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Abstract: A new method for islanding and non-islanding disturbances detection and 

classification is proposed for a multiple PV based distributed generation (DG) system utilizing 

adaptive multi-scale morphological filter (AMF) and random vector functional link network 

(RVFLN) classifier. In comparison to different signal analysis techniques, the mathematical MF, 

that has wide application in power signals, EEG signal analysis, image processing, pattern 

recognition, etc. posses the benefit of easy execution, fast processing, and minimal computations. 

Further it is well known that a single scale morphological filter has limited noise filtering 

capacity and may also filter useful signal disturbance components resulting in erroneous 

detection of disturbance signals in microgrid. Therefore, an adaptive multiscale combined 

morphological filter is presented in this paper built on the concept of multiscale overall filtering 

which has better denoising effect and can retain useful signals better than the traditional filter. 

The proposed technique is built upon the measurement of voltage signal samples and the 

processing of these signals through AMF has been done for feature extraction. The extracted 

features are then employed as inputs to an efficient, fast, and easily implementable randomized 

network based classifier (RVFLN) which is made robust to reject the presence noise and outliers 

in the signal data. The outputs exhibited from the suggested technique concludes that it is s very 

fast and accurate technique for the detection and classification of islanding and non-islanding 

events in comparison to the widely used approaches.  

Index Terms: Microgrid, RRVFLN, Adaptive Multi-scale Morphological Filter (AMF), Pattern 

Recognition, Islanding, and Non-islanding Disturbances. 

1. Introduction

The utilization of renewable energy sources have been raising day by day because they can

serve electricity near to the customer premises. Previously, the power has been generated in a 

bulk amount and transmitted via long distance transmission lines to the customers. But while 

using this traditional technique, there are many problems occurs. The main problem is the 

transmission loss and also the size of the generation system. To overcome these difficulties, the 

use of distributed generation (DGs) systems has been implemented. Distribution generation 

systems are much more reliable and efficient than traditional ones. There are many sources of 

electricity that have been used now a day’s such as, solar, wind, fuel cells, biomass, geothermal 

etc. Thus these DGs are very useful to solve the environmental problems using these renewable 

sources. In any microgrid, an islanding condition occurs if the DG continues to supply the power 

to the loads/network without the main utility supply. Islanding condition will be very harmful 

for field workers. Due to islanding the voltage and frequency of the signal transferred to the 

customer side will change which can damage the equipments used by the users. Thus, it becomes 

important to detect islanding as soon as it occurs. In another way, we can say that the DG should 

be rigged with an anti-islanding prevention or loss of mains protection which needs to catch the 

loss from the grid and should trip the connected DG from the grid. As per IEEE standard 1547, 

the islanding should be detected within 0.2sec. To maintain the safety all the DGs should operate 

only when the utility supply is present. Uncertainties associated with islanding and non-islanding 

events occurring on a microgrid pose certain challenges that may require dynamic thresholding 
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for the events both during islanding and grid connected modes. Threshold selection is a huge 

challenge in case of islanding operation due to non detection zone.  

For islanding detection, in literature, there have been found many techniques. It can be 

passive, active or communication based techniques. There are many active techniques used in 

the literature, such as, automatic phase shift [1], voltage drift [2], voltage unbalance and total 

harmonic distortion [3], Sandia frequency shift [4,5], negative sequence voltage [6], impedance 

measurement [7], energy of rate of change of voltage phase angle and frequency and its rate of 

change [8,9], bilateral reactive power variation [10] and so on. Active method is basically a small 

injection of perturbation which creates a vast change when there is islanding [11,12,13]. These 

techniques are beneficial because they have less non detection zone. But these techniques carry 

some demerits such as, system instability; power quality deterioration; also the performance 

reduces for multiple DG based systems. Here, this paper focuses on the passive methods. Passive 

methods can be frequency domain methods or time domain methods. Pattern recognition based 

methods are also considered as passive methods. Different frequency domain methods found in 

literature like rate of change of frequency relay and rate of change of phase angle difference relay 

[14],  S-Transform [15,16], wavelet transform [17] to extract the frequency domain patterns. 

These rate of change of phase angle difference relay and rate of change of frequency relay 

methods give good results when the difference between the loads and the generation is 

significant. But when the difference is less the accuracy of these methods deteriorates. To reduce 

the non detection zone the signal processing methods WT, ST [18,19] have been introduced. A 

new cross-correlation anti-islanding detection technique has been introduced by Voglitsis et al 

[20]. Comparison of the signal processing techniques provided in [15,21] for islanding event. 

Also a passive islanding detection technique by WPT is given in [22]. Different pattern 

recognition techniques have been compared by Faqhruldin et al. [23] for islanding detection.  

Further different non-islanding disturbances like voltage swells, voltage sags, capacitor 

switching, balanced / unbalanced load switching, different types of faults occur in the microgrid 

due to momentary interruptions, short-circuits, and power electronic converters (DC-DC 

converter and voltage source inverter) operations required for distributed generations (DG) 

integration. These disturbances assume significant importance during both islanding and grid 

synchronous operational modes [18, 19, and 21]. The islanding scenario contains serious 

challenges and therefore requires to be detected as early as possible (within 2 sec) to avoid 

instability and equipments burnout [18]. Further the threshold values for islanding and some of 

the above mentioned disturbances, detection depends significantly on DGs’ operational modes 

[18]. Hence, the detection of both the islanding and non-islanding problems in microgrid is 

necessary to reduce the damages in various components. In recent years some new machine 

learning and signal decomposition techniques have been presented for islanding and non-

islanding disturbance studies [19,24,25,39-43]. However, all the proposed approaches are fairly 

complex and their accuracy depends on the selection of filters, neurons, and their activation 

functions. 

On the other hand, mathematical morphology [26-30] is a time domain signal processing 

method that uses only addition and subtraction for the calculations resulting in the reduction of 

the memory space and the detection time as well. Due to its simplicity and effectiveness it has 

extensive applications in different areas, like image processing, fault analysis in power systems, 

islanding detection in microgrids and vision detection, etc. Further it can be used to make 

translation matching and local correction of the original signal from front to back by constructing 

a certain structuring element (SE), and the morphological characteristics of the original signal 

are preserved while the noises are suppressed. In multiscale morphology, as a standard of 

measure, the structure element operator plays a major role in feature extraction from the shape 

of signals. Taking advantage of scale features of a structure element, signals can be decomposed 

into different scales in time zone. There are a multitude of shapes, such as flat SE, triangular SE, 

circular SE, semicircular SE, etc. Mathematical Morphology is less complex than WT and ST 

and has been used for the detection of passive islanding in [26]. In [26] the authors have used 

morphological wavelets for processing both islanding and non-islanding disturbance signals. 
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Although there are several machine learning based classifiers like decision tree, support 

vector machines, Adaptive fuzzy network systems, Artificial neural networks (ANN), 

randomized neural networks like ELM and RVFLN [31-34], etc., the RVFLN is found to be a 

superior candidate for pattern classification. It is a one layer feed forward neural network with 

direct link from input layer to output layer. The weights to inputs are assigned ranomly and 

pseudo inverse least square method is executed to compute the output weights. The architecture 

of RVFLN is very simple, learning speed is very fast and it also has good generalization 

performance which makes this model more efficient for both regression and classification tasks. 

The iterative tuning of weights is not required in case of RVFLN which may lead faster 

convergence, lesser training error and easy computation. Thus, in this work, a new integrated 

idea is designed for islanding and non-islanding disturbance detection and classification built on 

adaptive multi scale morphological filter (AMF) with a modified and improved version of the 

well known Random vector functional link network (RVFLN). Although the norm of the output 

weight is smaller in case of regularized RVFLN which may lead towards better generalization 

performance as compared to the conventional RVFLN, it suffers from the deterioration of the 

classification accuracy when the signal data contains outliers. Therefore to improve the 

regularized RVFLN performance a robust regularized weighted RVFLN known as RRVFLN is 

presented in this paper to reduce the impact of outliers. The existence of outliers may lead to 

unstability to the weight vector, thus it is required to update the weight vector. Thus smaller 

values to assign to the input patterns with higher training errors. The input patterns having higher 

training error are assigned with smaller weights and vice versa in order to decrease the impacts 

of outliers. Further AMF is an improved version of morphological filter (MF) where the 

structuring element has been made adaptive using water cycle optimization [35-37] for better 

results. Advantages of the suggested metaheuristic WCA technique are its fast global 

convergence within a few iterations and less computational complexity as compared to 

traditional DE, GA, PSO, etc., some suffer from premature convergence. The tracking signal is 

collected by using an AMF from where the features have been extracted to decide the threshold. 

The performance of the suggested method has been compared with recognized techniques to 

evaluate its superiority. 

This structure of paper is organized in seven sections. Section 1 is the introduction and the 

background study of the proposed method. Section 2 describes the considered multiple DG based 

microgird model. Section 3 presents the proposed adaptive mathematical morphological filter 

(AMF) and the water cycle algorithm. Section 4 explains selected features. Section 5 presents 

the newly introduced RRVFLN structure. Section 6 describes the performance measures of the 

suggested technique. Finally, section 7 is followed by conclusion. 

2. Application of the new filter in Multiple DG Based Microgrid

As stated in IEEE 1547 std. a microgrid system should work properly in both the modes,

grid-connected mode and islanding mode, prior to effective power dispatch management. Non-

islanding disturbances such as balanced load switching; unbalanced load switching, various 

types of faults have been generated in both the modes as a new contribution to literature. In any 

distributed generation based microgrid, the requirements for islanding detection capacity for the 

DGs are stated in UL1741. A four PV based IEEE 9-bus microgrid has been taken for the 

consideration and the model is given in Figure.1. In this microgrid system different other DGs 

have been used as well, such as, wind farm, Diesel Generators, Solid Oxide Fuel Cells, auxiliary 

Battery Energy Storage System, etc. But here in this paper mainly the PV penetration has been 

taken for the threshold detection. Table 1 presents the other  description of the taken microgrid. 

In the microgrid model the islanding is attained by a utility connection switch s1. The DG based 

microgrid is created in MATLAB environment. The samples are studied under uniform sampling 

at 10kHz all the model generated voltage signal samples are passed through AMF to extract 

features. Table 2 describes the non-islanding disturbances generated in this  microgrid model.  
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Figure 1. The taken Multi-DG based microgrid environment

V2 

SOFC

VSC1 

Iw

I3 

I93

jX3

V
d

c
g

 

jX93

jXdg

bus 7 

bus 1 

I79 

R
1

6
+

j
X

1
6
 

Rw+jXw 

bus5

I16

bus8

I65 

R
6

5
+

j
X

6
5

I52 

R
5

2
+

j
X

5
2

IL4 

Idc,6 

DC-DC4

Idc,4

Vpv,3

Ipv, 3 

PV system 4 

DC-DC1

Idc,8 

Idc Idc,3

Idc,2

Idc,1 

DC-DC 5

Ic2 

R2+jX2 

Vi 
Ii

Idc, 7

Vdc 

DC motor 
load 

Ipv,1 

Vpv,1 

DC-DC2

Ipv,2 

Vpv,2 

DC-DC3

Ipv, 3 

Vpv,3 

PV system 3

PV system 2 

PV system 1 

M 

Auxiliary 
BESS 

Idc,5 

DC Light Load 

R28+jX28 R89+jX89 

I28

bus2

V8

I89

Wind 
generator 

s1

R84+jX84 
Diesel 

Generato

G

IL2 

I67

R
6

7
+

j
X

6
7
 

R
7

9
+

j
X

7
9

IL9 
NL1 

bus 6 

bus4

bus9 bus3

GSC RSC

V1 

R
fc

+
jX

f

c

VSC2 

N. R. Nayak, et al.

497



Table 1.  The microgrid system (with 9-bus multi-DG) parameters (IEEE std.) 

Components Data Parameter values/km 

R L C 

DFIGURE (AC) 25 kV,1.5 

MW 120 Volts 

RS=RR=0.005 mΩ -- 31.841 nF 

PV (DC) 400 kW, 

500Volts 

121 mΩ 0.97 mH 12.1 nF 

Diesel generator 8.23 kW, 3.5 

kVAR, 750 

rpm 

-- -- -- 

Turbine data ρ=1.225 

Kg/m3, bdR

=58.6 m, t

=0.8, =1 

-- -- -- 

Local load (bus 2) 100 kW, 5 

kVAR 

-- -- -- 

Local load (bus 9) 275 kW, 25 

kVAR 

-- -- -- 

Rw+jXw -- 0.04  Ω 0.636 mH -- 

R16+jX16 2.5 kms 0.074 Ω 2.61 mH 510 µF 

R2+jX2 3.2 kms 0.0947 Ω 3.34 mH -- 

jX3 = jX93 2 kms 0 Ω 2.08 mH -- 

R84+jX84 = R89+jX89 2.5 kms 0.074  Ω 2.61 mH -- 

R65+jX65= R67+jX67 2 kms 0.0592  Ω 2.08 mH -- 

R52+jX52= R79+jX79 4 kms 0.1184  Ω 4.17 mH -- 

R28+jX28 5 kms 0.1332  Ω 4.69 mH -- 

Filter capacitor (Xc) -- -- 52 mF 

System operational 

frequency 

50 Hz -- -- -- 

Table 2. The microgrid generated disturbances (Islanding / non-islanding) 

Different disturbances Class(C) 

Islanding 

(by opening the switch s1 in the 

microgrid model) 

CI 

Other Non-islanding disturbances Class(C) 

L Fault CII 

LL Fault CIII 

LLL Fault CIV 

Capacitor Switching CV 

Unbalanced Load switching CVI 

Balanced Load switching CVII 

Sudden voltage drop CVIII 

3. Adaptive Multi-scale Morphological Filter

The basic mathematical morphology is constructed using dilation, erosion, opening and

closing operations. Say, S(n) = input signal, G(m)= structuring element, represented in F=(0, 1, 

…., N-1) and D=(0, 1, ….., M-1), respectively, where, (N>=M). 
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The mathematical expression of dilation and erosion are represented as: 










0,)(0

),()(
max))((

mnmn

nGmnS
nGSD (1)








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0,)(0

),()(
min))((

mnmn

jGmnS
nGSE (2)

The formulation of opening and closing depends on dilation and erosion. The mathematical 

representation can be represented as: 

))()(())(( nGGSnGSOP   (3)

))()(())(( nGGSnGSCL  (4)

where the operators   and , ,  refers to the dilation, erosion, opening and closing operations. 

Morphological gradient filter can be obtained from the above expressions: 

))(())(( )()()( nGSnGSnEnDnMG 
(5)

The above four operators are used in morphology to extract the signal features. Two different 

types of filters can be modeled using these operators such as open close and close open. There 

are another two filters can be represented using these four parameters, they are morphological 

median filter and multi-scale morphological filter. Multi-scale analysis is important to match the 

original signal properly. The unit SE is G(m) and the signal is S(n) as mentioned above where 

the scale is ϵ.  

 ,.......,2,1

The unit SE can be applied in this scale and mathematically will be represented below: 

       mGmGmGmG  ..................
 (6) 

Multi-scale Dilation and Multi-scale Erosion will be represented below: 

    nGGGSnGSMD  ..................
(7)  

    nGGGSnGSME  ..................
 (8)

Further, the multi-scale gradient filter will be represented below: 

       nGSnGSnG  
 (9)

Structuring element is the main important part of morphological filters. The size and shape 

of the structuring element can be many types. The performance of the structuring element 

depends on the signal. The scale of any structuring element can be of two types, large and small. 

For noise suppression if the scale is large then the performance is better rather in case of 

preserving signal details the small scale is preferred. In most of the cases, the average value of 

the scales has been taken for better results and the mathematical equation is as follows. 

   








 1

1̀
nGnG (10)

 
But all the scale should not take the same weight. Larger scale should take large weights for 

better performance and vice versa. In this work, an adaptive morphological filter has been 

proposed where a weight has been multiplied with the multi-scale morphological gradient filter. 

The equation of the adaptive morphological filter is given as: 
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1
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

k
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 Here, k is the scale number, ωi is the weight coefficient, Gi(n) is the ith output of the multi-

scale morphological gradient filter. The output characteristic is directly influenced by this 

weighted method. 
These weights have to be optimized for better results. The WCA has been 

applied to determine the optimum combination of the weights.
 
Here, the objective function is the 

mean square errors (MSRs) which are calculated from the actual and the filtered values.  

 

A. Water Cycle Algorithm (WCA) 

 The WCA is created on the concept of the cyclical process of formation of rain drops from  

the evaporation of water which subsequently  form streams that flow into the river and ultimately 

to the sea. 

 The streams are chosen as initial population with a matrix size of  DNpop  , which are 

randomly generated from rain drops and they along with rivers move towards sea modifying 

their positions at each step. Thus 
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The total number of populations Nsr ,however, comprises popstreamN + popriversN +1 sea.
 

For each river and the sea the following expression for NSn streams hold: 
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where n=1, 2, 3........, Nsr

 

 In the water cycle algorithm NSn number of streams moves into the rivers and ultimately to 

sea. In the exploitation phase streams and rivers dynamically change their positions as: 

         tXtXCrandtXtX streamseastreamstream


 11

  

(14) 

         tXtXCrandtXtX streamRiverstreamstream


 11

  

(15)

 
         tXtXCrandtXtX RiverseaRiverRiver


 11

  

(16) 

 

Here t is the index of operations,  optimal value of 1C  is 2 and 20 1 C C .  

 If the stream exhibits a more optimal solution than its connecting river, then the positions of 

the particular river and the stream are exchanged and this happens in the same manner in case of 

river and sea.  
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Between a river and sea an evaporation operator used and that is represented as: 

 maxdXXif t

River

t

Sea 


  

(17) 

where rand<0.1 and j=1, 2, 3…., Nsr-1.  

 This operator is given to avoid premature convergence. Once evaporation is done, raining 

process starts and new streams are crated in various locations. New locations for the streams are 

created by uniform random search. The search intensity near the sea is controlled by dmax. The 

value of dmax adaptively reduced as given below: 

    
 
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a. streams moving into a specific river 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. the water cycle algorithm 

Figure 2. Schematic diagram  
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 Figure 2a describes the schematic diagram of streams moving into the specific river and the 

diagram of the WCA has been given in Figure 2b. Figure 3 describes the convergence curve for 

AMF for weight optimization. Figure 4 describes the difference between the multi-scale 

morphological gradient filter and the proposed adaptive version of it. The islanding event has 

been taken for the consideration. One of the most important drawbacks of multi-scale 

morphological filter is that all the scales are having same weights. The adaptive version enhances 

the performance of MF which is clear from the Figure 4. In case of MF the amplitude of detection 

output of islanding event is small which overlap with other events such as load switching or 

sudden voltage drop. But in case of adaptive MF the amplitude threshold increases significantly. 

In noisy condition as well, the proposed AMF increases the performance. Two different types of 

PV penetration have been taken for the consideration. 

 
Figure 3. Water cycle convergence curve for adaptive multi-scale morphological filter for 

weight optimization 

 

 
a. Model signal 

 
b. output of AMF 

Figure 4. Comparative study of AMF with the normal MF over different PV penetrations  
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4.  Feature Selection 

 In literature, there are many features that have been used for the classification of the 

disturbances. In this case, the features have been extracted from the output of the AMF. The 

features have to be significantly distinguishable so that the classification accuracy should be 

high. Classification accuracy will deteriorate if the features are not chosen properly. Here, five 

features are extracted after having a vast idea from the literature and the mathematical 

formulations of these features are given below. 

P1: energy of the output of AMF 

 P2: mean value =  




M

Mn

n

M
X

12  (19) 

 P3: standard deviation = 
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 P4: skewness = 
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 (21) 

 P5: kurtosis = 
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 43

4

2

2 PM

PX
M
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n




  (22)    

where X represents the output of AMF and M is the length of it.  

 

5.  Classification Using RRVFLN 

A. Proposed Robust Regularized RVFLN (RRVFLN) 

 RVFLN is a single layer feed forward neural network where the hidden layer nodes are 

connected to the input nodes by a set of random weights and in addition there is a direct link 

between the input and output nodes. The weight vector   connecting the input and hidden layer 

nodes to the output layer is computed using generalized least squares. This simple structure 

produces fast convergence speed and generalization capability which are important for pattern 

classification. Mathematically the model of RVFLN is obtained as: 

     j

ZL

Lj

j

L

j

j

T

jj xbxwhxT 

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where the input data vector x=[x1, x2,….,xZ]; L represents the number of hidden layer nodes; wj, 

bj are random weight and bias vectors between the input and hidden layer nodes; Z is the total 

number of input nodes and T is the target vector and the total number of training samples is N, 

i=1, 2,....., N; βj (j=1,2,......,L) is the weight vector to  be estimated. 

The RRVFLN with l2 norm is represented as: 
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  iii txhts  :.
    

where C is a regularization factor and 


N

i

i

1

2  
is the empirical loss and

 
2

2
  

is the structural loss.
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The regression performance of the regularized  RVFLN deteriorates because of  the availability 

of outliers and noise in the input data samples and a weighted RVFLN known as robust RRVFLN 

is formulated as  

In this work, a robust regularized RVFLN (RRVFLN) has been suggested.  

 

2
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2 22

1
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
N

i

iiw
C



  (25)

 

  iii txhts  :.  

where the empirical loss weight is wi of the ith sample. Using Karush-Kuhn-Tucker (KKT) 

theorem the modified cost function to be minimized is obtained as 
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(26)

 

where i  for the ith sample and for minimization the above equation is differentiated  with 

respect to β,  and α, from which the value of   is obtained as 
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Here H is the hidden layer output matrix.
 

The weight matrix W is obtained by minimization of an objective function using maximum 

likelihood estimation based on based on Huber’s algorithm. The objective function is given by
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Further, as per Huber to estimate the identifier’s weight vector, k is specified (k is a positive 

number). Here k is called error or outlier threshold. The Huber’s cost function is represented as: 

where  and  W are  obtained  as 
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and k is selected using Huber’ concept as k=1.345 multiplied by MAR/0.6745;  

 MAR represents the absolute median error residual. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    Figure 5a. Hybrid AMF and RRVFLN schematic diagram 

 

Therefore for a sample input ix  the predicted output is obtained as: 

   )( ii xhO                   (30)                                                        

  

6.   Performance Evaluation using AMF based RRVFLN 

  

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5b. Disturbances classification flow using AMF-RRVFLN 
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 The three phase voltage signal samples are collected from a target DG terminal for an 

islanding event. However, there are multiple DGs present in the proposed microgrid model, so 

different islanding events can be created in different DG location. In the proposed microgrid 

model four PV systems have been used. The penetration of these PVs have been changed from 

the lower value to higher values to see how the output of AMF changes. In Figure 6 it has been 

found that the change of the AMF output is not much with different PV penetrations. Figure 7 

represents the comparative study of AMF over MF in case of non detection zone where the 

threshold for AMF is much higher than the non detection zone threshold. Using the higher 

amplitude threshold the non detection zone has been reduced using proposed AMF.  

 Figure 8 describes the output of AMF for the LLL fault created in the microgrid model. 

Figure 9 describes the output of AMF for the capacitor switching in the microgrid model. With 

the extracted features the usefulness of the proposed AMF technique has been analyzed here. 

The model efficacy has been examined with the synthetic and model generated signals. The 

accuracy of the proposed AMF-RRVFLN has been tested, and also comparison is done with 

other recognized techniques.   

 
a. Model Signal 

 
b. Output of the Proposed AMF 

Figure 6. Threshold change with the proposed technique AMF in case of islanding event with 

different PV penetration 
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 Total different 8 events were generated in the microgrid model. Total 1600 patterns were 

simulated for microgrid model generated different disturbances and 200 patterns were simulated 

for each event. Here 1200 patterns were taken for training the proposed RRVFLN. 1000 patterns 

are taken randomly for validation.  The performance has been measured through accuracy (31). 

The Classification Accuracy (AC) for a particular event 'a' can be represented as:  

 

100
 a''event  particular a of patterns   

' a'event   particular  afor   patterns  classified correctly   
(%) 

ofNumber

ofNumber
AC

    

 
(31)

 

 
Figure 7. Comparative study of AMF with the normal MF in case of non detection zone 

 

 Table 3 represents the confusion matrix of AMF-RRVFLN in grid connected mode. The 

overall classification accuracy of the suggested method can be represented by confusion matrix, 

the correct class is shown by diagonal matrix. It is very clear from the confusion matrix that there 

is no miss classification for islanding event. Table 4 represents the classification accuracy of the 

proposed technique AMF based RRVFLN with different noisy conditions. The added white 

Gaussian noise with the microgrid generated signals is within 30db to 40db. The accuracy of the 

proposed method decreases with the increasing noise which is clear from Figure10. With 30db 

noise, the accuracy of the proposed method is 98.20% which is very much acceptable. At no 

noise condition the accuracy is 98.98% which is higher than many other recognized techniques 

with reduced detection time.  

 

Table 3. Confusion Matrix of AMF-RRVFLN in grid-connected mode 

Class CI CII CIII CIV CV CVI CVII CVIII 

CI 200 0 0 0 0 0 0 0 

CII 0 197 1 0 0 2 0 0 

CIII 0 1 198 1 0 0 0 0 

CIV 0 0 0 200 0 0 0 0 

CV 0 0 0 0 198 0 1 1 

CVI 0 1 0 0 1 197 0 1 

CVII 0 1 0 0 1 1 197 0 

CVIII 0 0 0 0 0 2 0 198 
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a. Model Signal 

 
b. Output of The Proposed AMF 

Figure 8. Threshold change with the proposed technique AMF in case of LLL fault event with 

different PV penetration 

 

Table 4. Accuracy of AMF-RRVFLN in different noisy conditions in grid connected mode 

Class 

AC (%) in  

AMF 

(no noise) 

AC (%) in AMF 

(30db noise) 

AC (%) in 

AMF 

(35db noise) 

AC (%) in 

AMF 

(40db noise) 

CI 100 99.2 99.5 99.7 

CII 98.71 98 98.22 98.53 

CIII 99.12 98.52 98.75 99 

CIV 99.3 98.79 98.89 99 

CV 98.87 98.2 98.37 98.61 

CVI 98.45 97.9 98 98.2 

CVII 98.75 98 98.35 98.52 

CVIII 98.67 97 97.29 98.5 

Total 98.98 98.20 98.55 98.76 
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a. Model Signal 

 
b. Output of The Proposed AMF 

Figure 9. Threshold change with the proposed technique AMF in case of Capacitor Switching  

 

 
Figure 10. Classification accuracy of the proposed method for all  

the classes in different noisy conditions 
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Table 5. Average classification (%) accuracy of AMF over MF, WT, HHT under different 

noisy conditions 

Techniques 

 

without 

noise 

30db 

noise 

35db 

noise 

 

40db 

noise 

Average Classification 

accuracy of AMF 
98.98 98.20 98.55 98.76 

Average Classification 

accuracy of MF 
98 97.33 97.67 97.8 

Average Classification 

accuracy of WT 
96.67 95.89 96 96.3 

Average Classification 

accuracy of HHT 
95.7 95 95.33 95.45 

 

 The average classification accuracy of the AMF technique is compared with other recognized 

methods such as normal MF, WT and HHT in different conditions like no noise, with noise (30 

dB 35 dB, and 40 dB) and the results of which are displayed in Table 5.  All the comparative 

results are given in Table 5 and Figure 11. It is found from numerical results shown in Table 5 

that that the accuracy obtained in the AMF technique is higher than the others techniques in all 

the conditions.  The AMF technique achieves with 98.98% classification accuracy in no noise 

condition which is superior to all other techniques like MF, WT and HHT where MF achieves 

98%, WT achieves 96.67 and HHT achieves with 95.7% accuracy under no noise condition. 

Similarly in 30 dB noise condition the AMF exhibits the highest accuracy with 98.20%, in 35 

dB noise condition it achieves with 98.55% whereas in 40 dB noise condition it achieves with 

98.76% accuracy. For better visibility, the achieved average accuracies under different 

conditions are shown in Figure.11 which clearly indicates the supremacy of the AMF technique.  

HHT achieves the lowest average accuracy in all the conditions.   

 

 
Figure 11. Classification accuracy (%) with different techniques in different noisy conditions 

 

 Some of the extracted feature values with different PV penetrations are given in Table 6 and 

Table 7 for Islanding and unbalanced load switching. Total five features were extracted for 

classification. The maximum amplitude and energy values of islanding and unbalanced load 

switching are given to show the threshold variations. The performance of the suggested classifier 
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RRVFLN has been compared with other classification techniques such as SVM and ELM and 

all the results are given in Table 8. Form Figure 12 it is clear that with AMF the classification 

accuracy is higher than ELM and SVM. Between ELM and SVM, the performance of ELM is 

better than SVM. Figure 13 describes the performance of MF with all three classifiers AMF, 

ELM and SVM, respectively.  A comparative study has been done between AMF and MF to 

show the superiority of the proposed AMF. Table 9 represents the performance of the suggested  

method  with other recognized methods which are also clear from Figure 14.  

 

Table 6. Maximum amplitude for islanding and unbalanced load switching  

for different PV penetration 

Class PV1 PV2 PV3 PV4 
Maximum 

Amplitude 
Class 

Maximum 

Amplitude 

Islanding 

 

100 100 100 100 0.0019 

Unbalanced 

Load Switching 

 

0.0136 

200 200 200 200 0.0019 0.0136 

200 100 400 200 0.0020 0.0136 

400 200 200 400 0.0021 0.0138 

400 400 400 400 0.0023 0.0138 

400 600 400 600 0.0023 0.0138 

600 600 600 600 0.0023 0.0141 

800 600 400 600 0.0025 0.0141 

800 800 600 600 0.0025 0.0141 

800 800 800 800 0.0025 0.0142 

1000 600 800 600 0.0026 0.0142 

1000 800 1000 800 0.0027 0.0143 

1000 1000 1000 1000 0.0027 0.0145 

 

 

 

Table 7. Energy values for islanding and unbalanced load switching  

for different PV penetration 

Class PV1 PV2 PV3 PV4 Energy Class Energy 

Islanding 

 

100 100 100 100 0.5863 Unbalanced 

Load Switching 

0.2674 

200 200 200 200 0.5863 0.2674 

200 100 400 200 0.5864 0.2675 

400 200 200 400 0.5865 0.2681 

400 400 400 400 0.5867 0.2682 

400 600 400 600 0.5867 0.2685 

600 600 600 600 0.5867 0.2688 

800 600 400 600 0.5875 0.2688 

800 800 600 600 0.5875 0.2690 

800 800 800 800 0.5875 0.2692 

1000 600 800 600 0.5881 0.2693 

1000 800 1000 800 0.5884 0.2695 

1000 1000 1000 1000 0.5888 0.2697 
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Table 8. Accuracy of AMF over MF with different classifier 

 Classification Accuracy (%) 

 

Events 
MF-SVM 

AMF-

SVM 
MF-ELM 

AMF-

ELM 

MF-

RRVFLN 

AMF-

RRVFLN 

CI 99 99 99.33 99.5 100 100 

CII 97.33 98 97.89 98.33 98.33 98.71 

CIII 97.67 98.33 98.25 98.75 98.67 99.12 

CIV 97.89 98.67 98.5 99 98.75 99.3 

CV 97.75 98.12 98.12 98.67 98.67 98.87 

CVI 97.15 97.5 98 98 98.33 98.45 

CVII 97 97.89 97.67 98.33 98.33 98.75 

CVIII 96.85 97.97 97.23 98.25 98.15 98.67 

Average 

Classification 

Accuracy 

 

97.58 

 

98.18 

 

98.12 

 

98.60 

 

98.65 

 

98.98 

 

 The classification accuracy achieved in the proposed AMF-RRVFLN is 100% for CI, 98.71% 

for CII, 99.12% for CIII, 99.3% for CIV. Class CV, CVI, CVII and CVIII achieves above 98% 

i.e. 98.87%, 98.45%, 98.75% and 98.67%, respectively. Altogether the achieved average 

accuracy is 98.98%.  From the tabulated numerical results it is clear that among the different 

comparative methods like MF-SVM, AMF-SVM, MF-ELM, AMF-ELM, MF-RRVFLN, the 

proposed method achieves higher accuracy and overall higher average accuracy.  

 

 
Figure 12. Average classification accuracy (%) of AMF with different classification techniques 
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Figure 13. Average classification accuracy (%) of MF with different classification techniques 

 

Table 9. Accuracy comparison of AMF-RRVFLN method with other recognized methods 

Number Different established methods 
Classification 

Accuracy (%) 

1 WT + fuzzy SVM  98 

2 HHT + balanced neural tree  97.9 

3 ST + PNN  97.4 

4 WPD + SVM  97.25 

5 WT + neural fuzzy  96.5 

6 ST + modular NN  95.5 

7 Proposed AMF + RRVFLN  98.98 

 

 
Figure 14. Classification Accuracy between different established methods 
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 The most beneficial part of the proposed technique is that it takes less detection time 

compared to other established methods. Morphological filters are less complex than WT and ST. 

Table 10 describes the detection time for islanding with other existing methods where the 

proposed method takes only 21s for detection. The proposed method takes the lowest time and 

highest accuracy for islanding events as compared to the state-of-the-art methods mentioned in 

Table 10. Detection time taken by the proposed method for all other events is given in Table 11 

where the maximum detection time is 26s for balanced and unbalanced load switching. The event 

capacitor switching and sudden voltage drop take 24s and 25s, respectively.  The L fault, LL 

fault, and LLL fault take 23s, 22s and 21s, respectively.  From the overall analysis and discussion 

it is concluded that the suggested method is an efficient method for classifying various PQ 

disturbances.  This method is superior to many of the widely used existing methods.  

 

Table 10. Time required for detection for islanding event with other recognized techniques 

Recognized methods 
Detection 

Time(ms) 

Classification 

Accuracy (%) 

Wavelet Transform[12] 25 97 

Hybrid ST[12] 22 98.4 

S-Transform[12] 26 97.2 

Current and voltage harmonic 

distortion[38] 

45 - 

Current injection[38] 60 - 

AMF (Proposed) 21 98.98 

 

Table 11. Different events and its detection time in AMF 

Events 
Detection 

Time(ms) 

Islanding (CI) 21 

L fault (CII) 23 

LL fault (CIII) 22 

LLL fault (CIV) 21 

Capacitor  

Switching (CV) 
24 

Unbalanced Load  

Switching (CVI) 
26 

Balanced Load  

Switching (CVII) 
26 

Sudden Voltage  

drop (CVIII) 
25 

 

PC Integrated Hardware in a loop based verification 

    For real-time implementation, a hardware set is utilized in order to capture various islanding 

and non-islanding disturbances including faults mixed with 30 dB white Gaussian noise with 

zero mean.  The set up The microgrid disturbance signals are obtained through the high speed 

12-bit analog to digital converter (ADC) known as DAQ USB-6008 device from National 

Instrument (NI) that provides multiple Analog Input-Output (AIO) and Digital Input-Output 

(DIO) channels with a full speed Analog Input (AI) sampling rate up to 10 kS/s. The firmware 

NI-DAQmx in MATLAB interface can capture the real-time disturbance signals via Serial 

Peripheral Interface (SPI) and host personal computer (PC). After training the PC interfaced 

hardware properly real time input disturbance signals comprising both the islanding and non-

islanding events signals are observed by the Digital Output (DO) pins of NI USB-6008. Table 

12 displays the classification accuracy obtained for different power quality disturbances signals. 
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It is noticed from the table that there are slight losses in the average accuracy (97.01%) as 

compared to the obtained average accuracy earlier in AM F-RRVFLN technique.                                                                                                                                                                                                                                                                                                     

 

                        Table 12. Classification Accuracy obtained in AMF-RRVFLN in real-time 

PQ disturbances 
AMF-RRVFLN 

Accuracy 

CI 97.65 

CII 97.6 

CIII 97.1 

CIV 96.2 

CV 97.15 

CVI 96.45 

CVII 96.85 

CVIII 97.05 

total 97.01 

 

7.  Conclusion 

 This work proposes an adaptive multiscale morphological filter (AMF) for extracting 

relevant features from a multi distribution generation based microgrid under both islanding and 

non-islanding disturbance conditions. The proposed multiscale morphological filter has better 

noise rejection property and retains the useful disturbance signal components in comparison to 

the traditional single scale morphological filter. Further it is made adaptive by a suitable choice 

of weighting factors by using the well known metaheuristic water cycle algorithm. For 

classification of both islanding and non-islanding events a fast, accurate randomized RVFLN 

classifier is used, which further has been made robust against the outliers if any in the signal data 

samples.  The proposed combined AMF with RRVFLN has been verified for both the synthetic 

and Hardware in the loop based test system (DGs based distribution network) generated signals. 

The optimized morphological filter gives much better accuracy with reduced non detection zone 

which is a new idea contributed to literature. The classification accuracy (AC) and the average 

classification accuracy of the suggested combined technique for both islanding and non-

islanding events detection and classification are superior in comparison with other traditional 

methods.  
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