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Abstract: We propose a new reconstruction method of an object image from its digital 

hologram. The proposed matching pursuit on a pair of domains (MPPD) method employs 

spatial-domain bases and their (Fresnel) transform-domain pair. The transform domain bases 

are used to decompose the hologram, which yield a set of coefficients. Then, these coefficients 

are used to reconstruct the spatial-domain object image using the predefined spatial bases. We 

show the robustness of the proposed method against noise on a simulated hologram of 

spherical particles. By employing spatial-domain Gaussian bases and its transform pair, the 

image of these particles are recovered successfully. A possibility to extend the 2D (two-

dimensional) case to a 3D (three-dimensional) one for slice reconstruction from a single 

hologram is also explored. The effectiveness of the proposed method is demonstrated by using 

a real microscopic-hologram of silica gel spherical particles, which shows promising results. 

 

1. Introduction 

 Holography has been popularly known as an imaging technique that is capable of recording 

and reconstructing a 3D (three-dimensional) image by employing a laser. However, the first 

holographic device constructed by Gabor, was not intended for this purpose, but for correcting 

aberrations of an electron microscope by recording the interference of object wave with a 

reference one [1]-[3]. Leith and Upatnieks proposed significant improvements by proposing an 

off-axis hologaphic imaging method [4], which capable to separate a real image from its virtual 

and zero order ones. They also realized the relationship between holography and well-known 

signal processing techniques widely used in communication, i.e., the modulation, frequency 

dispersion, and square-law detection. 

 A digital holographic imaging (DHI) system is constructed by replacing the film in the 

analog holographic imaging (AHI) with a digital camera. Based on the digitally recorded 

hologram, the object image is then reconstructed numerically. Considering its central role, the 

numerical reconstruction of the object image is one of the most important issues in the DHI. 

 Previously, a digital holographic microscope imaging system capable to record and 

reconstruct images of microscopic organisms has been implemented by researchers [5], [6]. 

Various kinds of inline digital holographic imaging techniques have also been developed. In 

[7], the authors presented tile-superposition technique for in-line digital holography, which can 

be the basis of high-resolution wide-field imaging by multispot illumination with NA 

(Numerical Aperture) of 0.7. A single shot high-resolution imaging using partially coherent 

laser light illumination achieving NA of 0.8 has also been introduced in [8], where rearranging 

sample carrier enables one to get a hologram that is free from disturbing interference. The 

capability of imaging actual objects, among others are E-Coli bacteria, HeLa cells, and 

Fibroblast cells, have also been demonstrated in [9]. In principle, these devices will also 

capable to record and play a 3D (three-dimensional) movies of observed living 

microorganisms. Current progress on the DHI research was reported by Schnars and Juptner 

[10]. 
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 Actually, compared to other microscopic imaging modalities, such as the confocal and 

electron microscopy, holography technique offers a few more advantages; among others are: 

non-invasiveness, high-speed 3D capability compared to scan-mode imaging, no vacuum 

requirement, and its capability to work in the presence of ambient light [5]. 

  The DHI is not only applicable to visible light, but also works with other kind of waves as 

well, which actually was demonstrated by Gabor in his electron-wave holographic microscope. 

A soft X-ray from synchrotron radiation has been used by Barth [11] to image microscopic 

object with 0.37 m resolution. Using electron-wave, Tonomura et al. [12] used holography to 

demonstrate that electromagnetic vector potential is a physical object, rather than a mere 

mathematical concept, by demonstrating the Aharonov-Bohm effect. This experiment also 

shows that holography is a useful technique in fundamental research. 

 Considering the wide range applicability of the DHI, numerical reconstruction will play an 

important role. In developing a reconstruction algorithm, high quality reconstruction results 

with fewer artifacts and distortions are desired. In this paper, we propose a new method of 

matching pursuit on a pair of domains (MPPD) to address the image reconstruction problems. 

We evaluate the performance of the MPPD for a simulated and an actual digital holograms. We 

also investigated a possibility to use the MPPD to reconstruct slice-images in a 3D imaging 

scheme. 

 The usage of two-domains and the iterative algorithm to solve the reconstruction problem 

have been addressed by researchers, although in a different settings. Rabadi et al. proposed an 

iterative algorithm that employs multiresolution pyramid to reconstruct an image from the 

magnitude of Fourier transform [13]. The method also used two-domains, i.e., the object’s and 

the Fourier’s domains. In contrast to this method where the two-domain is used to implement 

constraint of the algorithm, we have used it for a different purpose. Each of our domains 

consists of bases functions, i.e., the localized spatial bases and their transform domain pair. The 

weights are estimated from the transform-domain bases, whereas the reconstruction is 

conducted in the spatial bases. In addition, Jesacher et al. proposed a method that also employs 

iterative phase-retrieval algorithm that capable to suppress twin image [14]. Although both of 

this method and ours used iterative technique, they are very different in nature. In ours, the 

twin image has been filtered out in the demodulation process so that there is no such issue 

when the iterative reconstruction algorithm is performed. Issues related to twin image and 

phase recovery also discussed by Cuche et al. [15] and Yamaguchi and Zhang [16].  

 The rest of this paper is organized as follows. Section 2 explains the basic theory of 

hologram formation, numerical reconstruction, and description of the proposed method. The 

comparison between the proposed methods with the direct inverse transform for both a 

simulated a Gaussian particle and an actually measured hologram is described in Section 3. 

This paper is concluded in Section 4. 

 

2. Materials and Methods 

A. Imaging Geometry and Mathematical Model 

    Consider a generic holographic imaging system. Let       ,exp,, ojoo   be the 

wave scattered by an object and       ,exp,, rjrr   be the reference wave arriving on 

a screen located at a particular distance from the object, where both of these waves interferes. 

The intensity distribution on the screen is       2
,,,  roI  , or 

 

               ,,,,,,,
22   ororroI  (1)

  

where (...)* denotes complex conjugate. In the analog holography, the intensity is recorded on 

a film that yields a hologram whose transmittance distribution is 

     ,, 0 Ihh   (2) 
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where  is a constant,  is the exposure time, and h0 is the amplitude of transmission of the 

unexposed plate [10].  

 Reconstruction in the analog holography is conducted by illuminating the hologram with a 

reference wave r(,), i.e.,  

 

           

       



,,,,

,,,,,

22

22

0





oror

ryrohhr   (3) 

 

 In the r.h.s. (right hand side) of the equation (3), the first term represents the reference wave 

(multiplied by a constant), the second term is a reconstructed object wave which will be 

observed as an object image, and the third one is a conjugate image. In the inline (holography) 

imaging, the object and conjugate terms cannot be separated because their spatial spectrum are 

overlapping. On the other hand, these terms can be separated easily in the off-axis hologaphic 

imaging by demodulation. 

The playback in an AHI to show the object image is conducted by illuminating the hologram 

by a coherent light, such as a laser. On the other hand, the film is replaced by a digital camera 

in the DHI system. To show the object image, a computer is required to calculate and 

reconstruct it based on a recorded digital hologram. The following section describes how such 

a process is conducted by a numerical algorithm. 

 

B. Numerical Reconstruction  

    One of the most important issues in the digital holography is numerical reconstruction of the 

object image from the recorded hologram. Usually, the calculation is based on the Fresnel 

approximation of the Fresnel-Kirchhoff integral that relates a wave       ,,, hr , 

which is located at z=0, with the object’s diffracted wave (x,y), which is reconstructed at z=d, 

as follows [19] 

 

  
 

       


ddyx
d

k
j

dj

jkd
yx









  








22

2
exp,

exp
,  (4) 

 

    In the DHI, we can assume h0=0 in (2) and, if the reference is a plane wave, we can select it 

to possess a real amplitude r. Equation (4) can also be expressed as a convolution integral 

between   ,  with a kernel g(x, y), which is defined as 

 

    





























2
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




x
jjkzjyxg


  (5)

  

 In equation (5), z  , 2k , and 22 yxx 


. Therefore, we can rewrite the 

convolution integral in (4) as 

 

     yxKjeyx jkd ,,   

 (6) 

   

Where 

    
2

2
exp

1
, 













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x
jxKyxK
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  (7)
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 Following convention in [19], the term inside the curly bracket {.} in (6) will be defined as 

the Fresnel transform of   and it is denoted by  yx,
~
 .  

 We can now summarize that the wave   ,  representing the demodulated hologram

    ,, hr , is related to the diffracted wave  yx, , i.e. the reconstructed object image, 

through the following Fresnel transforms 

 

    yxjeyx jkd ,
~

,   (8)

   

 In principle, the numerical reconstruction of the hologram is based on (8), i.e., given 

discrete values of the hologram, we calculate  yx,  by using inverse Fresnel transform. Due 

to imperfection of measurements and noise, in reality, we only get an approximate value that 

will be denoted by  yx,̂ . 

 In the DHI, the object image is reconstructed from a digitized hologram. For a hologram 

that is sampled on an NN rectangular grid with steps  and  along the coordinates, the 

discrete Fresnel transform is 
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 (9) 

 

 The phase factor in front of the summation can be neglected for most practical applications. 

Since the summation in (9) is an expression of two-dimensional Fourier transform, the object 

image can be calculated by multiplying the hologram with    2222exp ylxkdj   , 

which is followed by applying the inverse discrete Fourier transform to the product. Then, the 

reconstruction of the object image can be expressed in a simple form as 

 

     gFFTrhFFTFFT  1ˆ  (10)

   

where ̂ , h, r, and g is the discrete version of the same notation explained before. The usage of 

FFT in (10) and other version of fast-transforms described in [17] and [18], enables fast 

reconstruction process. Object image reconstruction that is performed based on equation (10) 

will be refered to as the direct inversion method’s image. 

 

C. Matching Pursuits on A Pair of Domains 

 The proposed MPPD method uses localized bases in the spatial domain, based on which its 

Fresnel-domain’s pairs are constructed. The hologram, which is a function in the Fresnel 

domain, is decomposed by an iterative matching-and-substraction process with the Fresnel-

domain bases. Then, the corresponding spatial bases are properly chosen and weighted to 

reconstruct the object’s image. 

 The hologram-modulated wave   ,  that is diffracted wave originated from z =0 and 

the wave  yx,  which arrives in location z=d that represents the reconstructed object image, 

are related by the Fresnel transform. This relationship can be expressed by [19] 

 

          yxKyxK ,*,,,1

     (11)

  

 where    221 1


 
xj

eK
  . 
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 We assume that the object image can be linearly decomposed into a number of two-

dimensional spatially- localized functions 
i (x, y), i.e.,  

    



K

k

kk yxayx
1

,,   (12)

   

 Applying Fresnel transform Fr[.] to both sides of (12) and considering the linearity property 

of this identity, we arrive to 

      



K

k

krkr yxFayxF
1

,,   (13)

   

or equivalently 

   



K

k

kka
1

,,   (14) 

 

where   ,k
 is the Fresnel transform of the spatial domain bases  yxk , . Since (12) and 

(14) express linear combination of bases functions, both of the weights or coefficients ak in 

(12) and (14) are identical. The last results expressed in (14) states that the hologram  is a 

linear combination of Fresnel-transform of the spatial-function k(x, y). 

 In our reconstruction problem, the hologram is the known parameter, based on which the 

coefficients ak are estimated. We reconstruct the object image in (12) by using estimated 

coefficients and the pre-defined bases k(x,y). This reconstruction method is formulated into 

the MPPD algorithm shown in the following pseudocode.  

 

Matching Pursuits on a Pair of Domains (MPPD) Algorithm  

 Initializations 

 Construct localized spatial bases {  yxk , } and its pair {     yxF krk ,,   }. 

 Retrieve an estimate of Fresnel-domain object   ,  from the hologram h(,). 

 Initialize iteration index m=1 

 Initialize residual hologram m(,) = (,) 

 Initialize estimated image   0,ˆ  yxm
. 

 Define initial residual energy E0 as a big positive number. 

 MPPD Iterations 

 WHILE Em > Em-1 

 Perform projection of residual hologram m(,) into Fresnel-transformed Gaussian 

bases {k} and select the maximum values ak 

 mkka  ,max  

 Image reconstruction:  

 Use ak to reconstruct the image 

     yxayxyx kkmm ,,ˆ,ˆ
1  

 

 Reduce the residual hologram with corresponding value 

      ,,,1 kkmm a
 

 Increment the iteration index m 

 END  

 

3. Results and Discussion 

A. Processing Flows: Synthesis and Analysis of a Digital Off-Axis Hologram 

 There are two kinds of hologram data used in the experiments, i.e., a simulated and an 

actually measured holograms. Both of them assume an off-axis holography conFigureurations, 
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which means that the baseband Fresnel-domain image   ,  can be recovered from the 

hologram   ,h  by using demodulation.  

 

 
Figure 1. Synthesis of a simulated digital hologram 

 

 Figure 1 shows a block diagram of the synthesis proces of a simulated digital hologram. 

First, an object image (x,y), which is a two dimensional (complex-valued) function, is 

defined. The Fresnel transform change the image into Fresnel-domain function   , , which 

is then multiplied by a reference wave   ,r . At the last stage, additive Gaussian noise 

  ,  simulating thermal fluctuations on the device is added, so that we obtain a simulated 

noisy digital hologram   ,h . 

 In the reconstruction stage shown in Figure 2, the hologram is first demodulated by 

multiplying it with the reference wave   ,r  and followed by a lowpass filtering. We 

arbitrarily choose a two-dimensional cosine filter given by 

 

 
 

 
















otherwise

fc

,0

5.05.0

;5.05.0,cos

,

22






 (15) 

 

as the lowpass filter. Demodulation process yields a Fresnel-domain image   ,̂  which is an 

input for the reconstruction algorithm.  

  

 
Figure 2. Object image reconstruction from a hologram 

 

 We should note that we only get an approximate Fresnel-domain image   ,̂ , instead of 

the original one   , , because the filtering in the demodulation process eliminates some 

parts of the frequency components. We employed both of the conventional direct inversion 

based on (10) and then the proposed MPPD algorithm. Finally, the approximation of the object 

image  yx,̂  for each algorithm is obtained. 
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(a)    (b) 

  
(c)    (d) 

Figure 3. The Fresnel-domain image: (a) original magnitude (b) original phase, (c) extracted 

magnitude, (d) extracted phase.  Figures (c) and (d) are obtained after demodulation. Filtering 

makes the later ones differerent from their originals displayed in (a) and (b). 

 

  The reconstruction stage shown in Figure 2, the hologram is first demodulated by 

multiplying it with the reference wave   ,r  and followed by a lowpass filtering. We 

arbitrarily choose a two-dimensional cosine filter given by 

 

 
 

 
















otherwise

fc

,0

5.05.0

;5.05.0,cos

,

22






 (15) 

 

as the lowpass filter. Demodulation process yields a Fresnel-domain image   ,̂  which is an 

input for the reconstruction algorithm. We should note that we only get an approximate 

Fresnel-domain image   ,̂ , instead of the original one   , , because the filtering in the 

demodulation process eliminates some parts of the frequency components. We employed both 

of the conventional direct inversion based on (10) and then the proposed MPPD algorithm. 

Finally, the approximation of the object image  yx,̂  for each algorithm is obtained. 

 Figure 3 shows simulation results of the Fresnel-domain image, before and after filtering in 

the demodulation process; Figureure (a) and (b) are the magnitude and phase of the original 

  , , whereas (c) and (d) are their corresponding approximation of Fresnel-doman image 

  ,̂ . The estimated image shown in (c) and (d) contain less noise and smoother than those 

ones in (a) and (b). 
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(a)     (b) 

Figure 4. (a) Gaussian particle and (b) off-axis hologram 

 

B. Reconstruction of A Simulated Noisy Hologram 

 We simulate holographic imaging of four Gaussian particles with various width (variance 

values) and amplitudes. The hologram is normalized and then contaminated by gaussian noise, 

both in the real- and imaginary- parts, with the variance (energy) equal to 0.25. We compare 

reconstruction results of the direct inversion based on Equation (10) with the proposed method. 

Figure 4 shows (a) the image of the object. Lower right part shows a particle with negative 

amplitude, while the other three are positive. Since the objects in a holographic imaging 

generally are complex-valued quantities that possess both magnitude and phase, the negative 

amplitude represents a complex-valued image whose phase is , while the positive ones 

correspond to an image whose phase is zero. The reference wave have non zero component in 

 and  directions. The simulated hologram is displayed in Figure.4 (b).  

  

     
(a)    (b) 

Figure 5. (a) Error curve of the MP method and (b) sorted and normalized coefficients 

 

 Following reconstruction stages displayed in Figure.2, we first extract a Fresnel-domain 

object image   ,̂  from the hologram. The spectrum of the hologram exhibits some distinct 

clusters, located mainly in the center and two other ones in conjugate pairs. The transform-

domain object wave   ,̂  is extracted from this spectrum by demodulation, i.e., after 

multiplying the hologram with the reference wave, the spectrum is filtered by a two-

dimensional cosine filter. 

 Then, the extracted   ,̂  from the hologram is used to reconstruct the image. Figure 5 (a) 

shows the MPPD iteration process in term of the error energy reduction, whereas Figure. 5(b) 

displays a curve of sorted magnitude-coefficients obtained by the MPPD algorithm. The later 

Figureure indicates that there are only four dominant coefficients which is in agreement with 

the number of the simulated particles. 
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(a)    (b)   (c) 

Figure 6. Reconstruction results: (a) direct inversion from hologram, (b) direct inversion from 

recovered Fresnel-domain image, (c) proposed method 

 

 In low noise regions, where the signal (image) energy is much greater than the noise, both 

algorithms perform well. However, as the noise energy start to exceed the signal’s, direct 

inversion method degrades quickly, whereas the MPPD’s SNR only reduces slightly. The 

results show that the MPPD method is well-suited for high-noise hologram than the direct 

inversion method. 

Table 1. Robustness to Noise Performance 

No Noise Variance 
SNR (dB) 

Direct Inversion MPPD 

1 0.00 25.59 25.44 

2 0.25 25.10 25.50 

3 0.50 23.62 25.34 

4 1.00 19.47 25.23 

5 2.00 11.85 23.16 

6 3.00 7.01 21.69 

7 4.00 3.87 21.37 

8 5.00 1.40 17.29 

 

 Figure 6 shows reconstruction results by three different methods: (a) direct inversion by 

applying (10) directly to the hologram, (b) inverse Fresnel transform of extracted ̂ , and (c) 

reconstruction by the proposed method. It is shown in this Figure that inverse Fresnel 

transform perform better than direct inversion, while the proposed MPPD method outperforms 

the two other ones. 

 We also evaluate the performance of the proposed MPPD reconstruction algorithms under 

various noise conditions. Table 1 displays performance comparison of the algorithms in term of 

robustness to noise. The reconstruction qualities are expressed in SNR (Signal to Noise Ratio). 

We generate Gaussian noise with various levels of energy and added it into the real- and 

imaginary- parts of Fresnel-transformed image   ,̂ . Accordingly, the noise affects both of 

the magnitude and phase parts.  

 The second column of the Table 1 indicates the values of noise energy (variance). Although 

the variance is zero, the reconstructed image in the first row has a finite SNR, because the 

demodulation give us   ,̂   instead of   , . 

 

C. Reconstruction of an Actual Hologram 

    In this section, we discuss the application of the proposed method to an actually measured 

hologram. We use an off-axis hologaphic imaging in transmission mode shown in Figure. 7. 

Similar imaging system has been proposed by other authors, including the resolution capability 

of the off-axis holographic technique [20]. This design is implemented in an optical bench, 

where we use a He-Ne laser (=632.8 nm) source and a 100 magnifications microscope 

objective (MO) lens as the main part of the system. The objective lens with 40 magnification 

is used as a BE (Beam Expander), while the attenuator employing a polarizer is used to adjust 

the contrast in the hologram. In the Figureure, BS indicates the beam splitter, whereas M is the 
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mirror. The image sensor is a WAT-231S CCD (Charged-Coupled Device) camera working in 

NTSC mode, so that the unit cell size is 6.35m(H)7.40m(V), and delivers an image with 

480640 pixel size. We prepared microscopic spherical particle of silica gel as an object, 

whose diameters are distributed within 5-10 m range. 

 

 
Figure 7. Off-Axis digital holographic experimental setup in optical bench used in  

the proposed method 

 

 Figure 8 shows the recorded digital hologram in (a) and recovered object image after 

applying the direct inverse method in (b) and (c). We observed the presence of four objects in 

the image; each of it has been highly distorted. Then, the MPPD algorithm is applied to the 

Fresnel domain object image. The program execution stopped after a few number of iterations 

and the error curve is shown in Figure. 9(a), yields only a few dominant coefficient as shown in 

Figure 9(b). 

 The reconstruction result of the hologram is shown in Figure 9(c). In contrast to the direct 

inversion, the proposed method exhibits fewer distortions, except smearing effect around some 

of the particles. One particle located in the lower-left part seems to have a correct focus, while 

the other three are unfocused and exhibit smearing effects. The non-focus case may due to the 

variation of distance between the screens to each of the object. Therefore, we have to consider 

a case where the particles lying at different sections, and we have to revise our bases functions 

to incorporate such condition. 

 

D. Reconstruction Based on 3D Bases and Slice Thresholding 

 In a 3D bases, the position of the object in a particular layer or section is taken into account, 

although the transform domain bases will be still lay in a two-dimensional space. This is 

consistent with the fact that a hologram is a two-dimensional image representing a 3D object. 

Figureure 10 shows simulation results for a 3D reconstruction; the left parts shows original 

images of the particles in four different sections, where as the right parts displays 

reconstruction results. This Figure shows that, if we use a 3D bases, the MPPD will be able to 

distinguish the object in three-dimensional tomographic sections.  

 

   
(a)   (b)   (c) 

Figure. 8. (a) A hologram and its reconstructed image by direct inversion:  

(b) magnitude and (c) phase 
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(a)   (b)   (c) 

Figure 9. (a) Error curve, (b) sorted coefficients, and (c) reconstructed image  

by the MPPD method 

 

 
                                                 (a)                                            (b) 

 
                                                 (c)                                            (d) 

 
                                                 (e)                                            (f) 

 
                                                  (g)                                           (h) 

Figure.10. Object and its location in four different sections: left part original, right part 

reconstructed, (a) and (b) layer-1, (c) and (d) layer-2, (e) and (f) leyer-3, (g) and (h) layer-4 
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 Next, we apply the MPPD with 3D bases to a real hologram, where the image of each 

sections are displayed in Figure.11. Among all of five sections, there are two dominant ones 

located in layer 3 and layer 4. We compare the result with the direct inversion method obtained 

previously. First we combine the sections into a single Figure, to compare with the 

conventional method that assumes a single section.  

 

 
(a)   (b) 

 

 
(c)   (d)  (e) 

Figure.11. Object recovered in five sections: Figures. (a) - (e) corresponds to section-1 - 

section-5. 

 

 Based on Figure 12, we observe that the proposed method locates the particles exactly to 

the center of positions that corresponds to the direct inversion results (ref. Figure.8(b)), but, 

with much fewer artifacts. Further application of a threshold or selection of sections with high 

energy can give a sharper image, as shown in Figure. 12 (b). These results show the 

applicability of the MPPD algorithm to reconstruct 3D tomographic sections based only on a 

single hologram 

 

   
(a)   (b) 

Figure.12. Comparison of reconstruction result: (a) overlaid 3D reconstruction using the MPPD 

method, (b) Further processing by thresholding each layer will sharpen the object image. 

 

4. Conclusion 

    We have presented a new method to reconstruct object image from a digital hologram. The 

method uses a pair of domains, i.e. the spatially localized bases and its corresponding Fresnel 

bases. The Fresnel bases are used to estimate the coefficient values, and then we use the 
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coefficients to reconstruct the object image in the spatial domain. Further processing with 3D 

bases and thresholding improves the image results. 

 For object images with any arbitrary shapes, the bases in the proposed method should be 

extended into ones consisting of various localized spatial bases. The simulation and real-

hologram processing results shows the capability of the MPPD algorithm. In addition, using a 

better camera with higher resolution and improvement of the imaging system could 

significantly improve the results. 
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