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Abstract: Fuzzy based stochastic algorithms for solving Multi-objective Reactive Power
Optimization (MORPO) problem including FACTS devices is presented in this paper. The
Multi-Objective Reactive Power Optimization problem is formulated as a nonlinear
constrained multi-objective optimization problem where the active power, voltage deviation
and investment cost has to be minimized simultaneously. Fuzzy logic strategy incorporated
with Evolutionary Programming (EP), Tabu search (TS) algorithms and Particle Swarm
Optimization (PSO) has been proposed to handle the problem as a true multi-objective
problem. The proposed algorithm has been used to solve the MORP problem with and
without FACTS devices namely STATCOM, TCSC and UPFC.IEEE 30-bus system is used
as a test system. The simulation results are promising and show the effectiveness and
robustness of the proposed approach.
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1. Introduction

The Multi-Objective Reactive Power Optimization (MORPO) problem is a complex problem
in which several parameters like Power loss, Voltage deviation, investment cost of the devices and
L-index have to be independently and simultaneously optimized. The Decision making process in
MORP is so complex and the Decision Maker (DM) is faced with multiple objectives. The
multiple objectives in a problem gives out a set of optimal solutions, known as Pareto Optimal
solutions. To solve the MORP sufficient information are required. The DM has to choose an
optimal solution by generating as many Pareto solutions as possible from which the optimal
solution can be chosen [1,2].

In power system, MO problems are solved by converting into a Single Objective by various
methods like Goal-attainment method [3], weighted sum [4], & -constraint approach,
Normalization method, Weight-norm method [6], fuzzy method [7] and projection method [5].
Now days a number of Multi-Objective Evolutionary Algorithms (MOEA) have been proposed
which has the ability of find multiple Pareto-optimal solutions in one single run. Evolutionary
algorithms (EA) inherently explore a set of possible solutions simultaneously [6]. Genetic
algorithm [7,8], Evolutionary programming, Fast Evolutionary Programming, Particle Swarm
Optimization and Simulated Annealing, Niched Pareto Genetic Algorithm [9,10], Non-dominated
Sorting Genetic Algorithm [14], Strength Pareto Evolutionary Algorithm [11] and SPEA2
(Improving Strength Pareto Evolutionary Algorithm) [12] and Differential Evolution [13] have
also been used for solving MO problems.

The MORP problem can be solved by using the Evolutionary programming (EP) algorithm
[14], Tabu Search (TS) algorithm and Particle Swarm Optimization (PSO) [15] algorithm. The
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performance of EP is better for MO problems but the major drawback is its inconsistent
convergence and computation time [16]. The TS algorithm has the ability to avoid entrapments
in local optimum but it requires larger computation time. The PSO algorithm has faster
convergence and simplicity but it requires more number of iteration to converge. Hence there is a
need to accelerate the convergence of EP, TS and PSO algorithms and thereby reducing the
computation time. In the recent years there has been an increase in the application of Fuzzy Logic
strategy, as it is a non-linear mapping of input data vector into scalar output which requires
appropriate but partial information of criteria only [18-19]. So in this paper Fuzzy Logic has been
incorporated with the EP, TS and PSO algorithms in order to minimize the convergence and
computation time. In EP the mutation process is incorporated with Fuzzy Logic which leads to an
improved technique called as Fuzzy Mutated Evolutionary Programming (FMEP).In TS algorithm
Fuzzy logic has been implemented [17] in the mutation and recombination process of TS
algorithm and it is termed as Fuzzy Guided Tabu Search (FGTS). Fuzzy Logic strategy has been
incorporated to adjust the parameters of PSO and termed as Fuzzified PSO.

FACTS devices are used to regulate the real and reactive power by their swift control
characteristics and compensating ability. A coordination between FACTS devices and the
conventional power system control devices makes the power system to operate in a more secure
and economical way [18, 19]. FACTS controllers reduces the systems losses and improves
stability without any change topological changes or generation rescheduling. Therefore, it becomes
necessary to incorporate the FACTS devices like SVC, TCSC and UPFC with the power system.

In this paper a Multi Objective Reactive Power Optimization (MORPO) problem is considered
which has a linear combination of several factors such as: investment cost, Voltage deviation and
transmission losses, subject to operational constraints such as reliability and voltage profile. This
problem is complex as it has multiple objectives to be minimized simultaneously. The MORPO in
coordination with FACTS devices is solved with the FMEP, FGTS and FPSO. IEEE 30-bus
system is used as the test system as it has more control variables and provides result for the
comparison for the proposed methods. The simulation results prove the ability of the proposed
method in generating well distributed pareto-optimal solutions of the MORPO problem with better
convergence and minimal computation time.

2. Multi-objective Reactive Power Optimization Problem

MORPO problem is a linear combination of three objective functions which are to be
simultaneously optimized namely active power loss (F1) , Maximum voltage Deviation (F2) and
Cost of the Compensating devices (F3).

A. Active power loss:

F1=Pg-Pd

The total power loss is always positive. F1 > 0.
F1 The total transmission active losses of the power system in MW.
Pg The total active power generated in MW
Pd The total load of the system in MW.

B. Maximum voltage deviation:
F, =max(V, -V)) =V, = V7|20

Where,
F2 The maximum voltage deviation from the desired value (P.U).
Ve R"  The voltage vector (unknown).

Ve R The desired voltage vector.
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C. Cost of the Compensating devices:

F =2 kB
i=1
_ | aif0<B;<B,
~ |pif-B, <B,<B,

max
F3< 5
Compensation at bus bar i in MVAr
Bi
Bm Maximum amount of compensation in MV Ar allowed at a single bus bar.
A Cost per MVAr of a capacitor bank
B Cost per MVAr of a reactor bank and n is the number of bus bars in the electric power system.

Foax The maximum amount available for investment
3

The cost of the FACTS devices according to Siemens AG database is governed by the equations:
Cqvc =0.0003S > -0.3051S +127.38

Crese =0.00155% —0.713S +153.75
Cupec =0.0003S* —0.32691S +188.22

Where, Cove , Cresc and Cuerc are the cost functions of SVC, TCSC and UPFC
respectively in US$/KVAr and S is the operating range of the FACTS controllers in MVAr.

The problem is summarized as
n
Y]
i=1

F:{ P,-P, [V-V’

Subject to the constraints
Load flow constraints:

Py —Po =V, >V, (G, cosf, +B,sinf,)  ieN,

Qi — Qi =V, ZVj (G sing; — B;; cos &) ie Np,

VISV SV e N

Voltage constraints: !
"< <Q™ e N
Generator reactive power generation limit: Qg' Qg' Qg' G

T T ST me N
Transformer tap setting limit: ™ m m T

< max
Line flow limits: ST le N,
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—100 < - <100
Reactive power injected by FACTS controller limit: Quacrs;

I € Npaers

-0.7X <X . <0.2X
Reactance ~ of  the  FACTS  device  limit: 0.7 racrsi <0

I € Npjers
Where,
No Total number of load buses
\VAN| voltages and currents of the load buses
L'L
V. | Voltages and currents of Generator buses
G '
NG Total number of Generators
P, Injected active power at Bus i
P, Active power demand at bus i
Bij Suseptance between bus i and j
N Total number of buses
B
Qs Injected reactive power at bus i
Qy; Reactive power demand at bus i
k i i .
. 1€ Ne SN,
NT Set of number of transformer branches
S, Power flow in branch 1

The amount of reactive power compensation at each bus is represented by an unknown vector
B has been used as a decision vector. The solution of the problem has a set of decision vectors B
for which the corresponding function can be optimized in any dimension. The set of decision
vectors is called as Pareto- optimal (P). The corresponding objective vectors (F) calculated
confirm a set of known Pareto-optimal Front (PF).

3. Modeling of FACTS controllers
The models of SVC, TCSC and UPFC are given below:

A Model of SVC:
SVC is a shunt connected static Var generator which can be used for both capacitive and
inductive compensation. SVC is considered as an ideal reactive power controller at bus i.

AQi = stc

The change in reactive power at bus i,

B Model of TCSC:

TCSC is a series compensation device which consists of a series capacitor bank shunted by a
thyristor controlled reactor. The overall transmission line effective series impedance is decreased
or increased by adding a capacitive or inductive reactive. TCSC is modeled as a variable reactance.

Xij = Xiine T Xresc

line
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X..
Where, Y series reactance of the transmission line across buses I and j after compensation
Xline
Reactance of the transmission line

XTCSC
Reactance of the TCSC

: . X . X,
To avoid overcompensation the value of = T¢SC s chosen between -0.7 * " line and 0.2.

C Model of UPFC:

UPFC is used to provide the independent shunt and series compensation. It is a combination of
Static Synchronous Compensator and Static Synchronous series compensator interconnected
through a d.c link. It has two control parameters a voltage source inserted in series with the line
and the current source connected in shunt with the line. It is able to absorb or generate real and
reactive power outputs depending on the rating of UPFC.

4. Solution for MORPO problem using stochastic algorithms

The formulated MORPO problem is solved using EP, TS and PSO algorithms.
A. EP based algorithm for solving MORPO problem:

The various steps for solving Multi-objective Reactive Power Optimization problem using EP
are as follow:

Step 1: The initial population is generated randomly within the feasible range such that the
distributions of the initial trial parents are uniform.
Ipi=[Vil, Vi2 ... ViNv; T1, T2...TiNT; Qil, Qi2 ... QiNgl,]

Where,i=1,2...NP,
The initial population is selected such that

min max
VALY

Vij=U( ! ),
EF%ﬂﬁxmm

Qirlnin , Qirlnax )

Tik = U(
Qil = U(

where u(x, y)denotes a uniform random variable between the limits x and y.

Then for each individual of the population the power flow equations are solved by running the
load flow by Newton Raphson method.Then the Fitness value is evaluated using (10) and the
maximum fitness value is stored.

ft -F + q)l Z(V” _Vijmin)Z + q)z Z(-I-ik _T”inin)z +(I)3 Z(Q“ _Qirlnin)Z
v kelly e (10)

The values of the penalty factors @1, ®2 and D3 are chosen such that there is any constraint
violation then the fitness value corresponding to that parent will be ineffective.

Step 2 Mutation: The offspring population is generated from Nm parent individuals.
m

Offspring population, Lo =[Voil Voi2... Voij; Toil Toi2... Toik; Qoil Qoi2... Qoil];

oi= Np+1, Np+2, ... Np+tNm
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Vg =V +N(0,67 ): j=12...N,

"
The elements of 9 are generated as ,

T =T +N(©.07 1k =12,.N;  Qy =Q +N(0,63 i1 =1.2,..N,

Where N (0, 62) is a normal random variable with mean zero and variance 62.
The variance decides the width of the normal distribution curve corresponding to each variables.
The variance of each variable are computed using the equations below:

ft.
2 i )
Gvij lB f_t ( Vijmax _Vijmln)

max (1 5)
ft.
2 i
GT . ﬂ ( max min
’ ft X Tik ’ _Tik ) (16)
ft,
2
UQij = ’B f.t : ( max min
max i — Qi) (17)
Where B is the scaling factor.
Then the fitness values corresponding to each offspring are calculated.
| .
Step3 : The Np parent trial vectors Iij and their corresponding offspring ", contend to survive

within the competing pool. After the competition, the 2Np trial solutions are ranked in descending
order based on the score obtained. The first Np trial solutions will survive and are transcribed
along with their fitness functions. The first Np solutions were used for the next generation.

Step 4: The mutation, competition process are repeated until the maximum number of iterations is
reached. The solution at the end of the maximum number of iteration is the optimal solution.

B. Tabu Search based algorithm for solving MORPO problem:

The various steps for solving Multi-objective Reactive Power Optimization problem using
Tabu Search (TS) are as follow:
Step 1: The initialization and mutation process are similar to that of the initialization and mutation
process as explained in EP algorithm. The initial parent population and offsprings from Nm parent

populations are generated,
r

Step 2: An offspring population  ° of size Nr is generated from the parent population in the
recombination process using the equation
r
L = [Voil Voi2... Voij; Toil Toi2... Toik; Qoil Qoi2... Qoil]; oi= Np+Nm+1, Np+ Nm+2
.. 2Np
I I

The elements of "' should be selected within the feasible range as ' = Ipil+y (Ipi2 - Ipil) ,
Where vy is the recombination factor and Ipil and Ipi2 are randomly selected parent individuals.
Step 4: Initially during the first iteration, Nm and Nr are half of the population of Population size
Np. Then during the forthcoming iterations value of Nm or Nr is increased or decreases
correspondingly to the solution in the previous iteration. The value of Nm and Nr are changed such
that Nm + Nr is always equal to Np.
Step 4:The Tabu List of size TLS comprises of a list of pre-elected size containing previous best

LS
D; =D |1 = lapsi =1.2,.2N

solutions. The sum of the distance s=1 of each individual in the

Tabu List is calculated. Each individual is then assigned with two ranks one based on the fitness

and the other based on the distance. Then based on the two ranks a weight Wi is determined.
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Wi= RFi+ o RDi @1

Where a is the distance weight factor;
RFi is the Rank based on fitness value and
RD:i is the Rank based on Di

Then the individuals are arranged in descending order according to Wi and the first Np’s are
considered for the next iteration. The best individuals replace the worst individuals in the Tabu
List along with their fitness value.

C. PSO based algorithm for solving MORPO problem:

The steps for solving Multi-objective Reactive Power optimization Problem using Particle
swarm Optimization is explained below:
Step 1: Initially n numbers of particles are generated randomly with uniform probability within the
search range. Then the fitness value of each particle is calculated by running the load flow using
the Newton Raphson method. The values of Pbest and Gbest are calculated. Initially the velocities
of the particles are set to zero.
Step 2: Then velocity of each element of a particle is calculated using the Pbest and Gbest values.

WV +¢,.rand ()(pbest - X )+
@,.rand ()(gbest — X' )

i,j

iter+1 __

v =

The jth element velocity of ith particle,

Where,

G lter set of n particles at a time or iteration

I
\/iter Particle velocity for an iteration

I

iter . i . . J . .
Vi velocity of the 'th particle in 7 th dimension.
w Inertia weight
o ©, Acceleration constant
rand () Function that generates uniform random number in the range [0,1]
K Constriction constant

2
K

_‘2—(0—\/(02—%

Such that P=P + P and p>4

The K is calculated as

wW=w —E@leﬁﬂmr
o . . . iter
The inertia weight W is calculated using max
Where,wmax and wmin are the upper and lower limits of the inertia weight.
Position Updation
Then the position of each particle is updated based on their velocities. The position of the jth
element of the ith particle is given by

iter+1 __  iter iter+1
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Step 3: The fitness of all the particles are calculated using the updated position and velocity. In
case of MORPO the Gbest is obtained by using the sigma method and the Pbest is obtained by the
local dominancy concept.

The process of velocity updation, position updation, Updation of Pbest and Gbest are performed
until the maximum number of iteration is reached. The Gbest at the maximum number of iteration
is the optimal solution.

5. Fuzzy Implemented Stochastic Algorithm for MORPO

Incase of EP, TS and PSO algorithm it is found that the computation time is large and they
require more number of iterations to reach the global optimal solution. So inorder to decrease the
computation time and minimize the number of iterations Fuzzy Logic strategy is implemented over
the EP, TS and PSO algorithms. The fuzzy logic strategy is implemented in the EP which leads to
an amendment called as Fuzzy mutated Evolutionary Programming (FMEP) In the TS algorithm
the fuzzy logic strategy is implemented in the mutation and recombination process and it leads to
Fuzzy Guided Tabu Search (FGTS). In PSO algorithm Fuzzy Logic strategy is used to determine
an adoptive inertia weight of the PSO algorithm which leads to an amendment called as Fuzzy
PSO (FPSO).

A. Fuzzy Logic Strategy in the Mutation process of EP and TS:

The mutation process in the EP and TS algorithms are same. The values of the variance 2
max min X i X i

ft; / e ,(Vii Vi )or (Tilina -Ti™) Qi —Qi™)

ft, / ft

depends on or ( and the scaling

factor () The max hag the major influence with the variance and if the value of it is small

. o VM) e g min
then the width of the normal distribution will be small. ( " U Tor (i ik
Q-l'l’laX _ -1'1'111’1) . .

il i 7is the search range. The search range is constant throughout out the process. The B
influences the convergence. If the B is small it leads to premature convergence. It was found that
the realtion between the factors seems to be arbitrary and ambiguous. So a fuzzy logic strategy
where the search criteria are not precisely bound would be more appropriate than a crisp
relationship.

Steps involved in the Fuzzy implementation in mutation process:

or (

Vﬂmax _V"min)
Stepl : The inputs and outputs are decided. The inputs are fti/ftmax and ( Y U

Ti™ —Tid )or (Qil —Qq ) The output of the fuzzy logic control is the variance ©2
corresponding to the control variables.

Step 2: Fuzzification of input and output using triangular membership is done using five fuzzy
linguistic sets.

or (

e

WVergimall fmall Tedhm Large WLz

AN

Step 3: The mutation scaling factor is resolved into the fuzzy control logic. Fuzzy rule base is
formulated based on their ranges for all possible combinations.

Fuzz ¥ Members lnp
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Table 1. Fuzzy Rule Base

Input 1

VerySmall Small Medium  Large VeryLarge
Input 2
VerySmall VerySmall VerySmall Small Small Small
Small VerySmall Small Small Medium Medium
Medium VerySmall Small Medium  Large Large
Large Small Medium Large VeryLarge VeryLarge
VeryLarge Small Medium Large VeryLarge VeryLarge

Step 4: De-Fuzzification of output using centroid method is performed.

B. Fuzzy Logic Strategy in Recombination of TS:

In the recombination v is an arbitrary variable which deals with the search range of the parent
min

population of the current iteration. The inputs to the fuzzy control are I Piland ! P1 !

and the output is the recombination factor (y). The steps involves in the implementation involves

the selection of inputs and outputs, Fuzzification using five fuzzy linguistic sets, Formation of

fuzzy rule base and the de-Fuzzification using centroid method as explained in the previous part.

Ipiz_

C. Fuzzy Logic strategy in the determination of inertia weight in PSO:

Fuzzy logic strategy is used to determine an adoptive inertia weight. The inputs are ﬂi / ﬁma"
maxl |ter )i |ter i min t
MV =V v v |
MaX{ max i _ |ter i |ter i _ mmt }
T )( ) N

MaX max i iter ,i iter ,i min t
{(Q Q ); (Q Q )} .The output is the adoptive inertia weight. The

steps of the fuzzy logic implementation are similar to that of the previous sections with selection
of input and outputs, Fuzzification, formation of fuzzy rules and de-Fuzzification.

6. Simulation Results and Discussions

Inorder to prove the feasibility and effectiveness of the proposed algorithms the standard IEE
system is chosen as the test system. It consists of 6 generating units, 41 lines, 2 shunt reactors, 4
tap changing transformers and a total demand of 283.4 MW. The buses 2, 5, 8, 11 and 13 are the
load buses and the remaining buses are the generator buses. Out of 41 lines the lines (6,9), (6 , 10),
(4, 12) and (27,18) have the tap changing transformers and the reactive power sources are at buses
10 and 24. The algorithms were programmed in MATLAB V 7.1 installed in a Pentium IV, 2.5
GHz processor.
For the implementation of EP and Tabu search algorithm the population size is chosen as 30 and
the scaling factor as 0.03. The recombination and distance vector factors of TS algorithm are 0.04
and 0.01. In PSO algorithm the control parameters are chosen such that wmax,,as 0.9, wmin as 0.4,

Pt as 1.7 and P2as 2.3.The penalty factors of the fitness function are chosen by trial and error
method. Initially a small value is chosen. After the analysis if the constrained violated individuals
have not been effectively eliminated, then the penalty factors will be increased until an acceptable
solution is reached. The comparative convergence characteristics of EP, TS and PSO algorithm for
MORPO are given in figure 1. The convergence characteristics are drawn by treating the multi-
objective problem as a single objective optimization problem by liner combination of the three
objectives. The comparative results were given in Table 9.
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For the implementation of the FMEP and FGTS for MORPO problem the fuzzy logic data for
the mutation process in EP and TS algorithm are given in table 2. The fuzzy logic data for the
recombination process is given in table 3, 4 and 5.The fuzzy logic data for the adoptive weight in

PSO algorithm are given in Table 6, 7 and 8.

Table 2. Fuzzy Logic Data for the Mutation process of EP and TS

( ‘
F Set ft ft X i max min Q'max - Q'mm
uzzy i / max Vijma _Vijmm) Tik a; _Tik ) ( il il ) B
VerySmall 0.00001 to  0.95-0.98 0.95-0.99 -0.12--0.08 0.001
0.00004 0.005
Small 0.00003 to  0.975-0.99 0.97-0.99 -0.064--0.02 0.004
0.006 0.06
Medium 0.005 to 0.05 0.985-1.0 0.985-1.01 -0.057-0.01 0.04
0.08
Large 0.03t0 0.5 0.995-1.02 0.995-1.02 0.09-0.15 0.075
0.09
Verylarge 0.4to1 1.015-1.05 1.015-1.1 0.07-0.36 0.085
0.1

Table 3. Fuzzy Logic Data considering controllable voltage magnitude
in the Recombination process

Fuzzy Set | pi2 ~ | pil I pp ITn;m Y

VerySmall  0.95- 0.98 0.95- 0.98 0.001 to 0.006
Small 0.975-0.99 0.975- 0.99 0.004 to 0.008
Medium 0.985-1.0 0.985-1.0 0.07 to 0.09
Large 0.995-1.02 0.995-1.02 0.085t00.2
VeryLarge 1.015-1.05 1.015-1.05 0.15t00.3

Table 4. Fuzzy Logic Data considering Tap changing transformer setting

in the Recombination process

Fuzzy Set | pi2 — | pil I T ITn;m Y

VerrySmall  0.95-0.99 0.95-0.99 0.001 to 0.006
Small 0.97-0.99 0.97-0.99 0.004 to 0.008
Medium 0.985-1.01 0.985-1.01 0.07 to 0.09
Large 0.995-1.02 0.995-1.02 0.085 t0 0.2
Verylarge 1.015-1.1 1.015-1.1 0.15t0 0.3

Table 5. Fuzzy Logic Data considering Reactive Power Sources setting
in the Recombination process

Fuzzy Set |y = Iy ="y

VerySmall -0.12--0.08 -0.12--0.08 0.001 to 0.006
Small -0.064--0.02 -0.064--0.02  0.004 to 0.008
Medium -0.057-0.01 -0.057-0.01 0.07 to 0.09
Large 0.09-0.15 0.09-0.15 0.085 t0 0.2
VeryLarge 0.07-0.36 0.07-0.36 0.15t00.3
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Table 6. Fuzzy Logic data considering voltage magnitude for the adoptive weight

Fuszyset  ft/ft_ Max (v ™ — fery, y ferd _y mnty L
VerySmall 0.00001 to 0.95-0.98 0.001 -
0.00004 0.005
Small 0.00003 to 0.006  0.975-0.99 0.004 -
0.06
Medium 0.005 to 0.05 0.985-1.0 0.04 —0.08
Large 0.03t0 0.5 0.995-1.02 0.075 -
0.09
VeryLarge 0.4tol 1.015-1.05 0.085—-0.1

Table 7. Fuzzy Logic data considering Tap changing transformers for the adoptive weight

Fuzzy Set ft, / ftmax MaX{(T maxi |ter i ) (T iter i _ mlnt )} W

VerySmall 0.00001 to  0.95-0.99 0.001 -
0.00004 0.005

Small 0.00003 to 0.006 0.97-0.99 0.004 - 0.06

Medium 0.005 to 0.05 0.985-1.01 0.04 —0.08

Large 0.03 t0 0.5 0.995-1.02 0.075 -0.09

VeryLarge 0.4tol 1.015-1.1 0.085-10.1

Table 8. Fuzzy Logic data considering Reactive Power Sources for the adoptive weight

Fuzzy Set ftl / ftmax MaX {(Q max i Q iter ,i ) (Q iter ,i Q min t )} W
VerySmall 0.00001 to 0.001 -
0.00004 -0.12-0.08 0.005
Small 0.00003 to 0.006  _0.064--0.02 0.004 - 0.06
Medium 0.005 to 0.05 -0.057-0.01 0.04 —0.08
Large 0.03 t0 0.5 0.09-0.15 0.075-0.09
VeryLarge 0.4tol 0.07-0.36 0.085—-10.1
6.4 -
FPS
0)
6.2 1+, - — PSO

5.8 -

Fitness Value

5.4 -

5-2 T T T T T T T T T T T T T T T T T T T T T T T T 1
1 3 5 7 @ehbrdloaS 17 19 21 23 25

Figure 1. Convergence Characteristics of EP, FMEP, TS, FGTS , PSO and FPSO algorithms
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Figure 2. pareto set- Power Loss/ Voltage deviation of EP, FMEP and FMEP with FACTS
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Figure 3. pareto set- Power Loss/ Voltage deviation of TS, FGTS and FGTS with FACTS
controller (UPFC)

256



Fuzzy based Stochastic Algorithms for Multi-Objective Reactive Power Optimization

0.155 A
0.15 - W
&
~ 1v‘ .
20.145 - % L PSO
S 014 - - + FPSO
—
© &
'=0.135 4 -
a) WA  FPSO with FACTS
© 0.13 - ‘om
(@]
] ‘8
=0.125 A M
> M
0.12 ~ 445 RR A
0.115 A
0.11 ; ; .
0.05 0.052 0.054 0.056
Power Loss (p.u)

Figure 3. pareto set- Power Loss/ Voltage deviation of PSO, FPSO and FPSO with FACTS
controller (UPFC)

The proposed algorithm of FMEP, FGTS and FPSO are coordinated with the FACTS devices
like SVC, TCSC and UPFC. To coordinate the SVC for multi objective reactive power
compensation, it is considered as the P-V as the voltage generated by the SVC is independent of
the system parameters. The SVC is located at bus 26 whose reactive power limits are 11.2 MVAr
(injection) and -2.5 MVAr (absorption). The corresponding voltage limits are 0.9 and 1.1 p.u V.
The SVC is located at bus 26 having the lower voltage magnitude of 0.9345 p.u (base case value).
The comparative results of [IEEE 30-bus test system corresponding to the proposed algorithms with
SVC are given in Table.

Table 9. Comparative results of the proposed algorithm with and without SVC

Control EP. FMEP TS FGTS P80 oS o
Veriables  EP (With (with TS (With (with (S\gléh (With
SVC) SVC) SVC) SvC ) PSO)
Vi(pu  1.009 05 03 1.05 05 03 L0166 1049 | g5
V2w  1.006 1.0331 1.0262 1036 go52 1.0265 1012 1037 o353
Vs(puw  1.021 1.0011 0.9986 1021 g 9506 1.0432 1018 1029 9506
V&(puw) 0998 1.014 1.0456 10325 973 1.0416 1003 1020 ¢ g93
Vil(puw)  1.066 1.013 1.098 0.986 1.0147 1.0172 1061 1.002 5147
VI3(pu)  1.051 o217 » 09945 | o158 | 0865 TOST 0995 | o158
T(6-9) 1.093 1.0092 1.0481 1.0368 4 g1p4 1.0335 1093 1002 5194
T(6-10)  0.904 1.0163 0.9765 0.993 1.0286 1.0012 0904 1.003 4 g6
T@-12)  1.002 0.9637 1.0497 1.03 0.95 0.9869 1002 1.002 (g5
T(27-18) 0941 0.9865 1.05 0948 9995 1.0226 0941 1.039 9995
QSve - 6.3241 6.004 - 6.246 6.121 - 6.250  6.004
FI(Mw) __ 5.889 <1 s oa4 553 S 545 s 5386 4996 4555
F3(pu) 01435 017 00014 0116 0018 00013 0.110 00133 0.125
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The TCSC is located in line 26 of IEEE 30-bus test system. The range of compensation by
TCSC is 0 to 70 % of line reactance. The optimal solution of IEEE 30-bus test system using the
proposed algorithms with TCSC is presented in Table From Table it is inferred that with the
inclusion of TCSC in line 26 the power loss has been decreased and the voltage deviation too.

Table 10. Comparative results of the proposed algorithm with TCSC

32235}65 EP FMEP TS FGTS PSO FPSO
V1 (p.w) 1.038 1.035 1.042 1.05 1.049 1.05
V2 (p.u) 1.0262 1.0265 1.0052 1.0052 1.037 1.0265
V5w  0.9986 1.0432 0.9506 0.9506 1.029 1.0432
V8 (p.u) 1.0456 1.0416 0.973 0.973 1.020 1.0416
V1l(p.w) 1.098 1.0172 1.0147 1.0147 1.0052  1.0172
V13(p.u) 1.1 1.0865 1.0158 1.0158 0.9506  1.0865
T(6-9) 1.0481 1.0335 1.0124 1.0124 0.973 1.0124
T(6-10) 0.9765 0.7926 1.0286 1.0012 1.0147  1.0286
T(4-12) 1.0497 1.0325 0.95 0.9869 1.0158  0.95
T(27-18)  (.9865 1.05 0.9995 1.0226 1.0124  0.9995
XTCSC 1385  -0.1354 -0.0745 0.1134 0125 0.1352
F1(Mw) 5.24 5.122 5.366 5.342 5.248 5.018
F3 (p.u) 0.0152 0.0146 0.0195 0.0014 0.0177  0.122

The UPFC is located in line 37 (connecting buses 25 and 26) of IEEE 30-bus system. The
Series voltage coefficient r limit values are 0 to 0.3 and the Series voltage angle y ranges from — «t
to m (radians) respectively. The results of the test system with UPFC are given in Table., Which
tells the effectiveness of UPFC over other FACTS controllers. The power loss has minimized
abruptly and the voltages at all the buses are within the limits.

Table 11. Comparative results of the proposed algorithm with UPFC

Control EP FMEP TS FGTS  PSO FPSO
Variables

V1 (p.u) 1.05 1.05 1.05 1.05 1.035 1.05
V2 (p.u) 1.0351 1.0147  1.0348  1.0901  1.0265  1.0052
V5 (p.w) 1.0029 0.9925  1.0214 09978  1.0432  0.9506
V8 (p.u) 1.0347 1.0236  1.0489 09961  1.0416  0.973
V1li(p.u) 1.0340 1.0194 1.0891 1.0456 1.0172  1.0147
V13(p.u) 1.0009 1.0125 1.0765 1.0786  1.0865  1.0158
T(6-9) 1.0265 09912  1.0464 1.0025 1.0335 1.0124
T(6-10) 0.9895 0.9956  1.05 0.9865  0.7926  1.0012
T(4-12) 0.9941 1.0487  0.9976  1.05 1.0325  0.9869
T(27-18) 1.0321 1.0025  0.9952  1.0487  1.05 1.0226
QSTATCOM ¢ 1557 02126  0.0921  0.1554  0.1856  0.1753
r 0.0845 0.0512 02432 0.0279 0.01685 0.0596
y in degree 0.1802 0.1625 0.1445 0.1864  0.1375  0.1799
F1(Mw) 47124 45984  4.6695 4.3589  4.5661  4.5266
F2 (p.u) 0.020 0.0014  0.0015 0.0013  0.0018  0.0013
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The third objective is the minimization of the investment cost for compensation. With the
compensation using the FACTS devices the UPFC gives an annual saving of 8,15,529.00 $ and
SVC and TCSC of 5,32,695.23 $ and 7,96,685.52 $ respectively. The Pareto Fronts of Power loss
versus Voltage deviation for the proposed fuzzy based stochastic algorithms are given in figures 2,
3 and 4 which shows the effectiveness of the algorithm to generate Pareto solution in a well
diverse manner. The Pareto with FACTS implies the better Pareto obtained using UPFC.

Conclusion

In this paper, an approaches based on Fuzzy based stochastic algorithms like FMEP, FGTS and
FPSO are presented to solve the Multi-objective Reactive Power Optimization problem in
coordination with the FACTS devices like SVC, TCSC and UPFC. The problem has been
formulated as a Multi-objective optimization problem with non-linear competing objectives like
active power loss, Voltage deviation and the investment cost of the compensation devices. The
results obtained from the methods proved that they are efficient in solving the MORPO problem in
coordination with the FACTS devices. Based on the observations in the coordination of FACTS
devices with the network it was found that TCSC equilibrates the weakness of lines and
transformers on their Suseptance whereas the SVC is suitable to reduce the line losses. The UPFC
has better capability to minimize the losses and to give an important state of compensation.
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