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Abstract: This paper presents a novel algorithm of Multiagent Reinforcement Learning called 

State Elimination in Accelerated Multiagent Reinforcement Learning (SEA-MRL), that 

successfully produces faster learning without incorporating internal knowledge or human 

intervention such as reward shaping, transfer learning, parameter tuning, and even heuristics, 

into the learning system. Since the learning speed is determined among others by the size of the 

state space where the larger the state space the slower learning might become, reducing the 

state space can lead to faster convergence. SEA-MRL distinguishes insignificant states of the 

state space from the significant ones and then eliminating them in early learning episodes, 

which aggressively reduces the scale of the state space in the following learning episodes. 

Applying SEA-MRL in gridworld multi robot navigation shows 1.62 times faster in achieving 

learning convergence. This algorithm is generally applicable for other multiagent task 

challenges or general multiagent learning with large scale state space, and perfectly applicable 

with no adjustments for single agent learning situation. 
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1. Introduction 

 Multiagent systems are rapidly finding applications in a variety of domains, including 

robotics, distributed control, telecommunications, and economics [1]. The complexity of many 

tasks arising in these domains makes them difficult to solve with preprogrammed agent 

behaviors. The agents must, instead, discover a solution on their own, using learning. A 

significant part of the research on multiagent learning concerns reinforcement learning (RL) 

techniques.  

 In RL, learning is carried out online through trial-and-error interactions of the agent with an 

environment that provides a reinforcement (reward or penalty) at each interaction. In the 

particular case of multiagent systems, the reinforcement received by each agent depends both 

on the dynamics of the environment and on the behavior of other agents, and therefore a 

multiagent reinforcement learning (MRL) algorithm must address the resulting nonstationary 

scenarios in which both the environment and other agents are present. Unfortunately, 

convergence of any RL algorithm requires extensive exploration of the state-action space, 

which can be very time consuming [2], not to mention the existence of multiple agents also 

increases the size of the state-action space, therefore, worsening the performance of RL 

algorithms with respect to convergence (even to suboptimal control policies) when it is adapted 

to multiagent problems. Therefore acceleration of learning processes is one of important issues 

in reinforcement learning [3, 4].  

 Most successes in accelerating MRL incorporated internal knowledge or human 

intervention into the learning system, such as reward shaping [5-8], transfer learning [6, 9-13], 

parameter tuning [14], and even heuristics [2, 11, 13, 15]. These approaches could be no longer 

solutions to RL acceleration where internal knowledge is not available. This paper proposed a 

novel approach in improving the MRL learning performance called by accelerating the speed 

of the learning convergence without involving heuristics or any internal knowledge.  
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 Since the learning convergence is determined by the size of the state space where the larger 

the state space the slower learning might become, reducing the state space by eliminating the 

insignificant states can lead to faster learning. In this paper a novel method called State 

Elimination in Accelerated Multiagent Reinforcement Learning (SEA-MRL) is presented. This 

algorithm distinguishes insignificant states from the significant one from early learning 

episode, which reducing the state space during the learning process. This paper extends our 

previous work which investigates the use of State Elimination in single agent domain [16]. 

 The remainder of this paper is organized as follows. Section II briefly reviews MRL 

approaches and describes the multiagent Q learning (MA-Q(𝜆)) and multiagent SARSA (MA-

SARSA(𝜆)) algorithm, while Section III presents a review of some existing approaches to 

speed up RL. Next, Section IV shows how the learning speed can be improved by eliminating 

some insignificant states from the state space during the learning process. Then, section V 

details the mapping gridworld multirobot navigation into SEA-MRL and the experiments 

performed in the domain, and analyses the results obtained. Finally, section VI presents 

conclusions and future directions. 

 

2. Multiagent Reinforcement Learning 

 As the framework for MRL In this paper, we adopt the Markov Games (MGs) Theory. An 

MG is an extension of a Markov decision process (MDP) that uses elements from game theory 

and allows the modeling of systems where multiple agents compete among themselves to 

accomplish their tasks. 

 

Formally, an MG [17] over a set of n agents is defined as: 

1) 𝑆: a finite set of environment states. 

2) 𝐴1, … , 𝐴𝑛: a collection of finite sets 𝐴𝑖, with the possible actions for each agent i, 1 ≤ i ≤ n. 

3) 𝑇: 𝑆 × 𝐴1 × … × 𝐴𝑛 × 𝑆 → [0,1]: a state transition function where 𝑇(𝑠, 𝑎𝑖 , … , 𝑎𝑛 , 𝑠′) 

defines the probability of a transition from state 𝑠 to state 𝑠′ when the agents execute 

respective actions 𝑎1, … , 𝑎𝑛. 

4) 𝑅𝑖: 𝑆 × 𝐴1 × … × 𝐴𝑛 → ℝ: a reward function associated to each agent i. 

The goal of the i
th

 agent is to find a policy 𝜋𝑖 : 𝑆 → 𝐴𝑖 that maximizes the expected sum of 

discounted rewards, 𝐸{∑ 𝛾𝑗𝑟𝑖,𝑡+𝑗
∞
𝑗=0 }, where 𝑟𝑖,𝑡+𝑗 is the reward received j steps in the 

future by agent i, and  𝛾 ∈ [0,1] is the discount factor. 

 

 In this paper we adapt the fully cooperative SG as a framework for MRL. These 

heterogeneous agents with differing action spaces learn to achieve the overall system goals by 

implicitly cooperating to achieve their common goal: the global reward function. Together the 

agents form a multiagent system (MAS). Each agent's state space consists of the full state 

space as would be used in single agent solutions, but does not include any information on 

action selection done by the other agents. Claus and Boutilier (1998) call this approach 

Independent Learners (IL). During policy evaluation, each agent selects its own action, without 

any form of negotiation or central coordination.  

 Busoniu et al. [18] proposed the cooperative setting of Multiagent Reinforcement Learning  

with Independent Learners [19] case , where  the action-value function of an agent i builds 

upon the basic Q-learning algorithm [20], which is given by: 

 

𝑄𝑡+𝑖
𝑖 (𝑠𝑡

𝑖 , 𝑎𝑡
𝑖 ) = (1 − 𝛼𝑡

𝑖)𝑄𝑡
𝑖(𝑠𝑡

𝑖 , 𝑎𝑡
𝑖 ) + 𝛼𝑡

𝑖[𝑟𝑡+1
𝑖 + 𝛾 max𝑎𝑖∈𝐴𝑖 𝑄𝑡

𝑖 (𝑠𝑡+1
𝑖 , 𝑎𝑖)],                      (1) 

 

where 𝑠𝑡
𝑖 ∈ 𝑆𝑖 is the state of agent i at time step t and all other agent-specific terms have been 

similarly superscripted by i. Another cooperative setting for MRL with IL case adopted in this 

paper is based on SARSA which is given in the following equation, 

 

𝑄𝑡+𝑖
𝑖 (𝑠𝑡

𝑖 , 𝑎𝑡
𝑖 ) = (1 − 𝛼𝑡

𝑖)𝑄𝑡
𝑖(𝑠𝑡

𝑖 , 𝑎𝑡
𝑖 ) + 𝛼𝑡

𝑖[𝑟𝑡+1
𝑖 + 𝛾 𝑄𝑡

𝑖 (𝑠𝑡+1
𝑖 , 𝑎𝑖)],                          (2) 
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and the utility function is 

 

     𝑉𝑖(𝑠) = max𝑎𝑖∈𝐴𝑖 𝑄𝑖(𝑠𝑖 , 𝑎𝑖)                                                      (3) 

 

where the agent’s policy is now a probability distribution over actions, π(s) ∈ P(A), and π(s, a) 

is the probability of taking action a. The optimal policy π ∗(s) is the one that produces the 

largest V for every state s. 

 

𝜋𝑖∗(𝑠) = argmax𝑎𝑖∈𝐴𝑖 𝑄𝑖∗(𝑠𝑖 , 𝑎𝑖)     ∀𝑠 ∈ 𝑆.                                              (4) 

 

 A widely used action selection policy that includes exploratory actions is the 𝜖-greedy 

policy 𝜋𝜖−𝑔𝑟𝑒𝑒𝑑𝑦(𝑠𝑡 , 𝑎𝑡) which is defined such that a random action is selected with probability 

𝜖 (uniformly sampled from 𝐴) and 𝑎𝑡,𝑔𝑟𝑒𝑒𝑑𝑦  otherwise: 

 

𝜋𝜖−𝑔𝑟𝑒𝑒𝑑𝑦(𝑠𝑡 , 𝑎𝑡) = {
1 − 𝜖 +

𝜖

|𝐴(𝑠)|
,                𝑖𝑓 𝑎𝑡 = 𝑎𝑡,𝑔𝑟𝑒𝑒𝑑𝑦

            
𝜖

|𝐴(𝑠)|
,                    𝑖𝑓 𝑎𝑡 ≠ 𝑎𝑡,𝑔𝑟𝑒𝑒𝑑𝑦

                            (5) 

 

with  𝜖 ∈ [0,1] the exploration rate and |𝐴(𝑠)| the number of actions in 𝐴 within state 𝑠. For a 

good trade-off between exploration and exploitation, the value for 𝜖 is typically chosen from 

the range [0.01,0.20] [21]. 

 

3. Approach on Accelerated Multiagent Reinforcement Learning 

 The quality of the learning itself is measured based on eventual convergence to optimal, 

speed of convergence to optimality and regret [4]. Although many algorithms come with a 

provable guarantee of asymptotic convergence to optimal behavior [7], an agent that quickly 

reaches a plateau at 99% of optimality may, in many applications, be preferable to an agent that 

has a guarantee of eventual optimality but a sluggish early learning rate. Therefore the speed of 

convergence to near-optimality is more practical to be measured. The speed of convergences to 

the near optimality with high dimension environment is often big issues in RL. One effort that 

can be applied to accelerate RL is to find a new algorithm that reduces the state space by 

carefully eliminating some unimportant states while learning. If not careful enough then the 

potentially important state might also be eliminated, and the learning process will fail. 

 Several methods have been proposed to speed up RL. One of them is incorporate the prior 

knowledge into RL. Mataric [8] used implicit domain knowledge to design the 

reinforcement/reward function in situated domains based on utilizing heterogeneous reward 

functions and goal specific progress estimator. Laud and De Jong [9] formulated an 

explanation of the potential of reward shaping to accelerate reinforcement learning with a 

reward-based analysis. Konidaris and Barto [10] introduced the use of learned shaping rewards 

in RL tasks, where an agent uses prior experience on a sequence of tasks to learn a portable 

predictor that estimates intermediate rewards, resulting in accelerated learning in later tasks 

that are related but distinct. Matignon, Laurent et al. [11] accelerate goal-directed RL by 

modifying the reward function using a binary reward function (for discrete state space) and 

continuous reward function (for continuous state space) and implementing Gaussian goal 

biased function as the initial values of Q(s). Ma, Xu et al. [12] applied a state-chain sequential 

feedback Q-learning algorithm for path planning of autonomous mobile robots in unknown 

static environments, where the state chain is built during the searching process.  

 Another approach in accelerating the RL is by applying transfer learning in RL. The core 

idea of transfer is that experience gained in learning to perform one task can help improve 

learning performance in a related, but different, task [13]. Drummond [14] used transfer 

learning from the related tasks, which generate a partitioning of the state space which is then 

used to index and compose functions stored in a case base to form a close approximation to the 
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solution of the new task. Taylor and Stone [15] introduced behavior transfer, a novel approach 

to speeding up traditional RL. Celiberto, Matsuura et al. [2] applied transfer learning from one 

agent to another agent by means of the heuristic function speeds up the convergence of the 

algorithm. Case-based is used to transfer the learning, and it makes TL-HAQL algorithm. 

Peters and Schaal [16] reduced the problem of learning with immediate rewards to a reward-

weighted regression problem with an adaptive, integrated reward transformation for faster 

convergence. Takano, Takase et al. [17] accelerated the learning process by implementing the 

effective transfer learning method, which merges a selected source policy to the target policy 

without negative transfers. Norouzzadeh, Busoniu et al. [18] used two transfer criteria in 

measuring agent’s performance (by the distance between its current solution and the optimal 

one and by the empirical return obtained) to decide when to transfer learning from an easier 

task to a more difficult one so that the total learning time is reduces.  

 More recent proposal in accelerating RL is to include heuristics in RL algorithms. Gao and 

Toni [19] incorporate heuristic, represented by arguments in value-based argumentation into 

RL by using Heuristically Accelerated RL techniques in RoboCup Soccer Keepaway-

Takeaway game. Celiberto, Matsuura et al. 2010 [2] applied transfer learning from one agent to 

another agent by means of the heuristic function speeds up the convergence of the algorithm. 

Case Based (CB) is used to transfer the learning, and it makes RL algorithm faster. Terashima, 

Takano et al. [20] used the prior information on the problem utilizing options as prior 

information. In order to increase the learning speed even with wrong options, methods for 

option correction by forgetting the policy and extending initiation sets. Bianchi et al. [21] 

presented a novel class of algorithms, called Heuristically-Accelerated Multi-agent 

Reinforcement Learning (HAMRL), which allows the use of heuristics to speed up well-known 

multi-agent reinforcement learning algorithms. Such HAMRL algorithms are characterized by 

a heuristic function, which suggests the selection of particular actions over others. 

 Other approaches were also proposed. Senda, Mano et al. [22] reduced state space by 

modelling the state space by 3D space coordinates where then the space model is simplified by 

converting 3D coordinates to 2D coordinates under a certain terms. Grounds and Kudenko  

[23] investigated the use of parallelization in RL, with the goal of learning optimal policies for 

single-agent RL problems more quickly by using parallel hardware. Braga and Araújo [24] 

influenced zone algorithm, an improvement over the topological RL agent (TRLA) strategy, 

that allows reducing the number of requested interactions, which is based on the topological-

preserving characteristic of the mapping between states (or state–action pairs) and value 

estimates. Kartoun, Stern et al. [25] allowed several learning agents to acquire knowledge from 

each other. Acquiring knowledge learnt by an agent via collaboration with another agent. Price 

and Boutilier 2003 [26] proposed an implicit imitation that can accelerate reinforcement 

learning dramatically in certain cases, roughly by observing a mentor, a reinforcement learning 

agent can extract information about its own capabilities in, and the relative value of, unvisited 

parts of the state space. Potapov and Ali [27] tuned the learning steps, discount and exploration 

degree parameters to influence the convergence rate. McGovern, Sutton et al. [28] used built in 

policies or macro-actions as a form of domain knowledge that can improve the speed and 

scaling of reinforcement learning algorithms. 

 The algorithm proposed in this paper is aimed to improve the RL learning performance by 

accelerating the speed of the learning convergence without involving heuristics or any learning 

domain prior knowledge. Since the learning convergence is determined by the size of the state 

space, where the larger the state space the slower learning might become, reducing the state 

space can lead to faster learning. Instead of heuristics or any learning domain prior knowledge, 

this proposed method identifies some potential consistent local minima states to be considered 

as insignificant states and is considered to be eliminated from the state space. This method 

reduces the state space, decreasing the computation order and hence accelerating the 

convergence speed.  
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4. Online State Elimination to Accelerate Reinforcement Learning 

 The complexity of an algorithm is often expressed using big O notation. Big O notation is 

useful when analyzing algorithms for efficiency. In RL, if a good task representation or 

suitable initialization is chosen, the worst-case complexity of reaching a goal state has a tight 

bound of 𝑂(𝑛3) action executions for Q-learning and 𝑂(𝑛2)  action executions for value-

iteration [32], where n stands for number of states in the state space. If the agent has initial 

knowledge of the topology of the state space or the state space has additional properties, the 

𝑂(𝑛3) bound can be decreased further. In our case, where prior knowledge is not available, 

initial knowledge is not incorporated in the new algorithm. 

 Since the worst case complexity depends totally on number of states, it’s very clear that n 

has very dominant factor in determining the convergence speed, where reducing n will lead to 

decreasing the computation needed to reach learning convergence. When robot learns to master 

a new skill, it learns to determine which states considered important to support its performance. 

Robot learns to classify which states are significant, and which states are less significant. By 

updating its Q(s,a) values every iteration, agent update its policies by choosing the highest Q 

value as its decision factor, which means it starts to ignore smaller Q value (which indicates 

less significant states). This condition forces the agent to rarely visit these less significant states 

until agent succeeded in maximizing its rewards.  

 Almost all RL algorithms are based on estimating value functions--functions of states (or of 

state-action pairs) that estimate how good it is for the agent to be in a given state (or how good 

it is to perform a given action in a given state). The notion of "how good" here is defined in 

terms of future rewards that can be expected, or, to be precise, in terms of expected return. Of 

course the rewards the agent can expect to receive in the future depend on what actions it will 

take. Accordingly, value functions are defined with respect to particular policies. The value of 

the state space in this case represents the significance factor of the state. High value state 

represents the high probability that agent will decide in determining its optimum policy 𝜋∗. A 

high value state means significant states that have to be maintained in the state space because it 

provides solution to the agent. On the other hand the states that have less value become less 

interesting for the agents. The probability to visit these states is towards 0 in 100% exploitation 

cases. When the insignificant factor of these states can be measured, the states which have high 

insignificancy can be considered to be eliminated from the state space leaving it reduced. 

In order to determine the insignificance rate of a state, in this paper a new function 𝜄 is 

proposed.  

 

Definition 1: The insignificance function 𝜄: 𝑆 ⟶ ℝ  is a function that returns a value indicates 

the insignificance rate of a state 𝑠 ∈ 𝑆.  

This insignificance function represents an insignificance rate of a state that derived from value 

V(s), where the lowest value V of the neighborhood state is considered to be potentially 

insignificant. This function indicates which state 𝑠 ∈ 𝑆 is insignificant enough that it can be 

ignored and should be eliminated from the state space, since they don’t provide solutions to the 

agent. 

  

Definition 2: If the domain 𝑋  is a metric space then f is said to have 

a local (or relative) maximum point at the point 𝑥∗ if there exists some ε >0 such that 𝑓(𝑥∗) ≥
𝑓(𝑥) for all x in 𝑋 within distance ε of 𝑥∗. Similarly, the function has a local minimum 

point at 𝑥∗ if  𝑓(𝑥∗) ≤ 𝑓(𝑥) for all x in X within distance ε of  𝑥∗.  

 

Definition 3: A state is called a local minimum state at 𝑘𝑡ℎ  iteration or  𝑠𝑚𝑖𝑛
𝑘  when its V value 

is proven to be a local minimum of all V(s) function in 𝑘𝑡ℎ  iteration for all 𝑠 ∈ 𝑆.   

Since the first learning iteration every state in state space of agent i accordingly has initial 

insignificance value 𝜄𝑖(𝑠) = 0 for all 𝑠𝑖 ∈ 𝑆𝑖, as the initial value of the 𝑉𝑖(𝑠). When agent 
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updates its state-action value by harvesting rewards 𝑅𝑖(𝑠) every time it visits a state, 

insignificance factor 𝜄𝑖(𝑠) is also updated by the following return: 

 

ι𝑘+1
𝑖 (𝑠) = {

ι𝑘
𝑖 (𝑠) + 𝜇     𝑖𝑓 𝑠𝑖  𝑖𝑠 𝑠𝑚𝑖𝑛

𝑖,𝑘

ι𝑘
𝑖 (𝑠) = 0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                           (6) 

 

where ι𝑘+1
𝑖 (𝑠) represents the insignificance value 𝜄 of state 𝑠𝑖 in the (𝑘 + 1)𝑡ℎ  iteration, ι𝑘

𝑖 (𝑠) 

the insignificance value of state 𝑠𝑖 in 𝑘𝑡ℎ  iteration, and 𝜇 is the insignificance step which 

represents the increasing potential of a insignificant state. The insignificance of state 𝑠𝑖 is 

updated every iteration but it will be reset back to 0 when in the next iteration 𝑠𝑖 is no longer a 

local minimum (𝑠𝑖 ≠  𝑠𝑚𝑖𝑛
𝑖,𝑘

.).  

 

Definition 4:  A sub state space  𝑆𝑚𝑖𝑛
𝑖,𝑘 ⊂ 𝑆𝑖  is a state space of agent i at k

th
 iteration, which 

consists of all  𝑠𝑖 ∈ 𝑆𝑖 and 𝜄𝑘
𝑖 (𝑠) ≥ Ι. 

When 𝜄𝑘
𝑖 (𝑠)of a state 𝑠𝑖 larger than a threshold value 𝛪, the state will be added to a sub state 

space 𝑆𝑚𝑖𝑛
𝑖,𝑘 ⊂ 𝑆𝑖 , which is then considered to be eliminated from the state space. 

S𝑘+1
𝑖 ⟵ S𝑘

𝑖 ⋂𝑆𝑚𝑖𝑛
𝑖,𝑘

                                                    (7) 

 

 In every iteration k
th

, agent i reduces its Q value to only the new state space S𝑘+1
𝑖 , and 

original action space 𝐴𝑖. However learning at early stages is essentially random exploration 

{Bianchi, 2013 #127}. Deciding which states is more significant than others in this stage gives 

very small contributions since every states has its own significance potential. It’s very 

important however to expand Ι to an exponential function that vary to iteration number k as 

given in the following equation 

Ι(𝑡) = Ι0𝑒h/k                                                            (8) 

 

where Ι0 is a initial value of Ι and h is a real number. This function gives Ι(𝑡) = Ι0, when k 

goes to infinity.  This has to be done since in early stage/exploration stage to let agent see all 

possibilities that it can profit from its V(s). The complete algorithm in pseudo code is given in 

Figure. 1. 

Define number of episodes k 

Define elimination start episode p 

for all agent 𝑖 ∈ [1 … 𝑛] do 

Initialize 𝑄𝑖(𝑠, 𝑎) arbritarily 

𝜄𝑖(𝑠) = 0 (for all 𝑠 ∈ 𝑆𝑖) 

k=0 

Repeat (for each episode k): 

       Initialize 𝑠 

       Repeat(for each step of episode): 

Choose 𝑎𝑖 from 𝑠 using policy derived from 𝑄 (e.g., 𝜖-greedy) 

Take action 𝑎𝑖, observer 𝑟𝑖 , 𝑠′ 

 𝑄𝑖(𝑠, 𝑎𝑖) ← 𝑄𝑖(𝑠, 𝑎𝑖) + 𝛼[𝑟𝑖 + 𝛾 max𝑎′∈𝐴𝑖
𝑄𝑖(𝑠′, 𝑎′𝑖) − 𝑄𝑖(𝑠, 𝑎𝑖)] 

 𝑠 ← 𝑠′; 
 until 𝑠 is terminal 

 if  k> p  

   V𝑖(𝑠) = max𝑎 𝑄𝑖(𝑠, 𝑎𝑖) 
   k=k+1 

   Repeat (for all 𝑠 ∈ 𝑆𝑖) 

                if V𝑖(𝑠) is local minimum 

      Ι ⟵ Ι𝑒ℎ/𝑘 
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 𝜄𝑖(𝑠) = 𝜄𝑖(𝑠) + 𝜇   

                                                       if  𝜄𝑖(𝑠) ≥ Ι  
                      𝑆𝜄 ⟵ 𝑆𝜄 ∪ {𝑠} 
                                                                 else 

                                                                      𝜄𝑖(𝑠) = 0 

                                                                      𝑆𝜄 ⟵ 𝑆𝜄 
                                                                 Endif 

                                                 Endif 

                                                 𝑆𝑖 ⟵ 𝑆𝑖\𝑆𝜄
𝑖 

                                                 until 𝑠 is terminal 

                                         end if 

                                end for 

Figure 1. SEA-MRL Algorithm 

 

 SEA-MRL is applicable for both multiagent and single agent system. Changing the value of 

number of agents (i) to 1 will automatically convert the environment to single agent 

environment. For more comperhensive explanation for single agent situation, the reader is 

referred to [16]. 

 

5. Mapping Gridworld Robot Navigation into Multiagent Reinforcement Learning 

 One of the dominant topics in current mobile robotics research is that of autonomous 

navigation. In the robot navigation problem, the robots need to find an optimal navigable path 

in a given environment, with certain constraints imposed on the robot, such as a time limit or 

limited availability of resources. Optimal path here refers to a path between the two points:  the 

source and destination, which has the least path cost, or in other words the most profitable one 

among all the existing paths.  

 The environment is a discrete grid-world with randomly located obstacles. There are three 

robot agents on the grid-world, starting from an arbitrary initial position. The robot agent or 

simply called an agent, can occupy a single empty tile at a time and is faced with the task of 

navigating through the map in an autonomous manner. There can only be one agent on one tile 

at a time. The agent is capable of sensing its immediate environment and moving in 5 

directions (action) one tile at a time respectively North, South, West, East and stay put, that 

makes the action space 𝐴 = {𝑁, 𝑆, 𝑊, 𝐸, 𝑆𝑃} available for the agent. The grid-world 

environment is given in Figure 2  

 

               
Figure 2. Three robot agents on the 10x10 gridworld can move to 5 directions resp. North, 

South, West, East, and stay put, learn to find shortest path to its destination and avoiding 

obstacles. 

Legend: 

Robot agent 1 

Robot agent 2 

Robot agent 3 

Destination 1 

Destination 2 

Destination 3 

Obstacle 
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 The state space of agent i  or 𝑆𝑖 in this environment is defined as:  

𝑆𝑖 = {(𝑝𝑖);  𝑝𝑖 ∈ {(1 1), (1 2), . . . , (10 10)}}                                  (9) 

 

where  𝑝𝑖   is the position of agent i.  

 The task of the agent i is to find sequence of actions that have to be performed to achieve 

the goal state, which is the destination1 for agent 1, destination 2 for agent 2, an destination 3 

for agent 3.  The global reward function R(s, a, s’) for all agents are given as follows 

 

𝑅(𝑠, 𝑎, 𝑠′) = {
𝑟→, 𝑠 ∈ 𝑆→

𝑟+, 𝑠 ∈ 𝑆+

𝑟−, 𝑠 ∈ 𝑆−
                                                   (10) 

 

where  𝑟→ , 𝑟+, and 𝑟−, is resp. the reward when agent takes action to move to one of the 5 

directions, when agent achieved the goal state, and when agent bumped the wall or the 

obstacle.  

 Every learning episode starts from the same initial position where agent is always in the 

same grid. The agent performs the learning task until the episode is ended. There are 3 

situations that end the episode: when the agent arrived at the destination state, and when 

maximum trial had been achieved. 

 For action selection the following 𝜖-greedy scheme is used 

 

𝜋(𝑠, 𝑎) = {
1 − 𝜖 +

𝜖

|𝐴(𝑠)|
, 𝑎 = 𝑎𝑟𝑔 max𝑎′∈𝐴(𝑠) 𝑄(𝑠′, 𝑎′)

𝜖

|𝐴(𝑠)|
,                       𝑒𝑙𝑠𝑒

                         (11) 

 

 

                                              
Figure 3. Initial position of agents, obstacles, and destinations on grid world. 

 

 In this experiment, the objects initial positions are the same for all algorithms. The position 

of robot agent 1, agent 2, and agent 3 are resp. on gridworld coordinate (1,1), (1,10), and (2,10)  

represented by red, green and blue dot as given in Figure. 3. Obstacles were placed on (1,5) 

and (5,5). Destination 1, 2 and 3 are resp. on (10,10), (10,2), and (10,5).  

 The agent distinguishes the insignificant states from the significant one starting from the k
th

 

episodes when ever 𝜄𝑖(𝑠𝑖) > Ι, includes them in 𝑆𝜄
𝑖 , and finally eliminates the from the state 

space 𝑆𝑖. This procedure updates 𝑆𝑖 at every learning episode since k
th

 episode.  In Figure. 4, 

the situation of the learning process at k= 10 is shown. State values of agent i, 𝑉𝑖(𝑠𝑖) is given 

in (a), while the insignificance function of 𝑠𝑖 is given in (b).  

 Agent i eliminates the local states 𝑠𝑖  that has insignificance value 𝜄𝑖(𝑠𝑖) > Ι. (c) shows the 

eliminated states, where states given by colour red is eliminated from agent 1’s local state 

space 𝑆1, while colour green by agent 2’s local state space 𝑆2, and blue by agent 3’s local state 

space 𝑆3. 

 

Legend: 

Agent 1 

Agent 2 

Agent 3 

Destination 1 

Destination 2 

Destination 3 

Obstacle 
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(a)  

 

 

 

 
(b) 

 

                                            
(c) 

Figure. 4. The situation of the learning process at k= 10. 

 

 Agent i start to calculate the insignificance rate 𝜄𝑖 of all states 𝑠𝑖 ∈ 𝑆𝑖 while it performs its 

state exploration.  

 

 

 

 

 
(a) 

 

 

 

      Legend:  Initial position state of agent 1 

Initial position state of agent 2 

Initial position state of agent 3 

Eliminated states of 𝑆1 

Eliminated states of 𝑆2 

Eliminated states of 𝑆3 

Destination 1 

Destination 2 

Destination 3 

Obstacle 

State value of agent 1 after 10th 

learning episode 

State value of agent 2 after 10th 

learning episode 

State value of agent 1 after 10th 

learning episode 

Insignificance value of state space 

𝑆1 after 10th learning episode 
Insignificance value of state space 

𝑆3 after 10th learning episode 

Insignificance value of state space 

𝑆3 after 10th learning episode 

Eliminated states of agent 1, 

agent 2, and agent 3. 

State value of agent 1 after 30th 

learning episode 

Insignificance value of state space 

𝑆1 after 30th learning episode 

 

State value of agent 2 after 30th 

learning episode 

State value of agent 1 after 30th 

learning episode 

Insignificance value of state space 

𝑆2 after 30th learning episode 

 

Insignificance value of state space 

𝑆3 after 30th learning episode 
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Legend: 

Initial position state of agent 1 

Initial position state of agent 2 

Initial position state of agent 3 

Eliminated states of 𝑆1 

Eliminated states of 𝑆2 

Eliminated states of 𝑆3 

Destination 1 

Destination 2 

Destination 3 

Obstacle 

Legend: 

Initial position state of agent 1 

Initial position state of agent 2 

Initial position state of agent 3 

Eliminated states of 𝑆1 

Eliminated states of 𝑆2 

Eliminated states of 𝑆3 

Destination 1 

Destination 2 

Destination 3 

Obstacle 

Optimum policy 𝜋𝑖∗(𝑠𝑖) 

 
(b) 

 

 

 

 

(c) 

Figure. 5. The growth of the eliminated states in 30
th

 learning episode. 

 

  

 

                

Figure. 6. The eliminated states and optimum policy of 60
th

 learning 

episodes. 

 

 Throughout the learning process, more consistent local minima occur in the state value 

function. The numbers of eliminated states start to grow. The growth of the eliminated states in 

30
th

 episode is shown in Figure. 5. State values of agent i, 𝑉𝑖(𝑠𝑖) is again given in (a), while 

the insignificance function of 𝑠𝑖 is given in (b). The eliminated states are shown in (c), and 

finally the optimum policy of agent i, 𝜋𝑖∗(𝑠𝑖) is given in Figure. 6 together with the final 

eliminated states at 60
th

 learning episode. 

 The learning results is displayed in Figure 7, where the experiment was first run using MA-

Q(𝜆) algorithm.The horizontal axis represents the numbers of episodes or trials that was done 

in the experiment, the vertical axis shows how many steps or iterations needed to complete the 

task. The learning parameters of the agent are setup as follows: learning rate 𝛼=0.3, discount 

factor 𝛾=0.95, eligibility trace decay factor 𝜆=0.5, and initial exploration probability 𝜖=0, 

decaying with the trials count, the (( 𝑟→, 𝑟+, 𝑟−) = (−1, 10, −2). The action selection 

mechanism is given as 𝜖-greedy policy 𝜋𝜖−𝑔𝑟𝑒𝑒𝑑𝑦(𝑠𝑡 , 𝑎𝑡) as given in eq.16. The agents estimate 

Eliminated states of agent 1 

after 30th learning episode 
Eliminated states of agent 2 

after 30th learning episode 
Eliminated states of agent 3 

after 30th learning episode 

Eliminated states of agent 1 

after 30th learning episode 

Eliminated states of agent 1 

after 30th learning episode 

Eliminated states of agent 1 

after 30th learning episode 
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their own action-value function using eq. (1) for SEA-MRL-Q(𝜆) and (2) for SEA-MRL-

SARSA(𝜆). 

 In the episodic learning the number of trials which indicates how many episodes to allow 

learning to run at most is set to be 100. The maximum iterations to allow a trial to run at most 

is set to be 500. The algorithms were implemented in Matlab and executed in desktop, with 

4GB of RAM in a Windows 7 OS platform.  

 

 

 

 

 
Figure 7.The learning performance of MA-Q(𝜆) versus SEA-MRL-Q(𝜆) ((a) and (b)) and MA-

SARSA(𝜆) versus SEA-MRL-SARSA(𝜆) ((c) and (d)) on 10x10 grid area for robot navigation 

task. The plot shows the average of the learning convergence over 400 independent runs, where 

each run consists of runs with 100 trials. 
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 For each experiment, a learning session consisted of 400 runs of 100 trials/episodes each. A 

trial finished whenever agent had arrived at the goal state or when 500 moves/iteration were 

completed. Each result is presented as a learning curve derived from the average steps to 

complete trial, which is the number of moves to achieve goal state. The experiment was 

conducted as follows. MA-Q(𝜆), MA-SARSA(𝜆), SEA-MRL-Q(𝜆) and SEA-MRL-

SARSA(𝜆) are applied respectively to the robot navigation problem. The performance of each 

algorithm is plotted and benchmarked. In Figure. 7 the MA-Q(𝜆) is compared to 6 kinds of 

SEA-MRL-Q(𝜆), where SEA-MRL-Qp(𝜆) represents the performance of SEA-MRL-Q(𝜆) 

eliminated from episode  𝑝 ∈ ℤ. In Figure. 7 The MA-SARSA(𝜆) is also compared to 6 kinds 

of SEA-MRL-SARSA(𝜆).  

 Figure 7 shows the learning curves of the agent averaged over 400 learning sessions. The 

horizontal axis represents the numbers of episodes or trials that was done in the experiment, 

while the vertical axis shows how many steps or iterations needed to complete the task. Figure. 

7 (a) shows the learning performance curve of the MA-Q(𝜆), and SEA-MRL-Q(𝜆) starting at 

1
st
, 3

rd
, and 5

th
 episodes. Even though the curve of MA-Q(𝜆) had reached its convergence after 

63
rd

 trial, the SEA-MRL-Q(𝜆) was noticeably better from early episodes due to the use of   

state elimination method. SEA-MRL-Q1(𝜆) and SEA-MRL-Q3(𝜆) reached respectively its 

convergence already at 50
th

 trial and 40
th

 trial for SEA-MRL-Q5(𝜆).  Similarly in Figure 7 (b) 

SEA-MRL-Q7(𝜆), SEA-MRL-Q9(𝜆) and SEA-MRL-Q11(𝜆) reached its convergence 

respectively at 40
th

, 41
st
, and 42

nd
 trial. Figure 7(c) presents the learning curves of the MA-

SARSA(𝜆), and SEA-MRL-SARSA(𝜆) starting at 1
st
, 3

rd
, and 5

th
 episodes. The results show 

that the MA-SARSA(𝜆) reached its convergence after 63
rd

 trial, while SEA-MRL-SARSA1(𝜆) 

and SEA-MRL-SARSA3(𝜆) reached 51
st
 and 50

th
 trial, and SEA-MRL-SARSA5(𝜆) after 40

th
 

trial. Lastly, Figure. 7 (d) presents the learning curves of the SARSA(𝜆), and SEA-MRL-

SARSA(𝜆) starting at 7
st
, 9

rd
, and 11

th
 episodes. The results show that the SEA-MRL-

SARSA7(𝜆), SEA-MRL-SARSA9(𝜆) and SEA-MRL-SARSA11(𝜆) achieve its convergence 

respectively after 42
nd

, 42
nd

 and 45
th

 trial. These results show that by eliminating insignificant 

states from early learning episodes will speed up the convergence to 1.46 times faster time. The 

performance analysis of the algorithm is given in Table 1. 

  

RL Algorithm p 
#Successful 

run 

Successful 

percentage  

(%) (A) 

Convergent 
after (trials) 

Acceleration 
factor (B) 

Overall Learning 
Performance (A x B) 

MA-Q(𝝀) - 400 100 63 1 1 

SEA-MRL-

Qp(𝝀) 

1 244 61 50 1,26 0,7686 

3 360 90 50 1,26 1,134 

5 301 75,25 40 1,58 1,18895 

7 339 84,75 40 1,58 1,33905 

9 366 91,5 41 1,54 1,4091 

11 372 93 42 1,5 1,395 

MA-

SARSA(𝝀) 
- 400 100 63 1 1 

SEA-MRL-

SARSAp(𝝀) 

1 264 66 51 1,24 0,8184 

3 358 89,5 50 1,26 1,1277 

5 316 79 40 1,58 1,2482 

7 328 82 39 1,62 1,3284 

9 354 88,5 42 1,5 1,3275 

11 361 90,25 42 1,5 1,35375 
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 Table 1 shows the performance analysis of average (over the 400 learning runs) of the robot 

agent.  From 400 runs, SE-ARL-Qp(𝜆) starts to reach above 90 % for p > 7. It can be seen that 

SE accelerate the learning speed up to 1.58 faster for Q(𝜆) and 1.62 for SARSA (𝜆) (even 

though there still is failure in learning proses when the state elimination is executed from early 

stages). The failure happened because some important states were also eliminated, because in 

early stages, these important states still have low state value. This failure did not happen when 

agent had chance to explore the states in early episodes, which can be seen on the table that 

when elimination is started from 9
th

 trial and up, the learning process is above 90% successful. 

Table 1. Performance Analysis MA-Q(𝜆) versus SEA-MRL-Q(𝜆) and MA-SARSA(𝜆) versus 

SEA-MRL-SARSA(𝜆). 

 Finally the learning performance is measured by calculating the ratio of the successful runs 

and Acceleration factor. All SE-AMRL-Q(𝜆) acceleration factor in the table had outperformed   

MA-Q(𝜆), and SE-AMRL-SARSA(𝜆) had outperformed MA-SARSA(𝜆). The   state 

elimination executed in MA-Q(𝜆) and MA-SARSA(𝜆) had performed faster convergence speed 

due to decreasing number of states in the state space. 

 

6. Conclusion and Further Research 

 Multiagent Reinforcement Learning (MRL) is the solution of multi robot learning problem, 

since the robot environment is mostly dynamic and stochastic. However the increasing number 

state and action space leads to problem in MRL since it requires larger memory and 

computation time which can cause degrading in the learning performance to very poor and 

even lead to failure in learning.  

 Since the learning convergence is determined by the size of the state space where the larger 

the state space the slower learning might become, reducing the state space by eliminating the 

insignificant states can lead to faster learning. Applying state elimination in gridworld multi-

robot navigation had shown significant acceleration factor in multi-agent RL to 1.62 faster 

convergence speed.  

 When internal knowledge such as reward shaping, transfer learning, parameter tuning, and 

even heuristics is no longer applicable to MRL problems, online state elimination becomes a 

promising solution to accelerate MRL. This algorithm is not only applicable for primitive robot 

soccer task, but also for other robotic soccer task challenges with large scale state space. This 

method has also clearly given us a starting point on several promising extension to the existing 

work and highlighted important new questions. This research has not only resulted in advances 

in imitation learning, but also has opened up a whole new way of exploring this field that 

posses an abundant source of ready-to-explore problems for future research. 
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