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Abstract: Some speed synchronization techniques of multiple electric motors system are well 

known such as master reference, master slave and cross coupling. The cross coupling technique 

is only applicable for two motors system whereas the master slave technique can be applied to 

more than two motors but it provides a poor synchronization performance. This paper offers a 

hybrid cross coupling - master slave (CC-MS) technique with master selector for angular speed 

synchronization which can be applied to more than two motors. In order to evaluate performance, 

this paper also proposes two performance indexes i.e. regulation performance index PI1 and 

synchronization performance index PI2. A proportional integral derivative (PID) controller is 

equipped at each motor for speed feedback, and the speed coupling between motors is facilitated 

by a coupling constant. An on-line master selector automatically selects the motor with the largest 

load as the master when the system is working. Values of the PID controller gains and the 

coupling constant are determined using the pole placement method. The proposed hybrid CC-

MS technique has been evaluated through computer simulations using a vehicle with four 

permanent magnet synchronous motors (PMSMs) in Matlab-Simulink® environment. The 

vehicle is simulated moving at a downhill track where the load of four PMSMs drops one by one 

in sequence. Performance comparison was carried out between the proposed technique and the 

previously published techniques: master reference and CC-MS without master selector. 

Simulation results show that the proposed technique gives smaller PI1 and PI2 than the other two 

techniques.   
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1. Introduction 

 Drive train components and control with outstanding efficiency are essential, for the reason 

of approximately 70% of the total energy consumption in electrical transportation or industrial 

are electric motor [1]. Selection of type, controller and topology for electric motor becomes very 

important. The PMSM motor is chosen because it offers significant advantages in low inertia, 

high efficiency, reliability and high energy density (Sebaa, Hassaine, & Ogab, 2017). Multi 

motors work together to serve huge load in industrial and transportation. Multi motors with single 

inverter has been used by Kelecy, Matsuse and Jiangbo [2,3,4] for induction motor and by 

Chiassonet, Fadel and Bidart [5,6,7] for PMSM. In train application, synchronization error 

between wheels causes slip and skid which in turn leads to wheel damage and energy dissipation. 

Multi PMSMs with single inverter had different disadvantages based on the used technique. 

Using master slave technique, only one PMSM was controlled while the others were 

uncontrolled. Meanwhile by using the average technique, the disadvantage was the controller 

always take the middle value. Those disadvantages could cause power losses and difficult to 

apply for vehicle with variable speed control [7]. 

 Multi PMSMs with multi inverters system is chosen due to a better control coordination, can 

be applied for variable speed control [8] and also has good efficiency [9]. This system requires 

speed synchronization during acceleration, deceleration and load changes [10]. The existing 

speed synchronization techniques are master reference, master slave, cross coupling and 

electronic virtual line shafting (EVLS).  
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 The master reference control is the most basic uncoupled synchronization technique because 

each controller gets speed reference respectively so that each motor does not affect each other. 

Master slave technique feeds speed reference to the master PMSM and then the output speed will 

become speed reference for the next PMSM (slave PMSM), so a series arrangement enables any 

disturbance that happens to the master to influence subsequent slaves whereas the variations of a 

slave cannot give feedback to its master [11]. PMSMs with large moment of inertia are often 

chosen as the masters. Master slave technique is recommended for industrial application where 

multi PMSMs operate in sequence and regulation errors are major consideration.  

 In cross coupling technique, the feedback consist of output speed and relative speed 

differences between motors. The relative speed differences feedback is multiplied by a weighting 

gain constant to be regulated rapidly without ripple, and also this feedback makes degree of 

tightened coupling increase [12]. The disadvantage of cross coupling technique is that it is 

difficult to extent the arrangement for more than two motors. Zhang et.al applied the cross 

coupling technique to a system with more than two motors by using relative speed differences 

feedback calculated from adjacent PMSMs [13], while Jianzhong et.al also applied the same 

technique using ring sequential feedback [14]. Those techniques are running well for the system 

with more than two PMSMs but have calculation complexity.  

 EVLS technique mimics a mechanical synchronization where mechanical shaft line is 

replaced by virtual shaft line. EVLS Technique gives speed and position reference signal to each 

PMSM controller. However, it is not suitable for position control. Mechanical system produce 

losses 14% higher compared to EVLS technique. Jian li [15] has showed that EVLS has good 

synchronization performance but quite complex and requires load inertia estimation. 

 A combination of cross coupling technique and master slave technique has been done in 

previous research called CC-MS [16]. The CC-MS has tightened coupling as shown by cross 

coupling technique, and it can also be applied to three PMSM as well as slave master technique. 

Tuning of proportional, derivative, and integral constants of PID controller used the Ziegler 

Nichols method while the calculation of feedback using the Routh criterion. Basically, the CC-

MS technique is a cross coupling technique, but the relative speed difference is between the 

angular velocity of the master PMSM and the slaves, which is similar to the master slave 

technique. The simulation results of the CC-MS technique show excellent maximal overshoot 

but with moderate synchronization performance and poor regulation performance [16]. 

 This paper proposes a new synchronization technique that is called hybrid CC-MS, where a 

master selector is added to the original CC-MS system. Therefore, in the hybrid CC-MS every 

PMSM can act as master and also slave depending on the load. In section 2, mathematical model 

of PMSM is described. Section 3 presents the proposed hybrid CC-MS synchronization 

technique. The PID controller constants and the speed coupling feedback gain are calculated 

using the pole placement method. Control strategy and modulation technique for PMSM are 

performed by using hysteresis current control. Section 4 reports simulation results and discussion 

where a performance comparison is done by using performance index measurements. The 

simulation is conducted using Matlab-Simulink®. Performance comparison is carried out 

between the proposed technique and the previously published techniques. Finally, conclusion is 

drawn in section 5. 

 

2. Mathematical model of PMSM 

 Electrical model of a non salient PMSM can be represent by equation (1) and (2) [17,18]. 

 

 qsimP
sL

dsV

sL

dsisR
dsi

dt

d
−+

−
=  (1)  

 
sL

afdsisLm
p

sL

qsV

sL

qsisR

qsi
dt

d )(  +
++

−
=   (2) 

 

 

Kristian Ismail, et al.

184



 

 

Electro mechanical model of the PMSM is given by equation (3) and (4). 
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Where: 

 𝑉𝑑𝑠 , 𝑉𝑞𝑠  Voltage of direct and quadrature axis (volt) 

 𝑖𝑑𝑠 , 𝑖𝑞𝑠   Current of direct and quadrature axis (amp) 

 𝐿𝑠          Stator Inductance (H) 

 𝑅𝑠          Stator Resistance (Ω) 

 𝜔𝑚 , 𝜔𝑒   Mechanical and field rotating speed (rad/s) 

               𝜔𝑒 = 𝑝 𝜔𝑚  

 𝑇𝑒𝑚 , 𝑇𝐿   Electromagnetic and load torques (Nm) 

 J             inertia (kgm2)  

 P            pole pair 

 B           friction coefficient (N.m.s/rad) 

 Φaf        Permanent magnet flux (Wb) 

 

 Figures 1(a) and 1(b) show Matlab-Simulink® simulation block diagram of equations (1), 

(2), and (3), respectively.  

 
Figure 1. Simulation block diagram of PMSM: (a) electrical model and  

(b) electro mechanical model 

 

 Mathematical model of the PMSM could be presented in a state space form with zero current 

at direct axis (control properties isd = 0) by equation (5): 
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and the speed as an output could be expressed as equation (6): 
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From equations (5) and (6) a transfer function is obtained as given by equation (7): 
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 Hysteresis current control is used as control strategy. Hysteresis current control PWM is a 

current control feedback method of PWM, where the actual current continually tracks the 

command current within a hysteresis band. Figure 2 shows a block diagram of PMSM model at 

Matlab-Simulink®. There are two main blocks those are a block for the electrical model and a 

block for the electro mechanical model. 

 
Figure 2. Simulink model for single PMSM with Hysteresis current controller 

 

3. Proposed Synchronization Technique 

  

 
Figure 3. Proposed synchronization technique 

 

 In this paper, a master selector is added to the CC-MS system in order to improve 

performance (red box with dashed line in Figure 3). The PMSM with the largest load is selected 

as a master. The master selector block compares all loads, where TL1, TL2, TL3 and TL4 act as 

inputs. The master selector find the largest load from the inputs using min-max function block, 

but it only has one output which is the largest value. To determine the largest value belong to 

who, the output from the min-max function compared to each load. The output of the master 

selector block is the input state for the cross coupling algorithm (S1, S2, S3 and S4). The input 
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state is 1 for the state of the master and 0 for the slave. In one time there is only a state value of 

1 and three state values of 0. 

 The coupling constant 𝐾𝑐 for relative speed differences feedback between master PMSM and 

slave PMSMs needs to be calculated in the proposed synchronization technique. 𝐾𝑐 is positive 

real number and Uci is value for speed coupling feedback. Speed coupling feedback values for 

master and slave are calculated by equation (8a) and (8b).  
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=

+−=
3

1

)
3

1
(

j
jcKicKciU  , i :=master, j:= slave, state:=1 (8b) 

 

Where 𝑈𝑐𝑖  is the feedback of speed coupling, and i ≠ j.  

 The probability of value i is three of 1,2,3,4 while j is equal to one of the values not i. The 

coupling constant 𝐾𝑐 and the controller 𝐶(𝑠) are designed in order to give good regulation 

performance and synchronization performance, while keeping the system stability. The control 

topology of each PMSM can be expressed in figure 4. 𝜔𝑟𝑒𝑓  is the main reference and  𝜔∗ is an 

internal reference. 

 
Figure 4. Block diagram of closed loop PMSM: (a) for slave and (b) for master 

 

G(s) is transfer function of each PMSM that is given by equation (7). 𝐶(𝑠) is a PID controller 

with a transfer function given by equation (9).  
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(Kp, Ki, Kd) are the proportional, integral, and differential gains. The close loop transfer function 

from internal reference 𝜔∗ to angular speed 𝜔𝑖  from Figure 4 is given by equation (10).  
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 The pole placement is used to determine the PID controller gains and the coupling constant 

values. In the generic form the performance characteristics of transfer function at equation (11) 

is adopted [19]. 
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 When a single motor is used, integral absolute error is commonly used as a regulation 

performance [20]. Since four motors are used, this paper proposes regulation and synchronization 

performance indexes as given in equation (12) and (13). 
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Where: 

 PI1     Regulation performance index  

 PI2     Synchronization performance index 

 i         1,2,3,4  

 ωmin(t) the lowest angular speed among all the PMSMs at time t. 

 ωmax(t) the highest angular speed among all the PMSMs at time t. 

 

4. Simulation result and discussion 

 Evaluation of multi-motors system is done by simulating a vehicle in a downhill track where 

the four PMSM loads drop one by one in sequence. Load disturbance step function for each 

PMSM occurs at different time, and the timing are PMSM1 at 0.8 second, PMSM2 at 0.6 second, 

PMSM3 at 0.4 second and PMSM4 at 0.2 second. Computer simulations were conducted in 

Matlab-Simulink® environment, and the simulation results are output speed in revolutions per 

minute (RPM). The PMSM parameters values are the same for all four motors and table 1 are the 

parameters used in the simulation.  

 

Table 1. PMSM Parameter 

Parameter Value (unit) 

Rs – stator Resistance 2,875 (Ω) 

af –magnet permanent flux 0,75 (Wb) 

B –friction coefficient 0,0002 (N.m.s/rad) 

Ls –stator inductance (for d and q axis) 0,0085 (H) 

P – pole pairs 4 

J –motor inertia 0,0008 (Kg.m2) 

 

By substituting the PMSM parameters values in table 1, the state space model in equation (6) 

becomes (14). 
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The transfer function in equation (7) and the close loop transfer function in equation (10) now 

become equation (15) and (16), respectively: 
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 After several trial and error through computer simulations, natural frequency n, dumping 

ratio ζ, α, and the coupling constant 𝐾𝑐 are selected equal to 700 rad/sec, 0.77, 1, and 1.5, 

respectively. The performance characteristics in equation (11) now becomes that in equation (17).  
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 From equation (16) and (17), the following PID controller gains are obtained: Kp = 4.556, Ki 

= 1332.76, Kd = 0.0056. 

 In the simulation the speed reference is 1500 rpm and in one second duration where the load 

drop one by one every 0.2 second, the result as shown in figure 5 is four PMSMs speed 

synchronization using CC-MS without master selector. All PMSMs have the same loads so that 

angular speed for all PMSMs are coincide and no regulation error exists as long as the load is 

unchanged. Inset in Figure 5 is PMSM1 apply as master PMSM where black line is PMSM1 and 

the red line is PMSM2, PMSM3, and PMSM4.  Peak of angular speed regulation error is 31 rpm 

and the regulation error occurs during 0.04 second.  

 

 
Figure 5. Simulation result using CC-MS without selector  

(inset is speed during load change) [16] 

 

 
 Figure 6. Simulation result using the proposed hybrid CC-MS technique  

(inset is the speed during load change) 
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 Figure 6 is simulation result for multi PMSMs with master selector. All PMSMs have the 

same loads so that angular speeds for all PMSMs are coincide and there almost no regulation 

error as long as the load is unchanged. The dashed blue line and the red line shown in the inset 

Figure 6 is PMSM1 and PMSM4, respectively. The black solid lines are the coincide lines for 

PMSM2 and PMSM3. PMSM4 acts as the master PMSM when the load at PMSM1 is dropped. 

Peak angular speed regulation error is 11 rpm and the regulation error occurs during 0.02 second.  

 Figure 7 shows synchronization performance indexes, which is 7 (a) indicates that without 

master selector the peak of synchronization error during load change is 11 rpm. Figure 7 (b) 

shows that with master selector the peak of synchronization error during load change is also 11 

rpm but with shorter duration. 

 

 
Figure 7. Synchronization performance indexes: (a) without selector and (b) with selector 

 

 Figure 8 shows regulation performance indexes, whereas 8 (a) indicates that without master 

selector the peak of regulation error during load change is 16 rpm, and figure 8 (b) shows that 

with master selector the peak of regulation error during load change is consistently 3 rpm.  

 

 
Figure 8. Regulation performance indexes: (a) without selector and (b) with selector 
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Table 2. Performance comparison 

Parameters 
Proposed 

technique 

Previous 

technique 

[16] 

Master 

reference 

technique 

Regulation performance index (PI1) 0.07119 0.9678 0.07553 

Synchronization performance index 

(PI2)  
0.1118 0.1804 0.1489 

Peak of regulation error under load 

change at time 0.8 s  
11 rpm 31 rpm 11 rpm 

 

 Performance comparison between the hybrid CC-MS synchronization technique and the 

master reference synchronization technique was also performed. The simulation for master 

reference synchronization used the block diagram in figure 3, but the coupling constant is zero 

and the PID controller were re tuned.  

 Table 2 shows the performance comparison between the master reference, the system without 

master selector (using the CC-MS technique which was previously published) and the system 

with master selector (the proposed hybrid CC-MS technique). Despite showing the same peak 

values, the synchronization performance index shows lower values for the system with the 

selector than the system without selector and the master reference technique. This may be caused 

by a shorter duration for system synchronization errors with the selector rather than system 

without selector (Figure 7 (a) and Figure 7 (b)). The regulation performance index shows a lower 

value for the system with master selector than the system without master selector and the master 

reference technique. This may be caused by peak performance index error when the load changes. 

The performance index error of the system with master selector (figure 8 (b)) is much lower than 

the system without selector (figure 8 (a)). Performance indexes for synchronization and 

regulation of the master reference technique show lower values than system without master 

selector but still higher than the system with the master selector. 

 

5. Conclusion 

 This paper has presented a hybrid CC-MS technique for speed synchronization of PMSMs 

with on line master selector. Simulation results show that the proposed method can be applied 

for synchronization of four PMSMs with good performance: fast recovery time, very small 

regulation error and small synchronization error when there is load change. The regulation 

performance index for the system with the selector is close to one tenth of the system without 

selector while the synchronization performance index for the system without selector is fifty 

percent higher than the system with the selector. The regulation performance index for the master 

reference technique is ten percent higher than the system with the selector while the 

synchronization performance index for the system with the selector is close to three quarters of 

the master reference technique.  
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