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Abstract: This paper presents transient stability assessment of a large actual 87-bus system 
and the IEEE 39-bus system using the probabilistic neural network (PNN) with enhanced 
feature selection and extraction methods. The investigated power systems are divided into 
smaller areas depending on the coherency of the areas when subjected to disturbances. This is 
to reduce the amount of data sets collected for the respective areas. Transient stability of the 
power system is first determined based on the generator relative rotor angles obtained from 
time domain simulations carried out by considering three phase faults at different loading 
conditions. The data collected from the time domain simulations are then used as inputs to the 
PNN. An enhanced feature selection and extraction methods are then incorporated to reduce 
the input features to the PNN which is used as a classifier to determine whether the power 
system is stable or unstable. It can be concluded that the PNN with enhanced feature selection 
and extraction methods reduces the time taken to train the PNN without affecting the accuracy 
of the classification results. 
Keywords: Dynamic security assessment, transient stability assessment, feature selection, 
feature extraction. 
 
1. Introduction 

Transient stability assessment (TSA) is part of dynamic security assessment of power 
systems which involves the evaluation of the ability of a power system to maintain 
synchronism under severe but credible contingencies. Methods normally employed to assess 
TSA are by using time domain simulation, direct and artificial intelligence methods. Time 
domain simulation and direct methods are considered most accurate but are time consuming 
and need heavy computational effort.  

The use of artificial neural network, for instance multilayer perceptron NN (MLPNN) in 
TSA has gained a lot of interest among researchers due to its ability to do parallel data 
processing, high accuracy and fast response. Although successfully applied to TSA, MLPNN 
implementation requires extensive training process [1]. A major drawback of MLPNN for 
applications in large sized power systems is that it requires a large number of input features in 
training the neural network.  

The emergence of support vector machines in TSA has addressed these problems [1, 2]. 
Another method which can be used for TSA is the probabilistic neural networks (PNN) [3], 
which is a class of radial basis function (RBF) network is useful for automatic pattern 
recognition, nonlinear mapping and estimation of probabilities of class membership and 
likelihood ratios [4]. In this paper, the research done in [3] on PNN is continued with bigger 
and larger power systems, i.e. IEEE 39-bus and 87-bus systems. PNN is used as a classifier for 
assessing transient stability state of a large sized and practical power system. The power 
system is divided into smaller coherent areas so as to reduce the amount of input data to the 
neural networks.  

 
 

My Computer
Line

My Computer
Text Box
Received:   November 5, 2009.   Accepted:   November 30, 2009



       
             
 

104 
 

In addition, feature reduction techniques, namely correlation analysis and PCA techniques 
are employed in order to enhance the performance of the PNN in terms of improving the 
training time and accuracy. The performance of PNN with and without feature reduction 
techniques are analyzed and compared. 

 
2. Probabilistic Neural Network (PNN) 

PNN is a direct continuation of the work on Bayes classifiers [5] in which it is interpreted 
as a function that approximates the probability density of the underlying example distribution. 
The PNN consists of nodes with four layers namely input, pattern, summation and output 
layers as shown in Figure 1. The input layer consists of merely distribution units that give 
similar values to the entire pattern layer. 

For this work, RBF is used as the activation function in the pattern layer. Figure 2 shows 
the pattern layer of the PNN. The  d is t   box shown in Figure 2 subtracts the input weights, 
IW1,1, from the input vector, p, and sums the squares of the differences to find the Euclidean 
distance.  The differences indicate how close the input is to the vectors of the training set. 
These elements are multiplied element by element, with the bias, b, using the dot product (.*) 
function and sent to the radial basis transfer function.  The output a is given as,   

1,1a radbas( IW p b)    = −                            (1) 
where radbas is the radial basis activation function which can be written in general form as, 

2nradbas(n) e=                                    (2) 
The training algorithm used for training the RBF is the orthogonal least squares method 

which provides a systematic approach to the selection of RBF centers [6].  
The summation layer shown in Figure 1 simply sums the inputs from the pattern layer 

which correspond to the category from which the training patterns are selected as either class 1 
or class 2. Finally, the output layer of the PNN is a binary neuron that produces the 
classification decision. As for this work, the classification is either class 1 for stable cases or 
class 2 for unstable cases. 

 
Figure 1. PNN Architecture 

 
 
 

 
 

Figure 2. PNN pattern layer 
 

Noor Izzri Abdul Wahab, et al.



       
             
 

105 
 

 
A.  Performance Evaluation 

Performance of the developed PNN network can be gauged by calculating the error of the 
actual and desired test data. Firstly, error is defined as,  

n n nError,E Desired Output,DO Actual Output,AO  = −           (3) 
where, n is the test data number. The desired output (DO) is the specified output data whereas 
the actual output (AO) is the output obtained from testing the trained network.  

 
From (3), the percentage mean error (ME) can be obtained as: 

N
n

n 1

EME (%) 100
N

 
=

= ×∑                                  (4) 

where N is the total number of test data. 
 

The percentage classification error (CE) is given by, 
 

no. of test data misclassificationCE (%) 100
N

     = ×                  (5) 

 
3. Feature Selection And Extraction 

Feature selection is the process of identifying those features that contribute most to the 
discrimination ability of the neural network [7], or the process of finding the best feature subset 
from the original set of features, without additional feature transformation. The number of 
features is reduced without loosing the main information represented by the original set of 
features [8]. Whereas, feature extraction transformed the original input features into reduced 
input features. The transformation of the original input features should maintain a high degree 
of classification accuracy for the intelligent system. The common methods for feature 
extraction are the linear discriminant analysis (LDA) and principle component analysis (PCA). 
In this work, correlation analysis method and PCA are used for the intelligent system feature 
selection and extraction methods.  

 
A. Correlation Analysis 
   Correlation analysis (CA) is a statistical method of indicating the strength and direction of a 
linear relationship between two random variables. The correlation coefficient matrix represents 
the normalized measure of the strength of linear relationship between variables.  
Correlation coefficient (ρ) between two random variables x and y is defined as [9], 
 

cov( , )( , )
var( ) var( )

x yx y
x y

ρ =                               (6) 

 
where var( ) denotes the variance of a variable and cov( ) denotes the covariance between two 
variables. The correlation coefficients (ρ) range from -1 to 1, where, values close to 1 suggest 
that there is a positive linear relationship between the data columns, values close to -1 suggest 
that one column of data has a negative linear relationship to another column of data, values 
close to or equal to 0 suggest there is no linear relationship between the data columns.  
 
For an m-by-n matrix, the correlation coefficient matrix is a square matrix of n-by-n. The 
arrangement of the elements in the correlation coefficient matrix corresponds to the location of 
the elements in the covariance matrix. The matrix is symmetrical at the diagonal with diagonal 
is equal to zero and the upper and lower of the triangular matrices is equal.  
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Figure 3.  ρ between the straight line and the black dots is 0.85 

 
Figure 3 shows the correlation coefficient between the straight line and the black dots is 

0.85, which means that they are 85% correlated with each other. In this work if the features are 
95% or more correlated with each other, one of them is retained and the other is discarded from 
the total features. The correlation processes will continue and in the end the number of features 
will be reduced.  

 
B. Principle Component Analysis (PCA)  

PCA is a statistical method that can be used for dimensionality reduction in a data set while 
retaining those characteristics of the data set that contribute most to its variance, by keeping 
lower-order principal components and ignoring higher-order ones. A brief explanation on 
calculation of principle components is as follows, given a data set l mX × , where l n∈  
represents the number of rows of the data X and m n∈  represents the number of input 
features (columns) of the data. Let 1( ,..., )mx x x= be the mean value for the input features and 
subtract the mean with the original features as follows, 

 

1 1( ,..., )m mX x x x x
∧

= − −                              (7) 
 

The covariance matrix of X
∧

is, 
T

1

1 l

j

C X X
l

∧ ∧

=

= ∑                                        (8) 

 
Then, calculate the eigenvectors and eigenvalues of the covariance matrix. The new 

coordinates of the orthogonal projections onto the eigenvectors, are called principle 
components [10]. The number of principle components is equal to the number of input features.  

 
If too many principle components are considered, the transform input features may include 
redundant features or if small number of principle components are chosen, it may jeopardized 
the accuracy of the intelligent system. One method of choosing principle components is by 
plotting them on a scree plot as shown in Figure 4 [11]. It can be noticed in Figure 4 that there 
is a ‘knee’ in the plot at the third principle component, therefore according to a popular rule, 
the number of principle components to be considered should be 3 [11].      
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Figure 6. The large 87-bus test system 
 

A. Transient Stability Simulation on the Test Systems 
In the transient stability simulation, the generators are modeled by the 6th order differential 

equations and the loads are of constant impedance type. The excitation system model is the 
IEEE-type 1 and the turbine governor model is of type 1. The differential equations to be 
solved in transient stability analysis are nonlinear ordinary equations with known initial values. 
Transient stability simulations were carried out using the PSSTME software. In this work, the 
dynamic performance of the system during disturbances is based on observation of the rotor 
angles of generators in their respective areas.  

There are 102 three-phase line faults at different loading conditions (base case, -5% loading 
and +3% loading) applied to the 39-bus system. As for the 87-bus system, the number of line 
faults applied is 342 at loading conditions of base case, 3% loading and 5% loading. The three-
phase faults are created at various locations in the system at any one time. In the simulations, 
the power system is said to go through prefault, fault-on and postfault stages [12]. When a 
three-phase fault occurs at any line in the system, a breaker will operate and the respective line 
will be disconnected at the fault clearing time which is set at 100 ms [13].  The time step, ∆t, 
for the time domain simulations is set at 0.02 seconds and the time frame of interest in transient 
stability simulation is usually limited to 3 to 5 seconds following a disturbance. Sometimes, it 
may be extended to 10 seconds for very large systems with dominant inter-area swings [14]. In 
this case, the time taken to run the simulation is set at 6 seconds for the 39 bus system and 11 
seconds for the 87-bus system considering that it is a large power system. 
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Figure 7. Design Implementation of PNN for TSA 

 
Figure 7 shows the PNN implementation of the TSA for the test systems in which a 

modular based design is proposed. In this design, the test systems are divided according to the 
number of areas in the system and accordingly there are equal numbers of PNN modules have 
been developed to asses the transient stability state of the test systems. By decomposing the 
system into smaller areas, the computational time taken in training the PNN can be greatly 
reduced as compared to developing one PNN for the whole system. This modular design also 
provides flexibility to configuration changes within each area.  

Thus, the data collected from the transient stability simulations on the test systems are 
divided into different areas according to the location of faults in the systems. The advantages of 
dividing the data according to areas are that the number of data can be reduced and the time 
taken to train the PNN neural networks system can also be reduced.   

Data for each three-phase fault is recorded in which 42 samples of data are taken. For the 
39-bus system there are 138 three-phase faults simulated on the system and this gives a size of 
138x42 or 5,796 data collected. As for the 87-bus system there are 342 three-phase faults 
simulated and therefore the size of collected data is 14,364. The faults are divided according to 
the location of their respective transmission lines in their respective areas mentioned 
previously.  

Table I and Table II shows the breakdown of the total, training and testing data for the 
respective areas of both test systems. The training data constitute three quarter of the input data 
and the remaining quarter are left for testing data. The different number of data for all areas of 
both test systems is due to different number of buses, transmission lines, generators etc. of 
respective areas in the test systems.  
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TABLE I 
Number of Input Data, Training Data and Testing Data according  

to Areas for the 39-bus system 
rea No. of total  data No. of training data No. of testing data 
1 2516 2016 504 
2 3780 2835 945 
3 756 567 189 

 
 

TABLE II 
Number of Input Data, Training Data and Testing Data According  

to Areas for the 87-bus system 
Area No. of total  data No. of training data No. of testing data 

North 4284 3213 1071 
Central 4662 3497 1165 
S/West 2394 1796 598 
South 2394 1796 598 
East 1764 1323 441 

 
 
B. Reduction of Input Features using the Correlation Analysis and PCA 

The selection of input features is an important factor to be considered in the ANN 
implementation. It is necessary to collect as many data from the power system as possible, 
which are assumed to be of interest of TSA. The original input features selected for this work 
are given in Table III. The total number of feature listed in Table III is 150 input features for 
the IEEE 39-bus test system and 401 input features for the large practical 87-bus test system.  

 
TABLE III 

Selected Input Features for The IEEE 39-bus and 87-bus Systems 
Feature Description IEEE 39-bus 87-bus 

MVA Generation per Area  (S) 3 5 
MVA Power of Each Generator (S)  10 23 
Individual Rotor Angle (δ) 10 23 
MVA Power of Transmission line (S)  40 157 
MVA Power Exchange between Areas  (S) 6 14 
Bus Voltages (V) 39 87 
Bus Voltage Angles (φ) 39 87 
Centre of Inertia (COI) for Areas (δCOI ) 3 5 

 
The proposed feature selection method using CA as described in section III is applied to 

eliminate the redundant features. The subsets of input features are grouped according to the 
features presented in Table III. The number of reduced input features for each area after 
applying the proposed feature selection method is shown in Table IV.  

The number of input features is further reduced using the PCA. By applying the feature 
extraction method, for the 39-bus system, 20 input features are extracted for Area 1, 15 input 
features are extracted for Area 2 and 15 input features are extracted for Area 3. Whereas for the 
87-bus system,  50 input features are extracted for Area North, 60 input features are extracted 
for Area Central, 30 input features are extracted for Area S/West, 30 input features are 
extracted for Area South and 40 input features are extracted for Area East.    
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TABLE IV 
Reduced Features Using Correlation Analysis Method 

 
5. Results 

In this section, the results obtained from PNN with and without applying features selection 
and extraction methods for transient stability assessment of the 39-bus and 87-bus systems are 
presented. The developed PNN is used for classifying power system transient stability states in 
which it classifies ‘1’ for stable cases and ‘2’ for unstable cases. The architecture of the PNN is 
such that it has 150 input neurons for the 39-bus system whereas 401 input neurons for the 87-
bus system, the hidden neurons equal the number of training data which is according to Table 
II and Table III and the number of output neuron is one.  

 
A. Performance Evaluation of PNN for Transient Stability Assessment of the IEEE 39-bus 

System  
The testing results of the PNN incorporating with and without CA and PCA techniques are 

shown in Table V. The results in the table show that, the overall percentage error is well below 
2% and the accuracy is greater than 98%. The percentage error is also below 2% for PNN when 
using CA and PCA techniques. When CA and PCA are used, a slight reduction in error is 
observed. This implies that, the use of the reduced input features tend to improve the PNN 
accuracy.  
 

TABLE V 
PNN Testing Results For The 39-Bus System With Different Number Of Input Features 

Area 
Error (%) Training time (sec) 

without 
CA & PCA 

with 
CA 

with 
CA & PCA 

without 
CA & PCA 

with 
CA 

with 
CA & PCA 

1 1.587 1.587 1.191 19.6 14.5 3.55 

2 0.635 0.635 0.4233 70 54.4 12.92 

3 0.529 0.000 0.000 2.67 1.77 0.611 

 
In terms of training time, the times taken to train the PNN for the three areas are different 

due to the different number of training data. The time taken to train PNN for Area 2 is the 
longest and Area 3 is the shortest. This is due to the fact that Area 2 is the biggest area and 
Area 3 is the smallest area in the system. By incorporating CA and PCA techniques, the time 
taken to train the PNN are greatly reduced. It can be deduced that the number of input features 
influence the training time of the PNN.    

 
 

 

System Area No. of original input features No. of reduced  input features 
 

IEEE 39-bus 
Area 1 150 107 
Area 2 150 114 
Area 3 150 96 

 
 
 

87-bus 

North 401 165 
Central 401 145 
S/West 401 132 
South 401 149 
East 401 136 
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B. Performance Evaluation of PNN for Transient Stability Assessment of the Large Actual 87-
bus System  
From Tables VI, when feature selection and extraction methods are incorporated for PNN 

the overall percentage error is less than 1% with accuracy greater than 99%.  From the testing 
results, when CA and PCA are employed, there is reduction in error for PNN of Area Central 
whereas the PNN of other areas do not show a reduction in error percentage. This indicates that 
by applying CA, some of the redundant input features are eliminated thus improving the 
accuracy of the areas.  

In terms of training times, the number of input features of each area in the test system 
influence the time taken to train the PNN. The times taken to train the PNN of the five areas 
are different due to the varying number of training data. The Area Central requires a longer 
time to train whereas; Area East takes the least training time. This implies that Area Central is 
the biggest area in terms of number of buses and generators compared with the number of 
buses and generators of all the other areas. In addition, the time taken to train the PNN is 
further reduced when both CA and PCA are employed. It can be deduced that the number of 
input features influence the training time of the PNN.   
 

TABLE VI 
PNN Testing Results For The 87-Bus System With Different Number Of Input Features 

PNN of Area 
Error (%) Training time (sec) 

without  
CA & PCA 

with  
CA 

with  
CA & PCA 

without  
CA & PCA 

with  
CA 

with  
CA & PCA 

North 0 0 0 236 110 43.7 
Central 0.26 0.26 0.26 300 120.4 53.4 
South 0.334 0.334 0.334 69.5 25.5 6.9 
Southwest 0.17 0.17 0.17 70.4 27.9 6.8 
East 0.23 0.23 0.23 38.5 14.3 4.6 

 
C. Summary Of PNN Result With and Without Features Selection and Extraction  in Transient 

Stability Assessment 
The number of input features and data influence the time taken to train the PNN for 

respective areas for both with and without reduced input features. Of all areas, the bigger areas 
require a much longer time to train than the smaller areas of both test systems. In term of 
classification of testing results, the trained PNN for Area North of the 87-bus system and Area 
3 of 39-bus system gives the highest accuracy and the lowest accuracy is Area 1 for the 39-bus 
system and Area Central for the 87-bus system. The PNN incorporating CA and PCA for 
reduction in the number of input features improves significantly the time taken for training 
without affecting its accuracy for all areas respectively.  
 
6. Conclusion 

The performance of PNN with and without the feature selection and extraction methods for 
transient stability assessment of large power system has been presented in this paper. The 
transient stability assessment of the test system by PNN is done by means of classifying the 
system into either stable or unstable states for several three phase faults applied to the 
transmission lines in the test systems. Time domain simulations were first carried out to 
generate training data for the neural networks and to determine transient stability state of a 
power system by visualizing the generator relative rotor angles.  

Results show that the number of input features and data influence the time taken to train the 
PNN for respective areas for both with and without reduced input features. Feature selection 
method adopted in this work managed to reduce the number of original input features. Feature 
extraction using the PCA further reduced the number of input features.  
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Among the two methods used in this work, the PNN with feature selection and extraction 
methods gives better results in reducing the time taken for training without affecting its 
accuracy for all areas of the 39-bus system and the large actual power system. From the results, 
it can be concluded that PNN, are capable of assessing the transient stability of the 87-bus 
system with percentage error less than 1% and with percentage error less than 2% for the IEEE 
39-bus system.  
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