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Abstract: This paper presents the first ever engineering application of a recently proposed 
metaheuristic algorithm namely, Student Psychology-based Optimization (SPBO) algorithm, 
which emulates the psychology of students in a class to continuously improve their class 
performance for becoming the best student. This algorithm is implemented for determining the 
optimal locations and sizes of Photo Voltaic (PV) units to minimize the real power loss of the 
system effectively by exploiting the requirement of minimal tuning parameters. The detailed 
steps of implementation include the proposed student classification based on normally 
distributed class performance. To prove the efficacy of the proposed approach three standard 
radial distribution networks i.e., 33-node, 69-node and 84-node networks are considered. The 
results obtained not only validate the successful implementation of the SPBO algorithm to the 
DG allocation problem but also proves its superiority over other recently proposed 
metaheuristic approaches in solving optimal allocation of PV units.   
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Nomenclature 
μ Mean of normal distribution 

curve 
Nb Total no of branches of DN 

σ Spread of normal distribution 
curve 

Vmin Minimum bus voltage 

BS Best Student Vmax Maximum bus voltage 
GS Good Student 

jBI ,
branch current flowing in jth 
branch 

AS Average Student max
, jBI maximum permissible branch 

current flow of jth branch 
BAS Below average student Nn Total no of nodes of DN 

1+k
ijp performance of the ith student in 

jth subject for (k+1)th iteration 
DGloc Location of DG 

k
ijbestp ,

performance of the best student in 
jth subject for kth iteration 

PDG Size of DG (kW) 

k
rjp performance of any random 

student of the class in jth subject 
for kth iteration 

nDG No of DGs 

α parameter which is randomly 
assigned a value of either 1 or 2 

iter_max Maximum no of iterations 

k
averagep average performance of the 

student of class in kth iteration 
NS No of students in a class 

Ij current flowing in kth branch VL Lower limits of the design variable 
rj Resistance of kth branch VU Upper limits of the design variable 
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1. Introduction
Distribution utilities (DU) are now facing the crunch of growing energy demand. This

deficit of available energy and energy demand exacerbates the performance of the distribution 
network (DN). As reported in [1] almost 70% of power loss in the power system is incurred by 
the DN. One of the solutions to meet the current energy demand lies in reducing the losses in 
the DN. Therefore, DUs are constantly in search for the alternatives for power loss reduction. 
Several traditional measures that DUs look for are: (1) setting up new generating stations, (2) 
upgrading transmission and distribution infrastructures, (3), incorporating shunt capacitors 
(SC) and voltage regulators (VR) etc. But the first two options are very expensive as well as 
time consuming affairs. Though, shunt capacitors and voltage regulators offer local and 
inexpensive solution, the coordinated control of the two are quite intricate.  Further, the 
dependence of reactive power output of the SC on the node voltage and ferro-resonance effects 
has resulted in the limited use of the shunt capacitors. In last two decades, renewable 
distributed generators (RDG) are getting widespread attention in providing clean energy at 
medium voltage level. Distributed generators (DG) are the small generator units such as photo 
voltaic (PV) modules, wind generators (WG), combined heat and power (CHP), gas turbines 
(GT) etc. which are directly connected to the consumer end without any transmission and 
distribution infrastructures [2]. DGs offers several opportunities to DN in terms of: (1) 
deferring construction of new central generation plants, (2) avoiding up gradation of 
transmission and distribution infrastructures, (3) improving voltage profile, (4) facilitating loss 
reduction, (5) enhancing stability margin, (6) providing clean energy, and (7) increasing 
reliability etc. Due to rapid technological advancement, PV modules with better efficiency are 
being manufactured at large scale at a much-reduced cost which make it a promising player in 
the current energy sector. Further, it is predicted that in between 2030 to 2050, almost 10% to 
30 % of global energy demand will be served by solar PV alone [3]. 

 Table 1. A review of various recently proposed DG allocation methods 
Ref. 
No. 

Authors 
(Year) Contribution 

4 Truong et 
al. (2020) 

Proposed a Quasi-Oppositional Chaotic Symbiotic Organisms 
Search (QOCSOS) algorithm based optimal DG allocation method 
for active power loss (APL), improving voltage profile (VP) and 
enhancing voltage stability (VS). 

8 Nugen and 
Vo (2018) 

Implemented Stochastic Fractal Search (SFS) to solve OADG 
problem for minimizing APL, improving VF and enhancing VS. 

9 Gampa and 
Das (2015) 

Proposed a new voltage sensitivity and apparent load power-based 
sensitivity approach for placement of solar photovoltaic, wind and 
biomass DGs. Genetic algorithm (GA) was used to find optimal size 
of DGs considering both technical and economic factors for hourly 
average load profile. 

10 Barik and 
Das (2018) 

Considered seasonal variation in load profile and DG output for 
obtaining optimal DG sizes. 

11 Raut et al. 
(2019) 

Applied an adaptive Non-dominated Sorting Genetic Algorithm 
(NSGA-II) for obtaining optimal allocation of DGs for minimizing 
three objectives namely APL, DG operational cost (OC) and 
emission cost (EC) 

12 Nematshah
i and 
Mashhadi 
(2019) 

Proposed Distribution Locational Marginal Price (DLMP) using GA 
to solve OADG. 

13 Prassad et 
al. (2019) 

Location for DG placement is determined using power loss index 
(PLI) and Elephant Herding Optimization Algorithm (EHOA) is 
used to determine the optimal size of unity power factor (UPF) DGs 
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Ref. 
No. 

Authors 
(Year) Contribution 

and 0.9 power factor lagging DGs.  
14 Kumar et 

al. (2019) 
Formulated OADG problem in a pareto based multi-objective frame 
work to maximize the economic and technical benefits. 

15 Nagaballi 
and Kale 
(2020) 

Improved Raven Roosting Optimization (IRRO) algorithm was 
implemented for optimal deployment of DGs for maximizing 
techno-economic benefits. Further, game theory (GT) based pareto 
optimal approach was proposed for obtaining the best solutions. 

16 Suresh and 
Edward 
(2020) 

Applied a hybrid method of Grasshopper Optimization (GO) and 
cuckoo search (CS) optimization to decide the optimal allocation of 
DGs for minimizing line losses, DG Cost and improving VS. 

17 Raut and 
Mishra 
(2020) 

OADG problem was solved using a Pareto-based multi-objective 
Sine Cosine Algorithm (P-SCA) to minimize APL, enhance VS and 
reduce DG OC 

18 Khodabakh
shian and 
Andishgar 
(2016) 

Presented an Intersect Mutation Differential Evolution (IMDE) to 
simultaneously determine the optimal location and size of DGs and 
shunt capacitors (SC) in distribution networks for loss minimization. 

19 Gampa and 
Das (2019) 

Solved simultaneous DGs and SC allocation in radial distribution 
system (RDS) using a combination of fuzzy and Genetic Algorithm 
(GA)-based methodology to reduce active power and reactive power 
supply, minimize APL, improvement of branch current capacity 
(BCC), VP and VS. 

20 Mahmoud 
and 
Lehtonen 
(2019) 

Proposed a closed form analytical expression for simultaneous 
allocation of multi type DGs and SC for reactive power loss (RPL) 
minimization. 

21 Gampa et 
al (2020) 

A multi-objective frame work using Flower Pollination Algorithm 
(FPA) based pareto optimal approach was proposed for optimal 
network reconductoring of urban distribution systems integrated 
with solar DGs and SC. 

22 Almabsout 
et al. 
(2020) 

Proposed a hybrid of local search and GA for determining optimal 
placement and sizing of DGs and SC to minimize APL and total 
voltage deviation (TVD). 

23 Teimourza
deh and 
Ivatloo 
(2020) 

Formulized simultaneous DG allocation and network reconfiguration 
(NR) using a three-dimensional Group Search Optimization 
algorithm for loss minimization in RDS. 

24 Raut and 
Mishra 
(2020) 

Presented simultaneous DG allocation and NR for minimization of 
APL, enhancing VS, minimization of annual energy loss cost and 
pollutant gas emission using improved multi-objective sine cosine 
algorithm. 

25 Tolabi et 
al. (2020) 

Applied a new Thief and Police Algorithm (TPA) to determine 
optimal location and sizes of SC, photovoltaic (PV) unit, wind 
turbine (WT) unit and network reconfiguration to minimize APL, 
OC and improvement in VS of the RDS. 

26 Tran et al. 
(2020) 

Implemented Stochastic Fractal Search Algorithm (SFSA) for 
optimal allocation of DG units along with NR. 

27 Ghatak et 
al. (2017) 

Proposed an improved particle swarm optimization (PSO) technique, 
with adaptive inertia weight based on success rate to optimally 
allocate DGs and distributed static compensators (DSTATCOM) 
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Ref. 
No. 

Authors 
(Year) Contribution 

considering technical, economic and social objectives. 
28 Iqbal et al. 

(2018) 
Presented an approach for simultaneous DG and DSTATCOM 
allocation for minimization of APL and improvement in VP. 

29 Ganesh 
and 
Kanimozhi 
(2018) 

Suggested simultaneous allocations of PV arrays, DSTATCOM and 
NR using multi-objective modified FPA for APL minimization, VF 
enhancement and load balancing (LB). 

30 Gampa et 
al. (2020) 

Proposed a two-stage Grasshopper Optimization Algorithm (GOA) 
based fuzzy multi-objective approach for allocation of DGs, SCs and 
electric vehicle (EV) charging stations for distribution systems. At 
first simultaneous DGs and SCs allocation was carried to using 
fuzzy GOA approach to improve the substation power factor, APL 
reduction and improvement of VF. Later, fuzzy GOA approach was 
used for determining optimal locations for EV charging stations and 
number of vehicles at the charging stations in presence of optimally 
allocated DGs and SCs. 

31 Mukhopad
hyay and 
Das (2020) 

PSO based approach was suggested to determine optimal location 
and sizing of PV DG and battery energy storage system (BESS) 
along with NR to achieve minimum APL, improvement in VF and 
loadability. 

32 Pal et al. 
(2020) 

OADG is solved using different meta-heuristic approaches like salp 
swarm optimization (SSP), whale optimization algorithm (WOA), 
moth flame optimization (MFO), modified one by one search 
algorithm (MOBOSA) and grey wolf optimization algorithm 
(GWOA) to minimize APL and energy loss (EL). 

33 Babu et al. 
(2020) 

Applied Harris Hawk Optimization (HHO) and Teaching Learning-
Based Optimization (TLBO) to allocate different types of DGs. 

34 Khetrapal 
et al. 
(2020) 

Improved artificial bee colony (IABC) is applied to solve OADG for 
APL minimization considering different types DG units. 

35 Raut and 
Mishra 
(2021) 

Proposed an enhanced Sine Cosine algorithm for simultaneous DG 
allocation and network reconfiguration to optimize active power loss 
index, voltage stability index and voltage profile improvement 
index, total system operation cost index and expected energy not 
supplied index. 

 
 DNs traditionally operate in radial topology and are designed to be passive. However, 
inclusions of DGs affect the voltage profile and branch flows of DN as well as force it to be 
active. Therefore, the improper allocations of DG can adversely affect the DN performance by 
increasing the power loss and rise in voltage level [4].  Hence, to derive maximum benefits, 
DGs of optimal size must be inserted at appropriate node of the DN. This has inducted a lot of 
research in past decade as evident from the literature. Different methods have been suggested 
to find the optimal allocation of DGs (OADG) which can be grouped under analytical methods 
and metaheuristic methods. Though analytical methods are easy to implement and can give a 
quick solution, their uses are restricted because of inability to handle different DG parameters 
(such as type of DGs, power factor of DGs), multiple objective functions and difficulty in 
handling large DNs. But recently, meta-heuristic-based approaches are becoming popular in 
solving OADG problem as they can give near optimal solutions and can handle pragmatic 
multi-objective functions at ease. Over the past decades, OADG problem has been transformed 
from mere mono objective to multi objectives, dispatchable DGs to non-dispatchable DGs, 
deterministic loads to dynamic time varying loads, exclusive DGs allocation to allocation of 
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DGs with several other compensating devices (shunt capacitors, D-FACTS devices, energy 
storage system, network reconfiguration). A survey of some recently published papers 
concerned to DG allocation problem is presented in Table-1 
 Summaries of reviews presented above suggests, that different metaheuristic approaches 
such as QOCSOS [4], SFS [8], GA [9,12], NSGA-II [11], EOHA [13], IRRO [15], hybrid of 
GO and CS [16], P-SCA [17], IMDE [18], FPA [21], TPA [25], SFSA [26], WOA [32], SSP 
[32], MFO [32], MOBOSA [32], GWOA [32], HHO [33], IABC [34] are being applied to 
solve OADG aiming to get better quality of solution. Power loss minimization being the most 
common objective adopted by most of the earlier authors [4, 8,11, 13, 17, 18, 19, 20, 22, 23, 
24, 25, 26, 28, 29, 31,34, 35], as it directly impacts the economic savings of the DUs. Few, 
authors [27-29] have also solved OADG along with DSTATCOM without investigating the 
impact on coordinated control of these devices. As per the prevailing grid code standard [36], 
DGs operating at unity power factor only considered for integration at medium voltage level. 
Solar PVs are the fastest growing unity power factor DGs that are economically competitive 
with central power generators.  
 In light of the above discussions, the major contribution of the paper is to (1) propose the 
first ever engineering implementation of a new metaheuristic algorithm namely student 
psychology based optimization (SPBO) to solve optimal allocation of multiple PV DGs for loss 
minimization, (2) incorporate a strategy for classification of students based on normal 
distribution for implementation of the SPBO to solve OADG problem and (3) validate the 
proposed approach on three commonly used test systems i.e. 33-node 69-node, and 84-node 
DN.  
 This article is organized as follows: the newly proposed SPBO algorithm is presented with 
some modified approaches in section 2. In section 3 and 4, the OADG problem is formulated 
for the optimization with SPBO algorithm. Section 5 presents the results for the 33, 69 and 84 
node test distribution systems with a critical comparison of the results with that reported in 
recent literature. Section 6 concludes with the clear findings of the paper. 
 
2. Student Psychology Based Optimization Algorithm 
 SPBO is a recently proposed meta-heuristic algorithm that emulates the psychology of 
students to improve their performance in all the subjects offered, in order to secure the best 
position in the class [5]. Class performance of a student is often guided by several factors like 
student’s interest, efficiency and capability etc., which makes it a random process.  In order to 
imitate this, a normal distribution characterized by mean or average value (μ) and the spread 
(σ) which explicitly matches the random process of the students’ performance in a class is 
proposed in this paper as shown in Figure 1. As the psychology of an individual student to 
perform in the examination is different from others, it is also proposed to club students of 
different groups who will have similar psychology. Therefore, based on the normal 
distribution, students of a class are grouped into four categories namely: Best Student (BS), 
Good Students (GS), Average Students (AS) and Below Average Students (BAS) heuristically 
as shown in Figure 1.  

 
Figure 1. Proposed categorization of students using normal distribution. 
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 In contrast to the original SPBO algorithm, here overall student’s performance is 
considered to categorize a student into any of the aforementioned group. First of all, it helps in 
alleviating ambiguity pertaining to the classification of students, which was not explicitly 
mentioned in the paper [5]. Secondly, it allows implementation of the SPBO algorithm to real 
life engineering problem such as OADG as presented here. It also relieves computational 
burden by classifying students into different groups based on their overall performance 
considering all subject rather than considering performance in each individual subject.  
 The psychology of students to improve their performance is often different for students 
belonging to different groups. A student who secures highest mark / grade in the examination is 
regarded as the best student. For a best student it may be essential to perform better in the 
examination than any other student. So, his/her improvement in performance may be expressed 
as in (1) 

( )k
rj

k
ijbest

k
ijbest

k
ij pprandpp −××−+=+

,,
1 )1( α  (1) 

Where, 1+k
ijp is the performance of the ith student in jth subject for (k+1)th iteration, k

ijbestp ,  is 

the performance of the best student in jth subject for kth iteration, k
rjp is the performance of any 

random student of the class in jth subject for kth iteration and α is a parameter which is 
randomly assigned  a value of either 1 or 2. Students belongs to GS category often try to put 
more effort than the best student of the class so as to be the best student. Their efforts are 
represented by (2). However, some of the GS may try to put better effort than AS and at the 
same time tries to follow the BS which is clearly expressed in (3) 
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k
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                                 (3) 
Where, k

averagep  is the average performance of the student of class in kth iteration. 
In case of average students (AS), where students try to put average efforts, the performance 
may be represented as in (4). 

( )[ ]k
ij

k
average

k
ij

k
ij pprandpp −×+=+1

 (4)             
A BAS does not have any structured approach towards improving his/her performance rather it 
can be best described as a random approach as represented in (5). 

 
( )[ ]jjj

k
ij pprandpp min,max,min,

1 −×+=+

 (5)                                         
 SPBO algorithm does not have any explicit control parameters except the two trivial 
parameters like: size of the population (class size), and maximum number of iterations. Further, 
it has performed better as compared to other state-of-the-art metaheuristic approaches in 
solving standard benchmark functions as claimed in [5]. Therefore, it makes it a strong 
contender against the recent state-of-the-art metaheuristic approaches to be applied for solving 
different optimization problems. 
 
3. Problem Formulation 
 Here, SPBO algorithm is used to find the optimal location as well as size of DGs (PV units) 
for minimizing active power loss of the network while satisfying the system constraints as 
formulated below. 
 
A. Objective Function 
 From DU point of view real power loss reduction is the prime objective for insertion of 
DGs, as over a time period this power loss reduction will be reflected as energy savings. The 
power loss of the DN can be expressed as 
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1

bN

loss j j
j

P I r
=

=∑  (6)                                                

Where, Ij is the current flowing in jth branch and rj is the corresponding branch resistance. Nb 
represents the total no of branches of the network. 
So, the objective function can now be formulated as in (7) 

 )min( lossPf =  (7)      

    B. Constraints 
 The objective function defined in (7) is optimized using SPBO for the following pragmatic 
constraints. 
• Bus Voltage Constraint:  
 The bus voltage is allowed to vary within -5% to +5% of the nominal voltage. 

 maxmin VVV i ≤≤  (8) 
• Branch Flow Constraint: 
 DGs can affect the branch flow of the network. So, to restrict the branch flow in presence  
 DGs within the safe limits following constraint is defined. 

       
max

,, jBjB II ≤
 (9) 

 Where, jBI , is the branch current flowing in jth branch and max
, jBI is the maximum  

 permissible branch current flow of jth branch. 
• DG Position Constraint: 
 The nodes for DG integration are generated using (10) without any repetition 

 NnDGloc ≤≤2  (10) 
• DG Capacity Constraints: 
 The sizes of DGs must be within its capacity limit as defined in (11) 
 ∑∑ ×<<× ilDGil PPP ,, 6.01.0  (11)  
  
4. Implementation of SPBO Algorithm to OADG 
A. Generation of initial population 
 In this work SPBO algorithm is used to determine the optimal location and size of the DGs 
to be placed in the DN for minimizing the real power loss. In SPBO algorithm each feasible 
solution vector (Pi) is termed as performance of the students while each entry (pij) represents 
performance in different subjects. The solution vectors contain location and size of DGs for a 
specified number of DGs (nDG) as expressed in (12).  
 [ ]

nDGDGiPDGiDGinDGiiii PPlocloclocP
,,...1,1,,2,1, ,,,...,=  (12) 

These solutions are randomly initialized which are uniformly spread across the entire solution 
space as expressed in (13) & (14). 
 ))(( min,max,min, iiii loclocrandlocroundloc −+=  (13)  
 )( min,max,min,, DGiDGiDGiiDG PPrandPP −+=  (14) 
 
B. Detail steps of Implementation 
 The detailed steps for implementing SPBO algorithm to OADG problem is outlined below. 
Step 1: Input the system data i.e., line data and load data 
Step 2: Set nDG, maximum iteration (iter_max), no of student (NS), lower (VL) and upper 
limits (VU) of the design variable. 
 

Optimal Allocation of Photo-Voltaic Units in Radial Distribution 

324



 
 

Step 3: Randomly generate the initial class performance as [ ]TNSpppP ,...,2,1= where each 
P contains the location and size of DG. 
 
Step 4: Evaluate the initial class performance using (7). This is done by performing load flow 
[6] 
 
Step 5: Set the iteration counter k = 1. 
 
Step 6: Classify students into different group such as BS, GS, AS, BAS 
 
Step 7: Update the class performance of each student belonging to different groups using (1-5) 
as applicable. 
 
Step 8: Evaluate the performance of the class for updated class using (7) 
 
Step 9: If the present class performance is better than the previous class performance then 
replace the previous class with present class. 
 
Step 10: If maximum iteration is reached then go to step 11 else increment the iteration counter 
k=k+1 and go to step 6. 
 
Step 11: Print the best solution 
 
5. Result and Discussion 
 To validate the proposed approach, three standard test system i.e., 33-node 69-node, and 
84-node radial DN were considered. SPBO algorithm is implemented with necessary 
modification to obtain the optimal location and size of the DGs for real power loss 
minimization. A forward backward based load flow [6] is used to evaluate the objective 
function. Best results are recorded for 10 independent runs of the algorithm on the three test 
systems. Interestingly, except initial population size and maximum number of iterations, the 
algorithm does not have any implicit parameters to be tuned.  For each case, a class size of 40 
and maximum iterations of 150 were set. In this study, photovoltaic DGs capable of injecting 
real power only have been considered. The sizes of DGs are varied as expressed in (11) and 
total three no of DGs were considered for integration. The proposed algorithm is programmed 
in MATLAB R2016a environment on a pc with Intel(R) Core (TM) i3-6006U CPU @2.00 
GHz, 4GB RAM. 
 
A. 33-node DN 
 The proposed approach is first tested on a 33-node radial distribution network [7] which has 
a total real and reactive power demand of 3715 kW and 2300 kVAr respectively. The said test 
system has a real and reactive power loss of 210.98 kW and 143.02 kVAr respectively prior to 
the integration of DGs into the network. The system experiences a minimum voltage of 0.9038 
p.u. at 18th node. 
 In Table 2, the optimal allocations (locations and sizes) of DGs for minimizing real power 
loss of the system using proposed approach is presented. Table 2 also compares the best results 
obtained by recently reported different optimization techniques to determine the locations and 
sizes of DGs to optimize the real power loss.  Using SPBO algorithm the real power loss of the 
system has been reduced from 210.98 kW to 72.1382 kW which is the lowest among the 
reported approaches. Locations for DG integration obtained by the proposed method are 
different than other reported methods except for the node no. 24. Figure 2 shows the 
convergence characteristic of the proposed SPBO algorithm in optimizing the real power loss 
of the DN. Voltage profile and branch current profile of the DN with and without integration of 
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DGs are depicted in Figure 3 and Figure 4 respectively. It is clear that in presence of the DGs 
the system operates at a much better voltage profile than without DGs and the application of 
SPBO results in better voltage and current profiles compared to the other three methods [2,4,8]. 
A reversal of branch flow can be noticed in branches adjacent to the DGs interconnected nodes. 
However, the magnitude of these reverse currents is the lowest in the proposed method as 
compared to the other reported methods as seen in Figure 4.  
 

Table 2. Comparison of results for 33-node DN 

Methods DG 
Location 

DG Size 
(MW) 

 
Ploss 
(kW) 

 

MRFO [1] 
24 1.0171 

72.876 13 0.7882 
30 1.0353 

QOCSOS [4] 
13 0.8017 

72.7869 24 1.0913 
30 1.0537 

SFSA [8] 
13 0.8020 

72.785 24 1.0920 
30 1.0537 

SPBO 
(Proposed) 

24 1.2375 
72.1382 29 1.3152 

14 0.8230 
 

 
Figure 2. Convergence characteristic of SPBO algorithm for 33-node DN 
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Figure 3. Voltage profile of 33-node DN with and without DGs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Branch current of 33-node DN with and without DGs 
 
 

 
 
  
 
 

 
 

 
 
 
 
 

 
 

Figure 5. Branch power loss of 33-node DN with and without DGs 
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 In Figure 5, a comparison of branch loss profiles for the base case along with for all 
compared methods have been presented for the 33-bus system. It is worth noting that in 
presence of optimally allocated DGs the branch-wise power loss is significantly reduced than 
the base case system.  
 
B. 69-node DN 
 The proposed approach is then tested on a 69-node radial distribution network [7] which 
has a total real and reactive power demand of 3791.9 kW and 2694.1 kVAr respectively. The 
said test system has a real and reactive power loss of 224.92 kW and 102.13 kVAr respectively 
prior to the integration of DGs into the network. The system experiences a minimum voltage of 
0.9092 p.u. at 65th node. 
 In Table 3, the optimal allocations (locations and sizes) of DGs for minimizing real power 
loss of the system using proposed approach is presented. Table 3 also compares the best results 
obtained by recently reported different optimization techniques to determine the locations and 
sizes of DGs to optimize the real power loss.  Using SPBO algorithm the real power loss of the 
system has been reduced from 224.92 kW to 68.6447 kW which is the lowest among the 
reported approaches. Locations for DG integration obtained by the proposed method are 
different than other reported methods except for the first node. Figure 6 shows the convergence 
characteristic of the proposed SPBO algorithm in optimizing the real power loss of the DN. 
Voltage profile and branch current of the DN with and without integration of DGs are depicted 
in Figure 7 and Figure 8 respectively. It is clear that in presence of the DGs the system operates 
at a much better voltage profile than without DGs. The voltage profile obtained by the 
proposed SPBO algorithm is almost similar to the other six algorithms as reported in literature. 
A reversal of branch flow can be noticed in branches adjacent to the DGs interconnected nodes. 
However, the magnitude of this reverse current is negligible as can been from Figure 8. 
Further, the current drawn from the substation is minimum for results obtained by SPBO than 
rest of the methods as apparent from Figure 8.  
   

Table 3. Comparison of results for 69-node DN 

Methods DG 
Location 

DG Size 
(MW) 

 
Ploss 
(kW) 

 

MRFO [1] 
61 1.7134 

69.4256 18 0.3691 
11 0.5242 

QOCSOS [4] 
11 0.5269 

69.4284 18 0.3803 
61 1.7190 

SFSA [8] 
11 0.5273 

69.428 18 0.3805 
61 1.7198 

GWO [32] 
11 0.5415 

69.51 18 0.4063 
61 1.7514 

MFO [32] 
11 0.527 

69.419 61 1.719 
18 0.380 

HHO [33] 
11 0.5421 

69.431 17 0.3726 
61 1.7158 

SPBO 
(Proposed) 

49 0.7039 
68.6447 15 0.6088 

61 1.7932 
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Figure 6. Convergence characteristic of SPBO algorithm for 69-node DN. 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 

Figure 7. Voltage profile of 69-node DN with and without DGs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Branch current of 69-node DN with and without DGs 
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Figure 9. Branch power loss of 69-node DN with and without DGs 

 
 In Figure 9, a comparison of branch loss profiles for the base case along with for all 
compared methods have been presented for the 69-bus system. It is worth noting that in 
presence of optimally allocated DGs the branch-wise power loss is significantly reduced than 
the base case system.  
 
C. 84-node DN 
 The proposed approach is also tested on a 84-node radial distribution network [7] which has 
a total real and reactive power demand of 28350 kW and 20640 kVAr respectively. The said 
test system has a real and reactive power loss of 530.91 kW and 1370.7 kVAr respectively 
prior to the integration of DGs into the network. The system experiences a minimum voltage of 
0.9285 p.u. at 10th node. 
 In Table 4, the optimal allocations (locations and sizes) of DGs for minimizing real power 
loss of the system using proposed approach is presented. Table 4 also compares the best results 
obtained by recently reported different optimization techniques to determine the locations and 
sizes of DGs to optimize the real power loss.  Using SPBO algorithm the real power loss of the 
system has been reduced from 530.91 kW to 359.6663 kW which is the lowest among the 
reported approaches. Locations for DG integration obtained by the proposed method are 
different than other reported methods except for the first node. Figure 10 shows the 
convergence characteristic of the proposed SPBO algorithm in optimizing the real power loss 
of the DN. Voltage profile and branch current of the DN with and without integration of DGs 
are depicted in Figure 11 and Figure 12 respectively. It is clear that in presence of the DGs the 
system operates at a much better voltage profile than without DGs. The voltage and current 
profile obtained for OADG solved by SPBO and SFSA [26] are almost overlapping because of 
the almost similar capacities of PV DGs as reported in Table 4. A reversal of branch flow can 
be noticed in branches adjacent to the DGs interconnected nodes. However, the magnitude of 
this reverse current is negligible as can been from Figure 12.  In Figure 13, a comparison of 
branch loss profiles for the base case along with for all compared methods have been presented 
for the 84-bus system. It is worth noting that in presence of optimally allocated DGs the 
branch-wise power loss is significantly reduced than the base case system.  
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Figure 10. Convergence characteristic of SPBO algorithm for 84-node DN 

 
Figure 11. Voltage profile of 84-node DN with and without DGs 

 

 
Figure 12. Branch current of 84-node DN with and without DGs 
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Table 4. Comparison of results for 84-node DN 

Methods DG 
Location 

DG Size 
(MW) 

 
Ploss 
(kW) 

 

SFSA [26] 
80 3.5847 

359.7211 72 2.8350 
7 3.1389 

SPBO 
(Proposed) 

7 3.0118 
359.6663 73 2.6207 

80 3.6140 

 
 

Figure 13. Branch power loss of 84-node DN with and without DGs 
 

6. Conclusion 
 In this paper simultaneous placement and sizing of multiple PV units using a newly 
proposed student psychology-based optimization algorithm has been carried out for minimizing 
the real power loss of the system by considering realistic constraints. In order to implement the 
SPBO algorithm to a first ever engineering problem such as OADG, the proposed student 
classification scheme based on normally distributed student performance has been successfully 
incorporated. To prove the superiority of the proposed approach, it has been validated on three 
standard test systems namely 33-node, 69-node and 84-node radial distribution networks. The 
results obtained have been compared with the recently proposed metaheuristic approaches 
(SFSA, MRFO, QOCSOS, GWO, MFO, HHO) for solving OADG problem and it has been 
found that the proposed method has been able to obtain the better solutions each time. Further, 
all considered systems have also been found to operate at much better voltage profiles with 
zero branch flow violations in presence of optimally allocated PV-DGs.  
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