represented by the block diagram in Figure 
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25. The objective function f, sum-squared error between the reference speed R(s) and the actual 

speed C(s) in (30), will be fed to the CS to be minimized by searching for the appropriate 

values of the PID parameters, i.e. Kp, Ki and Kd subject to inequality constraint functions 

satisfying to the predefined response specifications as stated in (31).  

  (30) 

  (31) 

 

PID 
U(s)

E(s)

C(s)R(s)

D(s)

+
-

3-IM

Gc(s) Gp(s)

CS

Kp, Ki and Kd
f

 
Figure 25. CS-based PID controller design by CS 

 

 The CS algorithm was coded by MATLAB version 2018b (License No.#40637337) run on 

Intel(R) Core(TM) i5-3470 CPU@3.60GHz, 4.0GB-RAM. Number of cuckoos n = 40 and 

fraction pa = 0.2 are set according to recommendations of Yang and Deb [19, 20]. The 

maximum generation Max_Gen = 200 is then set as the termination criteria (TC). 50 trials are 

conducted to find the best solution (optimal PID controller for the 3-IM speed control 

system).  

 Once the search process stopped, the CS can successfully provide the optimal parameters of 

the PID controller for the 3-IM speed control system as expressed in (32). The convergent 

rates of the objective functions in (30) associated with inequality constraint functions in (31) 

proceeded by the CS over 50 trials are depicted in Figure 26. The step-input responses of the 

3-IM speed control system without and with the PID controller designed by the CS are 

depicted in Figure 27, while the step-disturbance response of the 3-IM speed control system 

with the PID controller designed by the CS is plotted in Figure 28. 

 From Figure 27, the step-input response of the 3-IM speed controlled system with PID 

controller designed by the CS tuning rule gives tr = 0.11 sec, Mp = 9.05%, ts = 0.43 sec. and ess 

= 0. From Figure 28, the 3-IM speed controlled system with PID controller designed by the 

CS tuning rule can regulate the step load disturbance. It gives Mp_reg = 11.28% and treg = 0.80 

sec.  
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Figure 26. Convergent rates of CS-based PID design over 50 trials 

 

 
Figure 27. Step-input responses of the 3-IM speed controlled system without and with the PID 

controller designed by the CS 

 

 
Figure 28. Step-disturbance response of the 3-IM speed controlled system with the PID 

controller designed by the CS 

 

  (32) 

 

E. PID Controller Design by CS 

 Application of the CS to design an optimal PID controller for 3-IM speed control system 

can be represented by the block diagram in Figure 29. The objective function f, sum-squared 

error between the reference speed R(s) and the actual speed C(s) in (33), will be fed to the CS 

to be minimized by searching for the appropriate values of the PID parameters, i.e. Kp, Ki, Kd, 
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 and  subject to inequality constraint functions satisfying to the predefined response 

specifications as stated in (34).  

 

PID 
U(s)

E(s)

C(s)R(s)

D(s)

+
-

3-IM

Gc(s) Gp(s)

CS

Kp, Ki, Kd, 

 and  f

 
Figure 29. CS-based PID  controller design by CS 

 

  (33) 

  (34) 

 

 Like a case of the CS-based PID controller design, the CS algorithm was coded by 

MATLAB. In this case, the PID is implemented by MATLAB with FOMCON toolbox [40, 

41, 42] where Oustaloup’s approximation is realized for fractional order numerical simulation. 

Number of cuckoos n = 40 and fraction pa = 0.2 are set according to recommendations of Yang 

and Deb [19, 20]. The maximum generation Max_Gen = 200 is then set as TC. 50 trials are 

conducted to find the best solution (optimal PID controller for the 3-IM speed control 

system).  

 

 
Figure 30. Convergent rates of CS-based PID design over 50 trials 
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Figure 31. Step-input responses of the 3-IM speed controlled system without and with the 

PID controller designed by the CS 

 

 When the search process stopped, the CS can successfully provide the optimal parameters 

of the PID controller for the 3-IM speed control system as expressed in (35). The 

convergent rates of the objective functions in (33) associated with inequality constraint 

functions in (34) proceeded by the CS over 50 trials are depicted in Figure 30. The step-input 

responses of the 3-IM speed control system without and with the PID controller designed by 

the CS are depicted in Figure 31, while the step-disturbance response of the 3-IM speed 

control system with the PID controller designed by the CS is plotted in Figure 32. 

 

 
Figure 32. Step-disturbance response of the 3-IM speed controlled system with the          

PID controller designed by the CS 

  

  (35) 

 From Figure 31, the step-input response of the 3-IM speed controlled system with PID 

controller designed by the CS tuning rule provides tr = 0.11 sec, Mp = 3.11%, ts = 0.32 sec. and 

ess = 0. From Figure 32, the 3-IM speed controlled system with PID controller designed by 

the CS tuning rule can regulate the step load disturbance. It yields Mp_reg = 10.85% and treg = 

0.73 sec.  

 For comparison, the step-input responses and the step-disturbance responses of the 3-IM 

speed control system without, with the PID controllers designed by ZN, CC and CS and with 

the PID controller designed by the CS are plotted in Figure 33 and Figure 34, respectively. 

Entire results of step-input responses are summarized in Table 4, while those of step- 

disturbance responses are summarized in Table 5. From Figure 33 – 34 and Table 4 – 5, it was 

found that the 3-IM speed controlled systems with PID and PID controllers are stable. The 
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PID controller designed by the CS can yield faster and smoother speed response than others, 

significantly. 

 

Table 4. Entire step-input responses 

Controllers 
Step-input responses 

tr (sec.) Mp (%) ts (sec.) ess 

PID-ZN 0.09 56.14 1.23 0.00 

PID-CC 0.09 61.24 1.62 0.00 

PID-CS 0.11 9.05 0.43 0.00 

PID-CS 0.11 3.11 0.32 0.00 

 

Table 5. Entire step-disturbance responses 

Controllers 
Step-input responses 

Mp_reg (%) treg (sec.) ess 

PID-ZN 9.81 0.54 0.00 

PID-CC 9.54 0.53 0.00 

PID-CS 11.28 0.80 0.00 

PID-CS 10.85 0.73 0.00 

 

 
Figure 33. Step-input responses of the 3-IM speed controlled system without and with PID 

and PID controllers 

 

 
Figure 34. Step- disturbance responses of the 3-IM speed controlled system with PID and 

PID controllers 
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6. Stability Analysis 

 Based on Matignon’s stability theorem associated with Riemann sheet [13, 14, 32, 33, 34, 

35], the stability analysis of the 3-IM speed system controlled with the PID controller 

designed by the CS is investigated in this section. Referring to Figure 18, the closed loop 

transfer function is formulated as shown in (36).   

  (36) 

 By substituting the plant model Gp(s) in (26) and the PID controller model Gc(s) in (35), 

the closed loop transfer function in (36) becomes the transfer function in (37). 

  (37) 

 The characteristic equation and the corresponding commensurate characteristic equation of 

system are performed in (38) and (39), respectively. 

  (38) 

  (39) 

 When 
100/1sw = and 100=m  (LCM), a polynomial of complex variable w is then 

obtained as expressed in (40). 

  (40) 

 All 391 roots (poles) of a polynomial in (40) can be obtained by MATLAB. The Riemann 

surface of 
100/1sw = is depicted in Figure 35. All 391 roots are then plotted in w-plane as 

shown in Figure 36. It was found that all roots are satisfy the condition |arg(wi)| > /2m > 

/200 radian = 0.0157 radian ( 0.9 degree). It means that the 3-IM speed controlled system 

with the PID controller designed by the CS is stable. 

 

Figure 35. Riemann surface of 
100/1sw =  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Stability investigation of 3-IM speed system controlled with the PID controller 

Zoom in 
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7. Conclusions 

 In this paper, designing an optimal PID controller for the 3-IM speed controlled system 

by the CS has been proposed. Characterized by five parameters, the PID controller could 

perform the better responses once compared with the conventional PID controller. Effects of 

the PID parameter tuning on the system responses have been studies and summarized for 

control engineers. It was noticed that  will reinforce the integral gain Ki to decrease or 

eliminate the steady-state error, while  will reinforce the derivative gain Kd to speed up and 

decrease the oscillation of the system response. The CS algorithm has been briefly reviewed. 

The CS-based PID controller design framework has been formulated according to modern 

optimization context. By numerical simulation with MATLAB and FOMCON toolbox, five 

parameters of the PID controller have been successfully optimized by the CS meeting the 

predefined response specifications as inequality constraint functions. As simulation results, it 

was found that the PID controller designed by the CS performs superior to others with faster 

and smoother speed response. The stability analysis of the 3-IM speed controlled system has 

been also investigated. It was noticed that the 3-IM speed controlled system with the PID 

controller designed by the CS is stable based on Matignon’s stability theorem associated with 

Riemann sheet. For the future research, the fractional-order PIDA (PIDA) controller 

designed by the CS (or other potential metaheuristics) will be alternatively conducted to extend 

the fractional order control systems. In addition, multobjective PID/ PIDA controllers 

design framework will be studied. 
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