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Abstract: This paper presents an improved approach to train models that can be used to accurately 
predicting animal presence based on its sound with a limited dataset. Currently, deep-learned 
models dominate the state-of-the-art methods for audio classification tasks for their predictive 
capabilities. However, an immense amount of data is needed to build an accurate deep learned 
classifier. Such immensity of data is usually hard to be satisfied on endemic or endangered 
animals. For example, collecting an Indonesian scops owl audio dataset for our experiment in an 
adequate amount is insatiable, thus may reduce the predictive capability of a deep-learned model. 
To overcome such an issue, we propose a transfer learning strategy that alleviates overfitting in 
a deep model and a way to maximize the use of datasets by extracting two acoustic features: 
Mel’s spectrogram and Mel Frequency Cepstral Coefficient (MFCC) from each data point. In 
this study, we employ a dual-input scalable Convolutional Neural Network (CNN) derived from 
EfficientNet [1] which utilizes and learn from both acoustic features. Our experimental pre-
trained dual-input network achieves 99.27% mAP on our testing data accuracy whereas a trained-
from-scratch Resnet-50 model used as the baseline model achieves 99% mAP on the same testing 
set. 

1. Introduction
Manual processing of an avian sound annotation and detection is inconvenient and can

hamper bird conservation efforts. Therefore, the need for accurate, scalable, and automated bird 
presence recognition is vital for wildlife monitoring and can be beneficial for avian biodiversity 
conservation. In this regard, deep learning methods of bird detection are a suitable choice to 
combat the rapid loss of avian diversity. The applications of deep learning in sound identification 
have been widely recognized and have dominated several annual bird sound identification 
competitions such as Bird Cross-Language Evaluation Forum (BirdCLEF) [2] and Detection and 
Classification of Acoustic Scenes and Events (DCASE) [3]. 

While deep learning models can achieve excellent predictive performance, such a model still 
needs an enormous amount of unique data-point to be able to reach said performance. This 
proves to be hard to satisfy on endangered or endemic bird species, as an inadequate number of 
data tends to overfit a deep learning model. In this case, transferring trained networks on similar 
large-scale image recognition datasets such as ImageNet [4] to be repurposed on bird recognition 
tasks is feasible. Furthermore, utilizing learned low-level and mid-level feature definitions in a 
transfer-learned model could speed up convergence thus accelerate the model preparation 
process. In addition, the model needs to be compact both in size and computational resources 
needed during inference to cover the larger ground with small compute devices. In this regard, 
we employ a dual-input model that feeds from two popular image representations of acoustic 
features, namely Mel’s spectrogram and Mel Frequency Cepstral Coefficient (MFCC). We used 
EfficientNet [1] as our model backbone which uses compound scaling that enables efficient CNN 
architecture scaling, as animal sound datasets may be widely varying in size. Therefore, our 
strategy can be replicated efficiently on datasets of any size. Using this approach, we achieve an 
efficient and scalable model that is small both in model size and computational resource which 
is suitable to be used in conservation scenarios. Our dual-input network achieves 99.47% 
classification accuracy on our Indonesian scops owl validation set, exceeding classification 

 Received: February 18th, 2021.  Accepted: September 24th, 2021 
 DOI: 10.15676/ijeei.2021.13.3.3 

546



accuracy of trained-from-scratch Resnet-50 [5] validated with exact set and substantially reduce 
the model size and computational cost of simple dual-input CNN [6]. While our experiment uses 
an Indonesian scops owl audio dataset as representative, implementation of our methodology 
includes but is not limited to owl scops and can be replicated on other birds or animals that have 
a distinct pitch.  

2. Literature Review
So far, there have been numerous studies that show promising results on the subject with

various approaches. M. A. Acevedo, C. J. Corrada-Bravo, H. Corrada-Bravo, L. J. Villanueva-
Rivera and T. M. Aide [7] suggest machine learning solutions such as linear discriminant 
analysis, decision tree, and support vector machine to classify numbers of bird and frog species. 
N. Turpault, R. Serizel, J. Salamon and A. P. Shah [3] suggest using a randomized decision tree
that utilizes features derived from audio recordings statistics and ranks those feature importance
with a decision tree. Pioneering deep learning solutions detect bird presence by using wild scene
imagery [8][9]. While using wild scene imagery is simple and may be beneficial in some
scenarios, such imagery may have shortfalls such as occlusion and pose variance which is harder
to properly collect on endemic or endangered animals. In this regard, audio data is more popular
to be used by the researcher in this scenario. Beforehand, features from audio recordings were
manually extracted and analyzed to learn distinct features and information to classify species
[10],[11]. However, recent trends show that CNN models that utilized Mel’s spectrogram or
MFCC derived from audio data dominate BirdCLEF winning solutions for the past year. E.
Sprengel, M. Jaggi, Y. Kilcher, and T. Hofmann’s solution used 5 convolutional layers network
wins BirdCLEF 2016 [12]. C. Koh et al. [13]  suggest using popular CNN architecture such as
ResNet and Inception, along with Mel’s spectrogram as a visual representation of acoustic
features. J. Martinsson [14] also suggests that ResNet trained on Mel’s spectrogram and MFCC
is advisable. M. Lasseck [15] won the BirdCLEF 2018 challenge by improving his previous
winning solution on NIPS4B 2013 Competition [16] that utilizes spectrogram derived from audio
recordings with InceptionV3 architecture.

3. Methods
Our proposed methodology consists of three stages: audio data preprocessing, model training,

and measure trained model predictive accuracy with a testing dataset. 

A. Dataset
In this experiment, we used 7 genera of Indonesian scops owl described in [17], which are

Rinjani scops owl (Otus jolandae), Sunda scops owl (Otus angelinae), Otus lempiji, Wallace’s 
scops owl (Otus magicus), Sulawesi scops owl (Otus manadensis), Otus reufescens, and Otus 
silvicola that were obtained from the xeno-canto database. We use 7 genera of endemic 
Indonesian owl sound recordings as described above to conduct our experiment. The summary 
of original audio signals and augmented signal counts used from each genus is shown in table 4. 

Table 1. Dataset properties used in this experiment 
Genus Signal Count Augmented Signal Count 

Otus Sangelinae 18 3020 
Otus Jolandae 89 3020 
Otus Lempiji 127 3020 
Otus Magicus 13 3020 

Otus Manadensis 128 3020 
Otus Rufescens 104 3020 
Otus Silvicola 54 3020 
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A total of 21.140 Mel’s spectrograms and MFCC pairs are divided into training, validation, 
and testing set with an 8:1:1 ratio. Therefore, a total of 16.812, 2.114, and 2.114 sets of data are 
used in the training, validation, and testing set respectively. 

B. Data Pre-processing
In our strategy, we treat the audio classification task as an image classification task.

Therefore, audio recordings data should be represented in the visual domain to be used in CNN 
models. In this regard, we use Mel’s spectrogram [18] and MFCC [19] are widely used in sound 
recognition tasks [6], [13], [18], [20]–[23], and can accurately map auditorial features in a visual 
domain. Temporal information from audio recordings such as timbre and pitch can also be 
represented in a spectrogram. In this case, each owl species have signature temporal properties 
that can distinguish one owl species from another. For this reason, mel’s spectrogram and MFCC 
can be used to accurately identify an owl species based on its sound recordings. 

Figure 1. Mel’s spectrogram and MFCC sample derived from otusangelinae and 
otusjolandae 

Mel's spectrogram is computed by applying a Short-Time Fourier Transform with a fourier 
transform window of 2048 size with 75% overlap between each frame on an audio recording and 
then converted into the log amplitude scale which considers human auditory sensitivity, 
producing a log spectrogram with 75 x 128 pixels resolution. An example of generated Mel's 
spectrogram computed using librosa.feature.melspectrogram function from librosa python 
package for audio analysis is shown below. 

Figure 2. Mel’s spectrogram generated from an audio recording 
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On the other hand, MFCC was also derived from a spectrogram. MFCC can be computed by 
taking Discrete Cosine Transform (DCT) on Mel's spectrogram using 20 MFCC coefficients, 
resulting in a compressible visual representation of an audio recording with 75 x 128 resolution. 
An example of MFCC computed using librosa.feature.mfcc from librosa is shown below. 

Figure 3. MFCC generated from an audio recording 
 

The lengths of audio recordings obtained from the xeno-canto database vary from few 
seconds to minutes. We cut and unify each audio signal duration to a five-second clip, which 
represents a single bird chirp sound. The remaining audio clips that are not used are saved for 
augmentation purposes. Once unified, the resulting audio chunk is then converted from a 
compressed mp3 format into a lossless wav format. Each wav file is then re-sampled at 44.1 kHz 
16-bit format.  To further raise the number of unique data and reduce data inequality among 
classes, we employ a unique data augmentation strategy on the audio domain, where each audio 
signal is combined with random background noise derived from remainders of the trimmed audio 
signal. We prefer this strategy as opposed to other data augmentations that are more commonly 
used in this scenario {Formatting Citation}  as scops owls tend to share natural similar habitat. 
Therefore, it is more beneficial to mimic the original natural habitat settings than to employ a 
data augmentation strategy such as high pitch shifting that may accidentally deviate some 
characteristics unique to a species. In the end, we split preprocessed dataset into train, validation, 
and test split with an 8:1:1 ratio. 
 
C. Proposed Network Architecture and Training Methodology 

We use a pre-trained image classification model that has previously been trained on the 
ImageNet dataset. Our model takes a pair of Mel’s spectrograms and MFCC of a given data point 
as input data. Therefore, we divide the network into 2 blocks of layers, where the first block 
(block A) is responsible to learn lower-level features from both Mel’s spectrogram and MFCC, 
while the later block (block B) may extract higher-level features derived from the previous block. 
The detailed structure of both block A and block B networks are described in the tables below. 

 
Table 2. EfficientNet Block A – Initial feature extraction block 

Operator Output Resolution 
( C x H x W) Channels Layers 

Conv 3x3 32 x 64 x 37 32 1 
MBConv Block 1 3x3 16 x 64 x 37 16 1 
MBConv Block 2 3x3 24 x 32 x 18 24 2 
MBConv Block 3 5x5 40 x 16 x 9 40 2 
MBConv Block 4 3x3 80 x 8 x 4 80 3 
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Table 3. EfficientNet Block B – Intermediate feature extraction block 

Operator Output Resolution (C 
x H x W) Channels Layers 

MBConv Block 5 5x5 112 x 8 x 4 112 3 
MBConv Block 6 5x5 192 x 4 x 2 192 4 
MBConv Block 7 3x3 320 x 4 x 2 320 1 

 
Table 4. The complete architecture of our network 

Operator Output Resolution (C 
x H x W) Channels 

Image input layer 3 x 128 x 75 3 
Conv 3x3 32 x 64 x 37 32 
EfficientNet Block A 80 x 8 x 4 80 
EfficientNet Block B 320 x 4 x 2 320 
Dropout 1280 x 1 - 
Linear 7 x 1 - 

 
We employ a set of block A to accommodate both Mel’s spectrogram and MFCC as our 

model input, enabling independent feature extraction for both Mel’s spectrogram and MFCC.  

Figure 4. Proposed model architecture 
 
We use efficientNet as our model reference, as the compound scaling used in the efficientNet 

family allows our model to be scalable and adaptable to an extensive level of data complexity. 
Specifically, we adapt the most concise efficientNet B0 variant from the efficientNet model 
family. While having the smallest model size and Floating Operations Per Second (FLOPS) 
amongst other efficientNet variants, it performed excellently on our dataset. In our case, using 
heavier and larger efficientNet variants such as B4 or B5 offers no consistent improvement in 
classification accuracy while having prodigally increased model size and computational burden. 
 
4. Result and Discussion 

In our experiment, we trained the baseline and proposed model by feeding the augmented 
pairs of Mel’s spectrograms and MFCC as stated before. As for the single input network, we 
only feed Mel’s spectrogram counterpart. At each end of an epoch, we evaluated its current 
accuracy on the validation set. Finally, we test the model generalization on the testing dataset. 
Apart from the model’s predictive performance, we also measure epochs needed to achieve 95% 
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training accuracy to measure its convergence speed. We choose a Resnet-50 and dual input CNN 
as stated in [6] as our experiment baselines. We trained and identically evaluated the baseline 
models as our experimental model training method. 

To confirm the advantage transfer-learned network as opposed to a network that is learned 
from scratch, we trained two variants of a modified EfficientNet B0 network that are transfer 
learned and trained from scratch. The final evaluation of the model is presented in Table 5.  

 
Table 5. Model performance comparisons 

Model mAP 

Epochs to 
reach 95% 

training 
accuracy 

Weight 
Size 

Resnet-50 99% 3 94,4 MB 
Dual-Input CNN 98.49% 1 937,3 MB 

Pre-trained dual-input EfficientNet B0 99.27% 3 
17,6 MB Trained-from-scratch dual-input 

EfficientNet B0 99.06% 5 

 
From the table, we can infer that while the baseline models have already had a good 

performance in our research dataset, both models use a substantial amount of disk space to store 
their model weight, thus cannot be implemented effectively in an environment or device with 
limited storage capacity and computing power such as micro-controllers. With EfficientNet, our 
model can be efficiently scaled depending on data complexity and target deployment device 
storage capacity. In our experiment, model size can be reduced up to 98.2% with EfficientNet 
B0 while still achieving comparable predictive performance with baseline models. 

 
The experiment result shows that our proposed architecture converges faster due to the 

transfer-learned weights learned from ImageNet. Our proposed model also uses a substantially 
smaller weight size compared to baseline models while also surpassing the predictive accuracy 
of baseline models. 

 
5. Conclusion 

Deep-learning-based sound classifications have succeeded to improve the development of 
automatic identification of endemic and endangered animal species, which may greatly 
contribute to successful animal conservation efforts. We provided an example by developing a 
novel methodology to be used for identifying Indonesia scops owl species based on their existing 
sound recordings. By using a cost-effective and scalable approach, the proposed model can be 
deployed into low-cost devices, therefore additional devices can be used to cover more grounds. 
On the other hand, an immense number of quality data of endemic or endangered animals needed 
to build a performant model is not easy to collect. Therefore, audio recording data is preferable, 
as audio recordings are free of occlusion and can be augmented more easily. In this experiment, 
it is shown that a transfer-learned network that has been previously trained on ImageNet shows 
a better predictive capability and accelerates convergence compared with the same network 
architecture that is trained from scratch. For that reason, a pre-trained model is beneficial to be 
used in a situation where the number of quality datasets is limited. 
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