

 International Journal on Electrical Engineering and Informatics - Volume 8, Number 3, September 2016

State Elimination in Accelerated Multiagent Reinforcement Learning

Ary Setijadi Prihatmanto, Widyawardana Adiprawita, Safreni Candra Sari, and Kuspriyanto

Department of Electrical Engineering, School of Electrical Engineering and Informatics

Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia

asetijadi@lskk.ee.itb.ac.id, wadiprawita@stei.itb.ac.id,

safrenicsari@yahoo.com, kuspriyanto@lskk.ee.itb.ac.id,

Abstract: This paper presents a novel algorithm of Multiagent Reinforcement Learning called

State Elimination in Accelerated Multiagent Reinforcement Learning (SEA-MRL), that

successfully produces faster learning without incorporating internal knowledge or human

intervention such as reward shaping, transfer learning, parameter tuning, and even heuristics,

into the learning system. Since the learning speed is determined among others by the size of the

state space where the larger the state space the slower learning might become, reducing the

state space can lead to faster convergence. SEA-MRL distinguishes insignificant states of the

state space from the significant ones and then eliminating them in early learning episodes,

which aggressively reduces the scale of the state space in the following learning episodes.

Applying SEA-MRL in gridworld multi robot navigation shows 1.62 times faster in achieving

learning convergence. This algorithm is generally applicable for other multiagent task

challenges or general multiagent learning with large scale state space, and perfectly applicable

with no adjustments for single agent learning situation.

Keywords: Multiagent Reinforcement Learning, multiagent learning, Reinforcement Learning,

Accelerated Reinforcement Learning, Machine Learning, state space reduction.

1. Introduction

 Multiagent systems are rapidly finding applications in a variety of domains, including

robotics, distributed control, telecommunications, and economics [1]. The complexity of many

tasks arising in these domains makes them difficult to solve with preprogrammed agent

behaviors. The agents must, instead, discover a solution on their own, using learning. A

significant part of the research on multiagent learning concerns reinforcement learning (RL)

techniques.

 In RL, learning is carried out online through trial-and-error interactions of the agent with an

environment that provides a reinforcement (reward or penalty) at each interaction. In the

particular case of multiagent systems, the reinforcement received by each agent depends both

on the dynamics of the environment and on the behavior of other agents, and therefore a

multiagent reinforcement learning (MRL) algorithm must address the resulting nonstationary

scenarios in which both the environment and other agents are present. Unfortunately,

convergence of any RL algorithm requires extensive exploration of the state-action space,

which can be very time consuming [2], not to mention the existence of multiple agents also

increases the size of the state-action space, therefore, worsening the performance of RL

algorithms with respect to convergence (even to suboptimal control policies) when it is adapted

to multiagent problems. Therefore acceleration of learning processes is one of important issues

in reinforcement learning [3, 4].

 Most successes in accelerating MRL incorporated internal knowledge or human

intervention into the learning system, such as reward shaping [5-8], transfer learning [6, 9-13],

parameter tuning [14], and even heuristics [2, 11, 13, 15]. These approaches could be no longer

solutions to RL acceleration where internal knowledge is not available. This paper proposed a

novel approach in improving the MRL learning performance called by accelerating the speed

of the learning convergence without involving heuristics or any internal knowledge.

 Received: February 1
st

, 2015. Accepted: September 27
th

, 2016
 DOI: 10.15676/ijeei.2016.8.3.12

 646

mailto:asetijadi@lskk.ee.itb.ac.id
mailto:wadiprawita@stei.itb.ac.id
mailto:safrenicsari@yahoo.com
mailto:kuspriyanto@lskk.ee.itb.ac.id

 Since the learning convergence is determined by the size of the state space where the larger

the state space the slower learning might become, reducing the state space by eliminating the

insignificant states can lead to faster learning. In this paper a novel method called State

Elimination in Accelerated Multiagent Reinforcement Learning (SEA-MRL) is presented. This

algorithm distinguishes insignificant states from the significant one from early learning

episode, which reducing the state space during the learning process. This paper extends our

previous work which investigates the use of State Elimination in single agent domain [16].

 The remainder of this paper is organized as follows. Section II briefly reviews MRL

approaches and describes the multiagent Q learning (MA-Q(𝜆)) and multiagent SARSA (MA-

SARSA(𝜆)) algorithm, while Section III presents a review of some existing approaches to

speed up RL. Next, Section IV shows how the learning speed can be improved by eliminating

some insignificant states from the state space during the learning process. Then, section V

details the mapping gridworld multirobot navigation into SEA-MRL and the experiments

performed in the domain, and analyses the results obtained. Finally, section VI presents

conclusions and future directions.

2. Multiagent Reinforcement Learning

 As the framework for MRL In this paper, we adopt the Markov Games (MGs) Theory. An

MG is an extension of a Markov decision process (MDP) that uses elements from game theory

and allows the modeling of systems where multiple agents compete among themselves to

accomplish their tasks.

Formally, an MG [17] over a set of n agents is defined as:

1) 𝑆: a finite set of environment states.

2) 𝐴1, … , 𝐴𝑛: a collection of finite sets 𝐴𝑖, with the possible actions for each agent i, 1 ≤ i ≤ n.

3) 𝑇: 𝑆 × 𝐴1 × … × 𝐴𝑛 × 𝑆 → [0,1]: a state transition function where 𝑇(𝑠, 𝑎𝑖 , … , 𝑎𝑛 , 𝑠′)

defines the probability of a transition from state 𝑠 to state 𝑠′ when the agents execute

respective actions 𝑎1, … , 𝑎𝑛.

4) 𝑅𝑖: 𝑆 × 𝐴1 × … × 𝐴𝑛 → ℝ: a reward function associated to each agent i.

The goal of the i
th

 agent is to find a policy 𝜋𝑖 : 𝑆 → 𝐴𝑖 that maximizes the expected sum of

discounted rewards, 𝐸{∑ 𝛾𝑗𝑟𝑖,𝑡+𝑗
∞
𝑗=0 }, where 𝑟𝑖,𝑡+𝑗 is the reward received j steps in the

future by agent i, and 𝛾 ∈ [0,1] is the discount factor.

 In this paper we adapt the fully cooperative SG as a framework for MRL. These

heterogeneous agents with differing action spaces learn to achieve the overall system goals by

implicitly cooperating to achieve their common goal: the global reward function. Together the

agents form a multiagent system (MAS). Each agent's state space consists of the full state

space as would be used in single agent solutions, but does not include any information on

action selection done by the other agents. Claus and Boutilier (1998) call this approach

Independent Learners (IL). During policy evaluation, each agent selects its own action, without

any form of negotiation or central coordination.

 Busoniu et al. [18] proposed the cooperative setting of Multiagent Reinforcement Learning

with Independent Learners [19] case , where the action-value function of an agent i builds

upon the basic Q-learning algorithm [20], which is given by:

𝑄𝑡+𝑖
𝑖 (𝑠𝑡

𝑖 , 𝑎𝑡
𝑖) = (1 − 𝛼𝑡

𝑖)𝑄𝑡
𝑖(𝑠𝑡

𝑖 , 𝑎𝑡
𝑖) + 𝛼𝑡

𝑖[𝑟𝑡+1
𝑖 + 𝛾 max𝑎𝑖∈𝐴𝑖 𝑄𝑡

𝑖 (𝑠𝑡+1
𝑖 , 𝑎𝑖)], (1)

where 𝑠𝑡
𝑖 ∈ 𝑆𝑖 is the state of agent i at time step t and all other agent-specific terms have been

similarly superscripted by i. Another cooperative setting for MRL with IL case adopted in this

paper is based on SARSA which is given in the following equation,

𝑄𝑡+𝑖
𝑖 (𝑠𝑡

𝑖 , 𝑎𝑡
𝑖) = (1 − 𝛼𝑡

𝑖)𝑄𝑡
𝑖(𝑠𝑡

𝑖 , 𝑎𝑡
𝑖) + 𝛼𝑡

𝑖[𝑟𝑡+1
𝑖 + 𝛾 𝑄𝑡

𝑖 (𝑠𝑡+1
𝑖 , 𝑎𝑖)], (2)

Ary Setijadi Prihatmanto, et al.

647

and the utility function is

 𝑉𝑖(𝑠) = max𝑎𝑖∈𝐴𝑖 𝑄𝑖(𝑠𝑖 , 𝑎𝑖) (3)

where the agent’s policy is now a probability distribution over actions, π(s) ∈ P(A), and π(s, a)

is the probability of taking action a. The optimal policy π ∗(s) is the one that produces the

largest V for every state s.

𝜋𝑖∗(𝑠) = argmax𝑎𝑖∈𝐴𝑖 𝑄𝑖∗(𝑠𝑖 , 𝑎𝑖) ∀𝑠 ∈ 𝑆. (4)

 A widely used action selection policy that includes exploratory actions is the 𝜖-greedy

policy 𝜋𝜖−𝑔𝑟𝑒𝑒𝑑𝑦(𝑠𝑡 , 𝑎𝑡) which is defined such that a random action is selected with probability

𝜖 (uniformly sampled from 𝐴) and 𝑎𝑡,𝑔𝑟𝑒𝑒𝑑𝑦 otherwise:

𝜋𝜖−𝑔𝑟𝑒𝑒𝑑𝑦(𝑠𝑡 , 𝑎𝑡) = {
1 − 𝜖 +

𝜖

|𝐴(𝑠)|
, 𝑖𝑓 𝑎𝑡 = 𝑎𝑡,𝑔𝑟𝑒𝑒𝑑𝑦

𝜖

|𝐴(𝑠)|
, 𝑖𝑓 𝑎𝑡 ≠ 𝑎𝑡,𝑔𝑟𝑒𝑒𝑑𝑦

 (5)

with 𝜖 ∈ [0,1] the exploration rate and |𝐴(𝑠)| the number of actions in 𝐴 within state 𝑠. For a

good trade-off between exploration and exploitation, the value for 𝜖 is typically chosen from

the range [0.01,0.20] [21].

3. Approach on Accelerated Multiagent Reinforcement Learning

 The quality of the learning itself is measured based on eventual convergence to optimal,

speed of convergence to optimality and regret [4]. Although many algorithms come with a

provable guarantee of asymptotic convergence to optimal behavior [7], an agent that quickly

reaches a plateau at 99% of optimality may, in many applications, be preferable to an agent that

has a guarantee of eventual optimality but a sluggish early learning rate. Therefore the speed of

convergence to near-optimality is more practical to be measured. The speed of convergences to

the near optimality with high dimension environment is often big issues in RL. One effort that

can be applied to accelerate RL is to find a new algorithm that reduces the state space by

carefully eliminating some unimportant states while learning. If not careful enough then the

potentially important state might also be eliminated, and the learning process will fail.

 Several methods have been proposed to speed up RL. One of them is incorporate the prior

knowledge into RL. Mataric [8] used implicit domain knowledge to design the

reinforcement/reward function in situated domains based on utilizing heterogeneous reward

functions and goal specific progress estimator. Laud and De Jong [9] formulated an

explanation of the potential of reward shaping to accelerate reinforcement learning with a

reward-based analysis. Konidaris and Barto [10] introduced the use of learned shaping rewards

in RL tasks, where an agent uses prior experience on a sequence of tasks to learn a portable

predictor that estimates intermediate rewards, resulting in accelerated learning in later tasks

that are related but distinct. Matignon, Laurent et al. [11] accelerate goal-directed RL by

modifying the reward function using a binary reward function (for discrete state space) and

continuous reward function (for continuous state space) and implementing Gaussian goal

biased function as the initial values of Q(s). Ma, Xu et al. [12] applied a state-chain sequential

feedback Q-learning algorithm for path planning of autonomous mobile robots in unknown

static environments, where the state chain is built during the searching process.

 Another approach in accelerating the RL is by applying transfer learning in RL. The core

idea of transfer is that experience gained in learning to perform one task can help improve

learning performance in a related, but different, task [13]. Drummond [14] used transfer

learning from the related tasks, which generate a partitioning of the state space which is then

used to index and compose functions stored in a case base to form a close approximation to the

State Elimination in Accelerated Multiagent Reinforcement Learning

648

solution of the new task. Taylor and Stone [15] introduced behavior transfer, a novel approach

to speeding up traditional RL. Celiberto, Matsuura et al. [2] applied transfer learning from one

agent to another agent by means of the heuristic function speeds up the convergence of the

algorithm. Case-based is used to transfer the learning, and it makes TL-HAQL algorithm.

Peters and Schaal [16] reduced the problem of learning with immediate rewards to a reward-

weighted regression problem with an adaptive, integrated reward transformation for faster

convergence. Takano, Takase et al. [17] accelerated the learning process by implementing the

effective transfer learning method, which merges a selected source policy to the target policy

without negative transfers. Norouzzadeh, Busoniu et al. [18] used two transfer criteria in

measuring agent’s performance (by the distance between its current solution and the optimal

one and by the empirical return obtained) to decide when to transfer learning from an easier

task to a more difficult one so that the total learning time is reduces.

 More recent proposal in accelerating RL is to include heuristics in RL algorithms. Gao and

Toni [19] incorporate heuristic, represented by arguments in value-based argumentation into

RL by using Heuristically Accelerated RL techniques in RoboCup Soccer Keepaway-

Takeaway game. Celiberto, Matsuura et al. 2010 [2] applied transfer learning from one agent to

another agent by means of the heuristic function speeds up the convergence of the algorithm.

Case Based (CB) is used to transfer the learning, and it makes RL algorithm faster. Terashima,

Takano et al. [20] used the prior information on the problem utilizing options as prior

information. In order to increase the learning speed even with wrong options, methods for

option correction by forgetting the policy and extending initiation sets. Bianchi et al. [21]

presented a novel class of algorithms, called Heuristically-Accelerated Multi-agent

Reinforcement Learning (HAMRL), which allows the use of heuristics to speed up well-known

multi-agent reinforcement learning algorithms. Such HAMRL algorithms are characterized by

a heuristic function, which suggests the selection of particular actions over others.

 Other approaches were also proposed. Senda, Mano et al. [22] reduced state space by

modelling the state space by 3D space coordinates where then the space model is simplified by

converting 3D coordinates to 2D coordinates under a certain terms. Grounds and Kudenko

[23] investigated the use of parallelization in RL, with the goal of learning optimal policies for

single-agent RL problems more quickly by using parallel hardware. Braga and Araújo [24]

influenced zone algorithm, an improvement over the topological RL agent (TRLA) strategy,

that allows reducing the number of requested interactions, which is based on the topological-

preserving characteristic of the mapping between states (or state–action pairs) and value

estimates. Kartoun, Stern et al. [25] allowed several learning agents to acquire knowledge from

each other. Acquiring knowledge learnt by an agent via collaboration with another agent. Price

and Boutilier 2003 [26] proposed an implicit imitation that can accelerate reinforcement

learning dramatically in certain cases, roughly by observing a mentor, a reinforcement learning

agent can extract information about its own capabilities in, and the relative value of, unvisited

parts of the state space. Potapov and Ali [27] tuned the learning steps, discount and exploration

degree parameters to influence the convergence rate. McGovern, Sutton et al. [28] used built in

policies or macro-actions as a form of domain knowledge that can improve the speed and

scaling of reinforcement learning algorithms.

 The algorithm proposed in this paper is aimed to improve the RL learning performance by

accelerating the speed of the learning convergence without involving heuristics or any learning

domain prior knowledge. Since the learning convergence is determined by the size of the state

space, where the larger the state space the slower learning might become, reducing the state

space can lead to faster learning. Instead of heuristics or any learning domain prior knowledge,

this proposed method identifies some potential consistent local minima states to be considered

as insignificant states and is considered to be eliminated from the state space. This method

reduces the state space, decreasing the computation order and hence accelerating the

convergence speed.

Ary Setijadi Prihatmanto, et al.

649

4. Online State Elimination to Accelerate Reinforcement Learning

 The complexity of an algorithm is often expressed using big O notation. Big O notation is

useful when analyzing algorithms for efficiency. In RL, if a good task representation or

suitable initialization is chosen, the worst-case complexity of reaching a goal state has a tight

bound of 𝑂(𝑛3) action executions for Q-learning and 𝑂(𝑛2) action executions for value-

iteration [32], where n stands for number of states in the state space. If the agent has initial

knowledge of the topology of the state space or the state space has additional properties, the

𝑂(𝑛3) bound can be decreased further. In our case, where prior knowledge is not available,

initial knowledge is not incorporated in the new algorithm.

 Since the worst case complexity depends totally on number of states, it’s very clear that n

has very dominant factor in determining the convergence speed, where reducing n will lead to

decreasing the computation needed to reach learning convergence. When robot learns to master

a new skill, it learns to determine which states considered important to support its performance.

Robot learns to classify which states are significant, and which states are less significant. By

updating its Q(s,a) values every iteration, agent update its policies by choosing the highest Q

value as its decision factor, which means it starts to ignore smaller Q value (which indicates

less significant states). This condition forces the agent to rarely visit these less significant states

until agent succeeded in maximizing its rewards.

 Almost all RL algorithms are based on estimating value functions--functions of states (or of

state-action pairs) that estimate how good it is for the agent to be in a given state (or how good

it is to perform a given action in a given state). The notion of "how good" here is defined in

terms of future rewards that can be expected, or, to be precise, in terms of expected return. Of

course the rewards the agent can expect to receive in the future depend on what actions it will

take. Accordingly, value functions are defined with respect to particular policies. The value of

the state space in this case represents the significance factor of the state. High value state

represents the high probability that agent will decide in determining its optimum policy 𝜋∗. A

high value state means significant states that have to be maintained in the state space because it

provides solution to the agent. On the other hand the states that have less value become less

interesting for the agents. The probability to visit these states is towards 0 in 100% exploitation

cases. When the insignificant factor of these states can be measured, the states which have high

insignificancy can be considered to be eliminated from the state space leaving it reduced.

In order to determine the insignificance rate of a state, in this paper a new function 𝜄 is

proposed.

Definition 1: The insignificance function 𝜄: 𝑆 ⟶ ℝ is a function that returns a value indicates

the insignificance rate of a state 𝑠 ∈ 𝑆.

This insignificance function represents an insignificance rate of a state that derived from value

V(s), where the lowest value V of the neighborhood state is considered to be potentially

insignificant. This function indicates which state 𝑠 ∈ 𝑆 is insignificant enough that it can be

ignored and should be eliminated from the state space, since they don’t provide solutions to the

agent.

Definition 2: If the domain 𝑋 is a metric space then f is said to have

a local (or relative) maximum point at the point 𝑥∗ if there exists some ε >0 such that 𝑓(𝑥∗) ≥
𝑓(𝑥) for all x in 𝑋 within distance ε of 𝑥∗. Similarly, the function has a local minimum

point at 𝑥∗ if 𝑓(𝑥∗) ≤ 𝑓(𝑥) for all x in X within distance ε of 𝑥∗.

Definition 3: A state is called a local minimum state at 𝑘𝑡ℎ iteration or 𝑠𝑚𝑖𝑛
𝑘 when its V value

is proven to be a local minimum of all V(s) function in 𝑘𝑡ℎ iteration for all 𝑠 ∈ 𝑆.

Since the first learning iteration every state in state space of agent i accordingly has initial

insignificance value 𝜄𝑖(𝑠) = 0 for all 𝑠𝑖 ∈ 𝑆𝑖, as the initial value of the 𝑉𝑖(𝑠). When agent

State Elimination in Accelerated Multiagent Reinforcement Learning

650

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Analysis_of_algorithms

updates its state-action value by harvesting rewards 𝑅𝑖(𝑠) every time it visits a state,

insignificance factor 𝜄𝑖(𝑠) is also updated by the following return:

ι𝑘+1
𝑖 (𝑠) = {

ι𝑘
𝑖 (𝑠) + 𝜇 𝑖𝑓 𝑠𝑖 𝑖𝑠 𝑠𝑚𝑖𝑛

𝑖,𝑘

ι𝑘
𝑖 (𝑠) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6)

where ι𝑘+1
𝑖 (𝑠) represents the insignificance value 𝜄 of state 𝑠𝑖 in the (𝑘 + 1)𝑡ℎ iteration, ι𝑘

𝑖 (𝑠)

the insignificance value of state 𝑠𝑖 in 𝑘𝑡ℎ iteration, and 𝜇 is the insignificance step which

represents the increasing potential of a insignificant state. The insignificance of state 𝑠𝑖 is

updated every iteration but it will be reset back to 0 when in the next iteration 𝑠𝑖 is no longer a

local minimum (𝑠𝑖 ≠ 𝑠𝑚𝑖𝑛
𝑖,𝑘

.).

Definition 4: A sub state space 𝑆𝑚𝑖𝑛
𝑖,𝑘 ⊂ 𝑆𝑖 is a state space of agent i at k

th
 iteration, which

consists of all 𝑠𝑖 ∈ 𝑆𝑖 and 𝜄𝑘
𝑖 (𝑠) ≥ Ι.

When 𝜄𝑘
𝑖 (𝑠)of a state 𝑠𝑖 larger than a threshold value 𝛪, the state will be added to a sub state

space 𝑆𝑚𝑖𝑛
𝑖,𝑘 ⊂ 𝑆𝑖 , which is then considered to be eliminated from the state space.

S𝑘+1
𝑖 ⟵ S𝑘

𝑖 ⋂𝑆𝑚𝑖𝑛
𝑖,𝑘

 (7)

 In every iteration k
th

, agent i reduces its Q value to only the new state space S𝑘+1
𝑖 , and

original action space 𝐴𝑖. However learning at early stages is essentially random exploration

{Bianchi, 2013 #127}. Deciding which states is more significant than others in this stage gives

very small contributions since every states has its own significance potential. It’s very

important however to expand Ι to an exponential function that vary to iteration number k as

given in the following equation

Ι(𝑡) = Ι0𝑒h/k (8)

where Ι0 is a initial value of Ι and h is a real number. This function gives Ι(𝑡) = Ι0, when k

goes to infinity. This has to be done since in early stage/exploration stage to let agent see all

possibilities that it can profit from its V(s). The complete algorithm in pseudo code is given in

Figure. 1.

Define number of episodes k

Define elimination start episode p

for all agent 𝑖 ∈ [1 … 𝑛] do

Initialize 𝑄𝑖(𝑠, 𝑎) arbritarily

𝜄𝑖(𝑠) = 0 (for all 𝑠 ∈ 𝑆𝑖)

k=0

Repeat (for each episode k):

 Initialize 𝑠

 Repeat(for each step of episode):

Choose 𝑎𝑖 from 𝑠 using policy derived from 𝑄 (e.g., 𝜖-greedy)

Take action 𝑎𝑖, observer 𝑟𝑖 , 𝑠′

 𝑄𝑖(𝑠, 𝑎𝑖) ← 𝑄𝑖(𝑠, 𝑎𝑖) + 𝛼[𝑟𝑖 + 𝛾 max𝑎′∈𝐴𝑖
𝑄𝑖(𝑠′, 𝑎′𝑖) − 𝑄𝑖(𝑠, 𝑎𝑖)]

 𝑠 ← 𝑠′;
 until 𝑠 is terminal

 if k> p

 V𝑖(𝑠) = max𝑎 𝑄𝑖(𝑠, 𝑎𝑖)
 k=k+1

 Repeat (for all 𝑠 ∈ 𝑆𝑖)

 if V𝑖(𝑠) is local minimum

 Ι ⟵ Ι𝑒ℎ/𝑘

Ary Setijadi Prihatmanto, et al.

651

 𝜄𝑖(𝑠) = 𝜄𝑖(𝑠) + 𝜇

 if 𝜄𝑖(𝑠) ≥ Ι
 𝑆𝜄 ⟵ 𝑆𝜄 ∪ {𝑠}
 else

 𝜄𝑖(𝑠) = 0

 𝑆𝜄 ⟵ 𝑆𝜄
 Endif

 Endif

 𝑆𝑖 ⟵ 𝑆𝑖\𝑆𝜄
𝑖

 until 𝑠 is terminal

 end if

 end for

Figure 1. SEA-MRL Algorithm

 SEA-MRL is applicable for both multiagent and single agent system. Changing the value of

number of agents (i) to 1 will automatically convert the environment to single agent

environment. For more comperhensive explanation for single agent situation, the reader is

referred to [16].

5. Mapping Gridworld Robot Navigation into Multiagent Reinforcement Learning

 One of the dominant topics in current mobile robotics research is that of autonomous

navigation. In the robot navigation problem, the robots need to find an optimal navigable path

in a given environment, with certain constraints imposed on the robot, such as a time limit or

limited availability of resources. Optimal path here refers to a path between the two points: the

source and destination, which has the least path cost, or in other words the most profitable one

among all the existing paths.

 The environment is a discrete grid-world with randomly located obstacles. There are three

robot agents on the grid-world, starting from an arbitrary initial position. The robot agent or

simply called an agent, can occupy a single empty tile at a time and is faced with the task of

navigating through the map in an autonomous manner. There can only be one agent on one tile

at a time. The agent is capable of sensing its immediate environment and moving in 5

directions (action) one tile at a time respectively North, South, West, East and stay put, that

makes the action space 𝐴 = {𝑁, 𝑆, 𝑊, 𝐸, 𝑆𝑃} available for the agent. The grid-world

environment is given in Figure 2

Figure 2. Three robot agents on the 10x10 gridworld can move to 5 directions resp. North,

South, West, East, and stay put, learn to find shortest path to its destination and avoiding

obstacles.

Legend:

Robot agent 1

Robot agent 2

Robot agent 3

Destination 1

Destination 2

Destination 3

Obstacle

State Elimination in Accelerated Multiagent Reinforcement Learning

652

 The state space of agent i or 𝑆𝑖 in this environment is defined as:

𝑆𝑖 = {(𝑝𝑖); 𝑝𝑖 ∈ {(1 1), (1 2), . . . , (10 10)}} (9)

where 𝑝𝑖 is the position of agent i.

 The task of the agent i is to find sequence of actions that have to be performed to achieve

the goal state, which is the destination1 for agent 1, destination 2 for agent 2, an destination 3

for agent 3. The global reward function R(s, a, s’) for all agents are given as follows

𝑅(𝑠, 𝑎, 𝑠′) = {
𝑟→, 𝑠 ∈ 𝑆→

𝑟+, 𝑠 ∈ 𝑆+

𝑟−, 𝑠 ∈ 𝑆−
 (10)

where 𝑟→ , 𝑟+, and 𝑟−, is resp. the reward when agent takes action to move to one of the 5

directions, when agent achieved the goal state, and when agent bumped the wall or the

obstacle.

 Every learning episode starts from the same initial position where agent is always in the

same grid. The agent performs the learning task until the episode is ended. There are 3

situations that end the episode: when the agent arrived at the destination state, and when

maximum trial had been achieved.

 For action selection the following 𝜖-greedy scheme is used

𝜋(𝑠, 𝑎) = {
1 − 𝜖 +

𝜖

|𝐴(𝑠)|
, 𝑎 = 𝑎𝑟𝑔 max𝑎′∈𝐴(𝑠) 𝑄(𝑠′, 𝑎′)

𝜖

|𝐴(𝑠)|
, 𝑒𝑙𝑠𝑒

 (11)

Figure 3. Initial position of agents, obstacles, and destinations on grid world.

 In this experiment, the objects initial positions are the same for all algorithms. The position

of robot agent 1, agent 2, and agent 3 are resp. on gridworld coordinate (1,1), (1,10), and (2,10)

represented by red, green and blue dot as given in Figure. 3. Obstacles were placed on (1,5)

and (5,5). Destination 1, 2 and 3 are resp. on (10,10), (10,2), and (10,5).

 The agent distinguishes the insignificant states from the significant one starting from the k
th

episodes when ever 𝜄𝑖(𝑠𝑖) > Ι, includes them in 𝑆𝜄
𝑖 , and finally eliminates the from the state

space 𝑆𝑖. This procedure updates 𝑆𝑖 at every learning episode since k
th

 episode. In Figure. 4,

the situation of the learning process at k= 10 is shown. State values of agent i, 𝑉𝑖(𝑠𝑖) is given

in (a), while the insignificance function of 𝑠𝑖 is given in (b).

 Agent i eliminates the local states 𝑠𝑖 that has insignificance value 𝜄𝑖(𝑠𝑖) > Ι. (c) shows the

eliminated states, where states given by colour red is eliminated from agent 1’s local state

space 𝑆1, while colour green by agent 2’s local state space 𝑆2, and blue by agent 3’s local state

space 𝑆3.

Legend:

Agent 1

Agent 2

Agent 3

Destination 1

Destination 2

Destination 3

Obstacle

Ary Setijadi Prihatmanto, et al.

653

(a)

(b)

(c)

Figure. 4. The situation of the learning process at k= 10.

 Agent i start to calculate the insignificance rate 𝜄𝑖 of all states 𝑠𝑖 ∈ 𝑆𝑖 while it performs its

state exploration.

(a)

 Legend: Initial position state of agent 1

Initial position state of agent 2

Initial position state of agent 3

Eliminated states of 𝑆1

Eliminated states of 𝑆2

Eliminated states of 𝑆3

Destination 1

Destination 2

Destination 3

Obstacle

State value of agent 1 after 10th

learning episode

State value of agent 2 after 10th

learning episode

State value of agent 1 after 10th

learning episode

Insignificance value of state space

𝑆1 after 10th learning episode
Insignificance value of state space

𝑆3 after 10th learning episode

Insignificance value of state space

𝑆3 after 10th learning episode

Eliminated states of agent 1,

agent 2, and agent 3.

State value of agent 1 after 30th

learning episode

Insignificance value of state space

𝑆1 after 30th learning episode

State value of agent 2 after 30th

learning episode

State value of agent 1 after 30th

learning episode

Insignificance value of state space

𝑆2 after 30th learning episode

Insignificance value of state space

𝑆3 after 30th learning episode

State Elimination in Accelerated Multiagent Reinforcement Learning

654

Legend:

Initial position state of agent 1

Initial position state of agent 2

Initial position state of agent 3

Eliminated states of 𝑆1

Eliminated states of 𝑆2

Eliminated states of 𝑆3

Destination 1

Destination 2

Destination 3

Obstacle

Legend:

Initial position state of agent 1

Initial position state of agent 2

Initial position state of agent 3

Eliminated states of 𝑆1

Eliminated states of 𝑆2

Eliminated states of 𝑆3

Destination 1

Destination 2

Destination 3

Obstacle

Optimum policy 𝜋𝑖∗(𝑠𝑖)

(b)

(c)

Figure. 5. The growth of the eliminated states in 30
th

 learning episode.

Figure. 6. The eliminated states and optimum policy of 60
th

 learning

episodes.

 Throughout the learning process, more consistent local minima occur in the state value

function. The numbers of eliminated states start to grow. The growth of the eliminated states in

30
th

 episode is shown in Figure. 5. State values of agent i, 𝑉𝑖(𝑠𝑖) is again given in (a), while

the insignificance function of 𝑠𝑖 is given in (b). The eliminated states are shown in (c), and

finally the optimum policy of agent i, 𝜋𝑖∗(𝑠𝑖) is given in Figure. 6 together with the final

eliminated states at 60
th

 learning episode.

 The learning results is displayed in Figure 7, where the experiment was first run using MA-

Q(𝜆) algorithm.The horizontal axis represents the numbers of episodes or trials that was done

in the experiment, the vertical axis shows how many steps or iterations needed to complete the

task. The learning parameters of the agent are setup as follows: learning rate 𝛼=0.3, discount

factor 𝛾=0.95, eligibility trace decay factor 𝜆=0.5, and initial exploration probability 𝜖=0,

decaying with the trials count, the ((𝑟→, 𝑟+, 𝑟−) = (−1, 10, −2). The action selection

mechanism is given as 𝜖-greedy policy 𝜋𝜖−𝑔𝑟𝑒𝑒𝑑𝑦(𝑠𝑡 , 𝑎𝑡) as given in eq.16. The agents estimate

Eliminated states of agent 1

after 30th learning episode
Eliminated states of agent 2

after 30th learning episode
Eliminated states of agent 3

after 30th learning episode

Eliminated states of agent 1

after 30th learning episode

Eliminated states of agent 1

after 30th learning episode

Eliminated states of agent 1

after 30th learning episode

Ary Setijadi Prihatmanto, et al.

655

their own action-value function using eq. (1) for SEA-MRL-Q(𝜆) and (2) for SEA-MRL-

SARSA(𝜆).

 In the episodic learning the number of trials which indicates how many episodes to allow

learning to run at most is set to be 100. The maximum iterations to allow a trial to run at most

is set to be 500. The algorithms were implemented in Matlab and executed in desktop, with

4GB of RAM in a Windows 7 OS platform.

Figure 7.The learning performance of MA-Q(𝜆) versus SEA-MRL-Q(𝜆) ((a) and (b)) and MA-

SARSA(𝜆) versus SEA-MRL-SARSA(𝜆) ((c) and (d)) on 10x10 grid area for robot navigation

task. The plot shows the average of the learning convergence over 400 independent runs, where

each run consists of runs with 100 trials.

State Elimination in Accelerated Multiagent Reinforcement Learning

656

 For each experiment, a learning session consisted of 400 runs of 100 trials/episodes each. A

trial finished whenever agent had arrived at the goal state or when 500 moves/iteration were

completed. Each result is presented as a learning curve derived from the average steps to

complete trial, which is the number of moves to achieve goal state. The experiment was

conducted as follows. MA-Q(𝜆), MA-SARSA(𝜆), SEA-MRL-Q(𝜆) and SEA-MRL-

SARSA(𝜆) are applied respectively to the robot navigation problem. The performance of each

algorithm is plotted and benchmarked. In Figure. 7 the MA-Q(𝜆) is compared to 6 kinds of

SEA-MRL-Q(𝜆), where SEA-MRL-Qp(𝜆) represents the performance of SEA-MRL-Q(𝜆)

eliminated from episode 𝑝 ∈ ℤ. In Figure. 7 The MA-SARSA(𝜆) is also compared to 6 kinds

of SEA-MRL-SARSA(𝜆).

 Figure 7 shows the learning curves of the agent averaged over 400 learning sessions. The

horizontal axis represents the numbers of episodes or trials that was done in the experiment,

while the vertical axis shows how many steps or iterations needed to complete the task. Figure.

7 (a) shows the learning performance curve of the MA-Q(𝜆), and SEA-MRL-Q(𝜆) starting at

1
st
, 3

rd
, and 5

th
 episodes. Even though the curve of MA-Q(𝜆) had reached its convergence after

63
rd

 trial, the SEA-MRL-Q(𝜆) was noticeably better from early episodes due to the use of

state elimination method. SEA-MRL-Q1(𝜆) and SEA-MRL-Q3(𝜆) reached respectively its

convergence already at 50
th

 trial and 40
th

 trial for SEA-MRL-Q5(𝜆). Similarly in Figure 7 (b)

SEA-MRL-Q7(𝜆), SEA-MRL-Q9(𝜆) and SEA-MRL-Q11(𝜆) reached its convergence

respectively at 40
th

, 41
st
, and 42

nd
 trial. Figure 7(c) presents the learning curves of the MA-

SARSA(𝜆), and SEA-MRL-SARSA(𝜆) starting at 1
st
, 3

rd
, and 5

th
 episodes. The results show

that the MA-SARSA(𝜆) reached its convergence after 63
rd

 trial, while SEA-MRL-SARSA1(𝜆)

and SEA-MRL-SARSA3(𝜆) reached 51
st
 and 50

th
 trial, and SEA-MRL-SARSA5(𝜆) after 40

th

trial. Lastly, Figure. 7 (d) presents the learning curves of the SARSA(𝜆), and SEA-MRL-

SARSA(𝜆) starting at 7
st
, 9

rd
, and 11

th
 episodes. The results show that the SEA-MRL-

SARSA7(𝜆), SEA-MRL-SARSA9(𝜆) and SEA-MRL-SARSA11(𝜆) achieve its convergence

respectively after 42
nd

, 42
nd

 and 45
th

 trial. These results show that by eliminating insignificant

states from early learning episodes will speed up the convergence to 1.46 times faster time. The

performance analysis of the algorithm is given in Table 1.

RL Algorithm p
#Successful

run

Successful

percentage

(%) (A)

Convergent
after (trials)

Acceleration
factor (B)

Overall Learning
Performance (A x B)

MA-Q(𝝀) - 400 100 63 1 1

SEA-MRL-

Qp(𝝀)

1 244 61 50 1,26 0,7686

3 360 90 50 1,26 1,134

5 301 75,25 40 1,58 1,18895

7 339 84,75 40 1,58 1,33905

9 366 91,5 41 1,54 1,4091

11 372 93 42 1,5 1,395

MA-

SARSA(𝝀)
- 400 100 63 1 1

SEA-MRL-

SARSAp(𝝀)

1 264 66 51 1,24 0,8184

3 358 89,5 50 1,26 1,1277

5 316 79 40 1,58 1,2482

7 328 82 39 1,62 1,3284

9 354 88,5 42 1,5 1,3275

11 361 90,25 42 1,5 1,35375

Ary Setijadi Prihatmanto, et al.

657

 Table 1 shows the performance analysis of average (over the 400 learning runs) of the robot

agent. From 400 runs, SE-ARL-Qp(𝜆) starts to reach above 90 % for p > 7. It can be seen that

SE accelerate the learning speed up to 1.58 faster for Q(𝜆) and 1.62 for SARSA (𝜆) (even

though there still is failure in learning proses when the state elimination is executed from early

stages). The failure happened because some important states were also eliminated, because in

early stages, these important states still have low state value. This failure did not happen when

agent had chance to explore the states in early episodes, which can be seen on the table that

when elimination is started from 9
th

 trial and up, the learning process is above 90% successful.

Table 1. Performance Analysis MA-Q(𝜆) versus SEA-MRL-Q(𝜆) and MA-SARSA(𝜆) versus

SEA-MRL-SARSA(𝜆).

 Finally the learning performance is measured by calculating the ratio of the successful runs

and Acceleration factor. All SE-AMRL-Q(𝜆) acceleration factor in the table had outperformed

MA-Q(𝜆), and SE-AMRL-SARSA(𝜆) had outperformed MA-SARSA(𝜆). The state

elimination executed in MA-Q(𝜆) and MA-SARSA(𝜆) had performed faster convergence speed

due to decreasing number of states in the state space.

6. Conclusion and Further Research

 Multiagent Reinforcement Learning (MRL) is the solution of multi robot learning problem,

since the robot environment is mostly dynamic and stochastic. However the increasing number

state and action space leads to problem in MRL since it requires larger memory and

computation time which can cause degrading in the learning performance to very poor and

even lead to failure in learning.

 Since the learning convergence is determined by the size of the state space where the larger

the state space the slower learning might become, reducing the state space by eliminating the

insignificant states can lead to faster learning. Applying state elimination in gridworld multi-

robot navigation had shown significant acceleration factor in multi-agent RL to 1.62 faster

convergence speed.

 When internal knowledge such as reward shaping, transfer learning, parameter tuning, and

even heuristics is no longer applicable to MRL problems, online state elimination becomes a

promising solution to accelerate MRL. This algorithm is not only applicable for primitive robot

soccer task, but also for other robotic soccer task challenges with large scale state space. This

method has also clearly given us a starting point on several promising extension to the existing

work and highlighted important new questions. This research has not only resulted in advances

in imitation learning, but also has opened up a whole new way of exploring this field that

posses an abundant source of ready-to-explore problems for future research.

7. Refferences

[1]. Busoniu, L., R. Babuska, and B. De Schutter, “A Comprehensive Survey of Multiagent

Reinforcement Learning. Systems, Man, and Cybernetics”, Part C: Applications and

Reviews, IEEE Transactions on, 2008. 38(2): p. 156-172

[2]. Bianchi, R.A.C., et al., “Heuristically-Accelerated Multiagent Reinforcement Learning.

Cybernetics”, IEEE Transactions on, 2013. PP(99): p. 1-1

[3]. Sutton, R.S. and A.G. Barto, “Reinforcement Learning: An Introduction1998”: MIT Press

[4]. Kaelbling, L.P., M.L. Littman, and A.W. Moore, “Reinforcement learning: a survey. J.

Artif”. Int. Res., 1996. 4(1): p. 237-285

[5]. Mataric, M.J. “Reward Functions for Accelerated Learning. in ICML”. 1994

[6]. Konidaris, G. and A. Barto. Autonomous shaping: “Knowledge transfer in reinforcement

learning”. in Proceedings of the 23rd international conference on Machine learning.

2006. ACM

[7]. Matignon, L., G.J. Laurent, and N. Le Fort-Piat, “Reward function and initial values:

better choices for accelerated goal-directed reinforcement learning”, in Artificial Neural

Networks–ICANN 20062006, Springer. p. 840-849

State Elimination in Accelerated Multiagent Reinforcement Learning

658

[8]. Ma, X., et al., “State-chain sequential feedback reinforcement learning for path planning

of autonomous mobile robots”. Journal of Zhejiang University Science C, 2013. 14(3): p.

167-178

[9]. Drummond, C., “Accelerating reinforcement learning by composing solutions of

automatically identified subtasks”. Journal of Artificial Intelligence Research (JAIR),

2002. 16: p. 59-104

[10]. Taylor, M.E. and P. Stone. “Speeding up reinforcement learning with behavior transfer. in

AAAI 2004 Fall Symposium on Real-life Reinforcement Learning”. 2004

[11]. Celiberto, L.A., et al. “Using transfer learning to speed-up reinforcement learning”: a

cased-based approach. in Robotics Symposium and Intelligent Robotic Meeting (LARS),

2010 Latin American. 2010. IEEE

[12]. Norouzzadeh, S., L. Busoniu, and R. “Babuska. Efficient Knowledge Transfer in Shaping

Reinforcement Learning”. in Proceedings of the 18th IFAC World Congress. 2011

[13]. Takano, T., et al., “Transfer Learning Based on Forbidden Rule Set in Actor-Critic

method”. International journal of innovative computing information and control, 2011.

7(5 B): p. 2907-2917

[14]. Potapov, A. and M. Ali, “Convergence of reinforcement learning algorithms and

acceleration of learning”. Physical Review E, 2003. 67(2): p. 026706

[15]. Gao, Y. and F. Toni, “Argumentation Accelerated Reinforcement Learning for RoboCup

Keepaway-Takeaway”, in Theory and Applications of Formal Argumentation, E. Black,

S. Modgil, and N. Oren, Editors. 2014, Springer Berlin Heidelberg. p. 79-94

[16]. Sari, S.C., A.S.P. Kuspriyanto, and W. Adiprawita, “Online State Elimination in

Accelerated reinforcement Learning”. International Journal on Electrical Engineering

and Informatics, 2014

[17]. Littman, M.L. “Markov games as a framework for multi-agent reinforcement learning”. in

The Eleventh International Conference on Machine Learning. 1994. Morgan Kaufmann

[18]. Busoniu, L., B.D. Schutter, and R. Babuska. “Multiagent reinforcement learning with

adaptive state focus”. in 17th Belgian-Dutch Conference on Artificial Intelligence

(BNAIC-05). 2005. Brussels, Belgium

[19]. Claus, C. and C. Boutilier. “The dynamics of reinforcement learning in cooperative

multiagent systems”. in National Conference on Artificial Intelligence (AAAI-98). 1998

[20]. Watkins, C.J.C.H. and P. Dayan, Q-Learning. Machine Learning, 1992. 8(3-4): p. 279--

292

[21]. Schuitema, E., “Reinforcement Learning on Autonomous Humanoid Robots”, 2012

[22]. Laud, A. and G. DeJong. “The influence of reward on the speed of reinforcement

learning: An analysis of shaping”. in ICML. 2003

[23]. Taylor, M.E. and P. Stone, “Transfer learning for reinforcement learning domains: A

survey. The Journal of Machine Learning Research”, 2009. 10: p. 1633-1685

[24]. Peters, J. and S. Schaal, “Reinforcement learning by reward-weighted regression for

operational space control”, in Proceedings of the 24th international conference on

Machine learning2007, ACM: Corvalis, Oregon. p. 745-750

[25]. Terashima, K., H. Takano, and J. Murata, “Acceleration of Reinforcement Learning with

Incomplete Prior Information”. JACIII, 2013. 17(5): p. 721-730

[26]. Senda, K., S. Mano, and S. Fujii. “A reinforcement learning accelerated by state space

reduction”. in SICE 2003 Annual Conference. 2003. IEEE

[27]. Grounds, M. and D. Kudenko, “Parallel reinforcement learning with linear function

approximation”, in Adaptive Agents and Multi-Agent Systems III. Adaptation and Multi-

Agent Learning 2008, Springer. p. 60-74

[28]. Braga, A.P.d.S. and A.F.R. Araújo, Influence zones: “A strategy to enhance

reinforcement learning. Neurocomputing”, 2006. 70(1–3): p. 21-34

[29]. Kartoun, U., et al. “Collaborative Q (λ) Reinforcement Learning Algorithm-A Promising

Robot Learning Framework”. in IASTED International Conference on Robotics and

Applications (RA 2005), Cambridge, U.S.A. 2005. ACTA Press

Ary Setijadi Prihatmanto, et al.

659

[30]. Price, B. and C. Boutilier, “Accelerating reinforcement learning through implicit

imitation”. J. artif. intell. res.(jair), 2003. 19: p. 569-629

[31]. McGovern, A., R.S. Sutton, and A.H. Fagg. “Roles of macro-actions in accelerating

reinforcement learning”. in Grace Hopper celebration of women in computing. 1997

[32]. Koenig, S. and R.G. Simmons, “Complexity Analysis of Real-Time Reinforcement

Learning Applied to Finding Shortest Paths in Deterministic Domains”, 1992, Carnegie

Mellon University

Ary Setijadi Prihatmanto was born in Bandung, Indonesia on August 1972.

He received his Bachelor and Master degree in Electrical Engineering from

ITB, and doctorate degree in informatics from Johannes Kepler University of

Linz. His research interests include dualism of computer vision & computer

graphics, human-computer interface, brain-computer interface, game theory

on intelligent system and its applications.

Widyawardana Adiprawita, lecturer at STEI-ITB. Received his electrical

engineering degree at Electrical Engineering ITB with honour in 1997.

Finished master degree at Informatics Engineering ITB in 2000. He finished

his doctoral degree with honour at Electrical Engineering ITB. His Research

interests are embedded system, robotics and intelligent agent autonomy. He

has written more than 20 papers published in international and national

publication.

Safreni Candra Sari was born in Medan on January 14, 1975, completed her

undergraduate and master study in electrical engineering, Technishe

Universiteit Delft the Netherlands in 1999. She followed her second master

study in electrical engineering majoring Digital Media and Game Technology

at the Institut Teknologi Bandung Indonesia and had completed her study in

July 2010. Safreni worked as a faculty member at the General Achmad Yani

University (UNJANI) in Bandung, her research interests are robotic system,

robotic soccer system, learning in robotics, reinforcement learning, and multi

agent learning system.

Kuspriyanto was born in Yogyakarta Indonesia, 2 January 1950, completed

his undergraduate degree at Electrical engineering, Institut Teknologi

Bandung in 1974. He received his Master and Doctoral degree from

Université des Sciences et Techniques de Montpellier (USTL) France. He is

currently a Full Professor at the Department of Electrical Engineering,

Institut Teknologi Bandung, Indonesia. His current research interests include

real time computing systems, computer architecture, and robotics.

State Elimination in Accelerated Multiagent Reinforcement Learning

660

http://www.alise-geomatique.fr/client/universite-des-sciences-et-techniques-de-montpellier-ustl

