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Abstract: An authenticated key exchange for the Internet of Things (IoT) sensor layer is 
discussed in this paper. This paper presents an enhanced key exchange protocol to provide an 
authentication scheme and data confidentiality for IoT sensor layer. In our approach, we 
incorporate an identity-based authentication scheme into the existing key exchange protocol 
based on Elliptic Curve Diffie Hellman (ECDH). We utilize two communication channels for 
the process, main channel and auxiliary channel. The main channel is used to exchange key and 
sensor data and the auxiliary channel is used to exchange the identity information prior to the 
key exchange process. To provide the data confidentiality, AES encryption algorithm is 
implemented with a key derived from shared secret key to ensure the Perfect Forward Secrecy. 
For the evaluations, there are four parameters that are evaluated: the protocol resistance, formal 
verification of protocol, the protocol security, and performance testing. The protocol resistance 
was evaluated using security analysis against common security threats on IoT sensor layer. The 
formal verification of the proposed protocol was evaluated using Scyther, and the protocol 
security was evaluated using attack scenarios (i.e., authentication and sniffing attack) to prove 
the authentication and confidentiality. The performance testing was conducted to measure time 
complexity and memory complexity of the protocol. The experiment results show that the 
proposed protocol is able to provide an authentication mechanism, data confidentiality, and 
resilience against common security threats at IoT sensor layers. 
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1. Introduction 

Internet of Things (IoT) refers to a system that consists of many devices and layers that are 
connected to the internet to provide many functionalities for end-users such as control, 
monitoring, and task automation. The IoT device usually is equipped with sensors and 
computational power to collect data and enable deployment in many different environments. 
There are many services that can be provided by the IoT system such as home monitoring, 
medical, smart shopping system, and many other services. These services offer huge benefits for 
people’s daily life, but also offers concern regarding the security and privacy of the data collected 
by the sensors [1]. 

Sensor layer is the lowest layer on the IoT system where all the sensor devices either connect 
to each other or connected to the central device as the local gateway. One of the security issues 
on this layer lies in the security and privacy of the data collected by the sensor. The research on 
this layer mainly focuses on encryption algorithm and key management to overcome this issue 
[2]. The research on the encryption algorithm focuses on developing a fast and lightweight 
algorithm that has low computational cost to be used on the IoT devices. The research on key 
management focuses on developing a key exchange mechanism responsible for generating and 
distributing the encryption key. On the other hand, the authentication scheme also needed to 
ensure the devices that communicate in the sensor layer are the valid devices [3]. One Time 
Password (OTP) based authentication [4], identity-based with public-key certificate 
authentication [5], and token-based authentication [6] are some researches that have been done 
by previous researchers to provide authentication for sensor devices in IoT. 
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Even though a lot of researches have been done to provide an authentication scheme in the 
sensor layer, the previous research more focuses on implementing authentication by adding a 
new device that acts as the authenticator. Shivraj et al. [4] implement OTP-based authentication 
using a central cloud that responsible for generating and distributing the OTP. Salman et al. [5] 
implement identity-based authentication using public key certificates that require a device to acts 
as the Certificate Authority (CA) server. Aman et al. [6] offer another solution for authentication 
scheme using token-based that also requires a device to acts as the authorization server. The 
addition of a new device means the requirement for extra resources is needed and the 
authenticator device that manages all the authentication scheme also has a risk of being a single 
point of failure (SPOF). In this case, if the device authenticator is compromised, the whole 
authentication scheme in the sensor layer will be compromised too. 

In this research, we offer an alternative for the authentication scheme in IoT sensor layers 
that is applied on the key exchange process. We utilize two communication channels, the main 
and the auxiliary channel. The main channel is used for key exchange process and sensor data 
communication. The auxiliary channel is used to exchange identity information prior to the key 
exchange process. We utilize key exchange protocol based on Elliptic Curve Diffie Hellman 
(ECDH) that will be authenticated by identity information that are exchanged over the auxiliary 
channel. The identity information then will be used on the key exchange process as the 
authentication variables. The ECDH key exchange will generate the same shared secret key for 
the participants. This key can be used directly for encryption, but it does not provide Perfect 
Forward Secrecy (PFS), which is a security property that guarantees the safety of the secret keys 
in case the private key is compromised. To provide PFS in our authentication scheme, the secret 
key will be derived using a hash function to be later be used as the key on Advanced Encryption 
Standard (AES) algorithm. The usage of AES aims to secure the sensor’s data that are transmitted 
over the network. 

In this research, the Design Research Methodology (DRM) by Blessing et al. [7] was 
adopted to conduct the research. The DRM framework consists of four stages: research 
clarification, descriptive study I, prescriptive study, and descriptive study II. Research 
clarification intends to find the research goal, focus, and scope through the intensive literature 
study and analysis. After finding the goal and focus of the research, the descriptive study I aims 
to understand the existing solutions, determine which parts that can be improved and what is the 
researcher’s desired outcome. The prescriptive study aims to realize the expected outcome into 
the proposed design. The last stage, descriptive study II focus on evaluation process by 
investigating the outcome of the researcher proposed design and its ability to matches the desired 
outcome. In this research, the evaluation of the proposed design consists of four aspects which 
are the resistance of protocol, the verification of the protocol, the security testing, and the 
performance testing. 

The rest of this paper is written into a several parts. On the next part, we present the result 
of literature analysis from previous researches that are related to the providing authentication 
scheme for IoT sensor layers. Secondly, we present our proposed authenticated key exchange 
protocol. Thirdly, we present the experimental results to prove the outcome matches with our 
research goal which is to provide authentication mechanism and data confidentiality. The 
research’s conclusion is written in the last part of this paper. 

2. Related Works
This section describes some previous research works that have been done related to our

research. The main topic of this research is the security of IoT, and the first stage of this research 
method is the research clarification. In this stage, we did literature analysis to find the research 
goal and focus derived from the research topic. The security of IoT become a popular research 
topic due to its rapid increasement of the IoT devices and applications. Yang et al. [2] did a study 
on IoT privacy and security issue in 2017. In their research, the security of IoT is analyzed on 
each layer that consists of perception or sensor layer, network layer, transport layer, and 
application layer. The research for security and privacy issues on the sensor layer are focuses on 
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the detection of the faulty sensor node and the encryption algorithms and key management. The 
faulty sensor node can be caused by the physical attack on the devices or compromised over the 
networks. To keep the service quality, the system needs to have the ability to detect the faulty 
node and take the actions. Many researchers did studies on the faulty node detections [8]-[10] 
that focus on identifying faulty nodes, detecting intrusion, and deriving the probability of the 
intrusion. 

Another security issue is finding a suitable encryption algorithm and key management that 
can be utilized on sensor layers. This is to ensure the confidentiality and privacy of data on the 
layer. Research on encryption algorithm focus on developing a lightweight, fast, and low 
computational cost algorithm. Goyal and Sahula [11] did research on providing a lightweight 
encryption algorithm for IoT devices using ECDH and AES encryption. Usman et al. [12] 
developed a new symmetric encryption algorithm that named Secure IoT (SIT). The proposed 
encryption algorithm is the merge of a Feistel and uniforms SPN with 64-bit cipher and key. 
Nandini and Vanitha [13] did a study on modern lightweight cryptography algorithms for IoT. 
In their study, the modern lightweight cryptography branch such as HISEC, PRINCE, OLBCA, 
PRESENT, PRINT, TWINE, and KLEIN are intensively analyzed using cryptanalysis. The 
analysis result shows the number of S-boxes on algorithm increase the security but also the cost. 

Finding a key management scheme that acceptable for sensor devices have been researched 
continuously by previous researchers. Public key cryptography has been considered as one of 
the convenient solutions due to its scalability and simple key management. Gaubatz et al. [14] 
did research to find the most recent state of public key cryptography for low power devices. In 
their research, there are three most suitable algorithms that can be implemented on the low power 
devices: NtruEncrypt, Elliptic Curve Cryptography (ECC), and Rabin’s scheme. The size of the 
key become the reason ECC is suited for small sensor devices in IoT. As shown in Table 1, the 
ECC requires much smaller key size compared to the Rivest-Shamir-Adleman (RSA) algorithm 
that provides the equal cryptographic strength [15]. The ECC’s strength depends on the ability 
to solve the discrete logarithm. 

Table 1. The key size comparisons of ECC and RSA [15]. 
RSA (bit) ECC (bit) 
15360 512+ 
7680 384-511
3072 256-383
2240 224-255
1024 160-223

ECC is an asymmetric encryption algorithm that covers cryptography mechanism such as 
key agreement and digital signatures [16]. ECC technique is built upon the elliptic curve that 
utilized to efficiently generates a small and fast cryptographic key [17]. The core function of the 
ECC operation is the scalar multiplication of k.P. Parameter P is a point on the ECC curve while 
k is a positive number. Computing the result of k.P into Q will be resulting in another point on 
the curve. Finding the k value with the knowledge of Q and P are proved to be difficult. Until 
now, there is no sub-exponential-time method that able to solve the discrete logarithm using 
properly selected parameters. ECDH is one of the ECC variants that provides key agreement 
protocol. Both parties that want to perform the key exchange and generating a shared secret key 
need to agree upon the curve type, field size, and some domain parameters as described in the 
Algorithm 1 [16]. 
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Algorithm 1 ECDH 
1) A and B each choose a random number that less than n to be their private key (ka and 

kb), where n is the domain parameter. 
2) A and B compute their public key, Qa = ka * G and Qb = kb * G, where G is the domain 
parameter 
3) A and B exchange their public keys. 
4) A compute shared secret key, K = ka * Qb. 
5) B compute shared secret key, K = kb * Qa. 

 
The usage of ECC algorithms for key management scheme in the IoT system have been 

studied continuously. Dahshan [18] studied a key management mechanism based on ECC and 
the results show that the ECC has the high-security level of secrecy using small key size 
compared to other protocol such as the distributed key management protocols. Anggorojati et al. 
[19] did a study on cryptography key management that utilize ECC on the Machine to Machine 
(M2M) cloud platform. The results show the feasibility to implement the ECC key agreement 
despite the delay occurred when processing the certificate. Kodali and Nakoti [20] did a study to 
implements ECDH public key cryptography on the IoT sensor devices. In their study, the 
implementation uses NodeMCU ESP8266 and NIST P-192 curve to produce the same encryption 
key for the sensors. Based on the experimental results, the ECDH implementation requires 
234,729 of 1,044,464 total storages on the ESP8266. From the experimental result, it can be 
concluded that the ECDH security model is feasible for sensor devices in the IoT system.  

Even though the ECDH able to provide the key exchange management, it does not have an 
authentication scheme. Both parties that receiving the public key cannot verify if the received 
public key is originated from the trusted party or from the third impersonation party. This can be 
led to an attack known as Man-in-the-Middle (MiTM) as illustrated in Figure 1. This kind of 
attack happens when the attacker alters the original connection between two parties to make the 
communication flow through the attacker [21]. By redirecting the communication, the attacker 
can control and eavesdrop the entire communication that happens between both parties. To avoid 
this attack, the implementation of ECDH is usually being combined with other authentication 
algorithms such as digital signature or custom authentication scheme. 

  

 
Figure 1. Man-in-the-Middle Attack [21]. 

 
Works on [22] studied on securing Voice over the Internet Protocol (VoIP) communication 

using ECDH as the key agreement protocol on the mobile phone [22]. The ECDH is combined 
with identity-based authentication to overcome the lack of authentication on the ECDH protocol. 
To achieve this, the proposed protocol utilizes Short Message Service (SMS) on the mobile 
phone to exchange the identity prior to the key exchange process. This identity information is 
sent manually by the user before starting the key exchange process. The results are validated 
using Scyther tools and proved to successfully overcome the authentication issue on the ECDH 
protocol despite the execution time that slightly increases. 
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Shivraj et al. [4] have done research to provide an authentication scheme for IoT sensor 
layer based on Elliptic Curve Cryptography. In their research, they combine the Lamport’s One 
Time Password (OTP) with a lightweight Identity Based Elliptic Curve Cryptography scheme 
(IBE-ECC). The OTP will be used as the authenticator when the ECC key exchange occurs. In 
their authentication scheme, they implement the Private Key Generator (PKG) at IoT cloud 
platform that responsible for generating and distributing OTP. Sensor device will need to register 
itself first to PKG to obtain public and private keys. The authentication scheme happens when 
both devices receive the same OTP from the PKG that will be used as validation when receiving 
an authentication request. The result concludes that the proposed authentication based on OTP 
can be implemented in the real IoT system and can be an alternative for providing two-way 
authentication for IoT devices. The security of the proposed OTP generation scheme also proved 
to be as difficult as solving the computational problem on the Diffie-Hellman algorithm. 

An alternative solution for authentication scheme in the IoT system was also offered by 
Salman et al. [5] that implementing public-key certificates consist of three devices: sensor, 
gateway, and controller. In their research, the authentication process has three phases. The first 
phase is started by the gateway requesting the public key certificate to the controller. This 
certificate will be used by the gateway when doing authentication to the controller. The next 
phase is sensor registration, the sensor will request the authentication to the gateway by sending 
its identity information. The gateway will perform the identity checks and after it confirmed, the 
request will be forwarded to the controller. The public key for the sensor will be generated by 
the controller along with the IPv6 address. The controller will be sent back the encrypted hash 
of the IPv6 address, the sensor’s public key, and the gateway’s public key to the gateway. The 
gateway will decrypt and save the hash of sensor identity H(IPv6) and the sensor public key. 
This information then will be sent to the sensors to be later used as the authentication parameters 
on the last phase. This authentication scheme has some challenges on the computation needed 
by the sensor. The sensor also needs more storages to store its private key, controller’s public 
key, gateway’s public key, and its identity. The proposed scheme was validated using the formal 
verification security protocol tool known as AVISPA and the results shown that the scheme has 
security against MiTM, replay attacks, and masquerade. 

Aman et al. [6] did research to implements token-based security for IoT with the energy 
tradeoff that performed dynamically. The proposed scheme utilizes the authentication 
framework of OAuth 2.0 to provide authentication on large-scale networks. Authentication based 
on the OAuth 2.0 framework requires every sensor device to do authentication with the 
authorization server first before start accessing another resources or devices. To authenticate 
itself, the sensor device sends its ID and a random number to the authorization server. This ID 
will be checked by the authorization server, if the ID is not found in the memory, the request will 
be rejected. Otherwise, if the ID is found, the authorization server will generate an access token 
with predefine scope and time-limited session and sent it back to the sensor. This access token 
then will be used by sensor devices to authenticate among other devices. Based on the 
experimental results, the proposed security scheme is secure against different kind of attacks and 
able to reduce the power consumption up to 69% for authorization and authentication process, 
and up to 45% for data communication. 

Most of the previous research that provides an authentication scheme for IoT sensor device 
more focus on utilizing a device authenticator. Even though the scheme has proved to be secure 
and feasible to be implemented, it requires more resources, in this case, a less constraint device 
that manages the authentication mechanism for all devices. Centralized authentication also has 
the disadvantages of being a single point of failure [23]. When the resources for the 
authentication device is unavailable for some reasons such as system failure or cyber attacks, 
then all the devices that depend on their authentication will not operate accordingly. Therefore, 
in this research, we propose an authentication scheme that occurred when cryptography key 
exchange process to provide authentication as well as confidentiality of the data without using a 
dedicated device authenticator. 
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3. Proposed Work 
In this section, the proposed authentication scheme for key exchange protocol is described 

as part of stage three on our research methods which is the protocol design. The proposed scheme 
consists of three stages: identity’s information exchange, authenticated key exchange, and secure 
data communication. In phase 1, the device’s identity (IDA, IDB, AVA, AVB) are exchanged over 
the auxiliary channel. This identity information will be used later on the key exchange process 
to proves the device identity. The key exchange process will be resulting in the same secret key 
on both devices. This secret key then derived and used as AES’s key for secure data 
communication. Some notations used in this paper are defined in Table 2. 
 

Table 2. The Proposed Scheme’s Notations. 
Notation Description 

IDA Device A hostname 
IDB Device B hostname 
IPA Device A IP Address 
IPB Device B IP Address 

Nonce Pseudorandom numbers 
AVA Device A authentication variable  
AVB Device B authentication variable 

α, Qa Device A ECDH keypair 
β, Qb Device B ECDH keypair 
CA, CB The result of XOR operation 

between public key and 
authentication variable 

HA, HB The hash of the authentication 
variable 

SKA, SKB Shared Secret key 
AESkey AES-128 encryption key 

⊕ XOR operation 
Fp Prime finite field 
G Base point 

 
A. Identity Information Exchange 

In this stage, the two devices will send each other identity’s information using the auxiliary 
channel as shown in Figure 2. This is to ensure the identity information (IDA, IDB, AVA, AVB) are 
known to both devices. The ID is taken from the device hostname, and the AV is the result of 
exclusive OR operation between IP address and a nonce (random number). Device A will initiate 
the exchanges by sending its identity to the Device B. Device B will receive the identity and 
store it temporarily in the memory. Device B then sent back its own identity to the Device A. 
Both devices will keep this identity to be used in the authentication mechanism. 

 

 
Figure 2. Identity Information Exchange. 
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B. Authenticated Key Exchange 
In this stage, the proposed authenticated key exchange scheme is developed from the ECDH 

key exchange protocol combined with the identity-based authentication. The device’s identity 
consists of identifier and authentication variable (AV) that have been exchanged in the previous 
stage. The proposed key exchange scheme contains several steps as shown in Figure 3 below. 

 

 
Figure 3. Authenticated Key Exchange. 
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Known Variable: Ep, α, β, G, AVA, AVB 
Step 1: Device A generates its ECDH key pair (α and Qa).  
Step 2: Device A computes additional variable CA and HA. CA value is 

computed from exclusive OR operation between the Qa and Device 
A authentication variable. The HA value is computed from the hash 
function of the Device A authentication variable. 

Step 3: Device A sends its ID, CA and HA to Device B. 
Step 4: Device B receives and verify if the HA value is correct or not by also 

calculating its own HA and did the value comparison. 
Step 5: If verified, Device B extracts the Device A Qa by doing exclusive 

OR operation of CA and AVA. 
Step 6: Device B generates its ECDH key pair (β and Qb). Device B also 

compute secret key SKB from the multiplication of β with Device A 
Qa. 

Step 7: Device B computes additional variable CB and HB. The CB value is 
computed from the exclusive OR operation of Qb with the Device 
B authentication variable. The HB value is computed from the hash 
of exclusive OR operation between the ID of Device A and the 
secret key of Device B. 

Step 8: Device B sends its ID, CB, and HB to Device A. 
Step 9: Device A receive and extract Device B Qb from exclusive OR 

operation of CB and AVB. Device A will also compute its secret key 
SKA from the multiplication of α with Device B Qb.  

Step 10: At this point, Device A and Device B has the same shared secret 
key, SKA = SKB. To verify it, Device A computes HB’, which the 
result of hash(IDA ⊕ SKA) and compare it with the received HB. In 
this step, Device A also sends its id and HB’ to the Device B so it can 
be verified if they share the same secret keys. To provide FPS, this 
secret key will be hashed before using it as an encryption on the 
AES. 

  
The usage of XOR operation aims to secure the Qa, Qb and AVA, AVB value. The variables 

that known to public are CA and CB. CA value is computed from Qa ⊕ AVA operation. CB value is 
computed from Qb ⊕ AVB operation. To be able to derive Qa and Qb value from CA and CB, the 
attacker needs to know the AVA and AVB value, Qa = CA ⊕ AVA, Qb = CB ⊕ AVB.  To be able to 
derive AVA and AVB value from CA and CB, the attacker needs to know the Qa and Qb value, AVA 
= CA ⊕ Qa, AVB = CB ⊕ Qb. Qa, Qb and AVA, AVB values are only known to both parties that 
want to do the key exchange. The authentication of key that being exchanged is provided by the 
Hash(AVA) and Hash(IDA ⊕ SKA) operations. The authentication variable AVA only known by 
both parties. Even though the attacker can sniff the HA value sent in the public channel, the AVA 
cannot be retrieved since the value has been secured by the hash function. When attacker try to 
perform the impersonation attack by sending its own public key to both of the devices, the 
attacker needs to calculate the correct CA, CB, HA, and HB value that only can be known if the 
hash value which is one-way function can be reversed. The security of the SHA-256 hash 
function still strong and did not have collisions found yet [24]. In this phase, the secret key that 
is resulted from the key exchange process did not use directly for encryption. The secret key is 
derived first using the hash function to provide PFS, which is a property of security protocol that 
ensuring the secret key will not be able to derive from the compromised private key [25]. 
 
C.  Secure Data Communication 

Secure data communication can be achieved after both parties have the same encryption key. 
In this stage, the sensor data retrieved by the Device A will be encrypted using symmetric 
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cryptography algorithms AES. The selection of a symmetric algorithm for encryption is due to 
its faster performance compared to the public key encryption [15]. The selection of AES as the 
encryption algorithm is simply due to its acknowledgment as the world’s standard encryption 
algorithm since 2001. The encryption process on this phase is shown in Figure 4. The AES 
encryption accepts input in the form of sensor’s data, encryption key, and the Initialization 
Vector (IV) and produces the encrypted data. IV is a number generated randomly using a certain 
pseudorandom function that is available on the implemented software. The usage of AES 
encryption with IV aims to avoid statistical cryptoanalysis. IV is often utilized when the plaintext 
value tends to be constant and slightly different. IV must be unique to each encryption process 
to avoid the repetition during the data encryption process. IV can be kept public or private. IV 
will be mixed first with the plaintext before the encryption process occurs to ensure the 
randomness of the generated ciphertext. By implementing AES with IV, the ciphertext will be 
completely different even though the plaintext value is identic. 

 

 
Figure 4. Secure Data Communication. 

 
4. Result and Discussion 

This section describes the evaluation process of the proposed work that part of stage four on 
our research methods. In this stage, the proposed protocol will be evaluated using four 
evaluations: protocol resistance, formal verification of the proposed protocol, security testing, 
and perfomance testing.  

 
A. Protocol Resistance 

Protocol resistance is used to analyze the ability of protocol on preventing the potential 
attacks. In this testing, the protocol resistance is evaluated by doing security analysis against 
common security threats on the IoT sensor layers. The common security threats used on this 
testing is based on the research did by Burhan et al. [26] as follows. 
a)  Eavesdropping 

Eavesdropping is one of the typical security threats in the wireless sensor networks where 
the unauthorized party intercept the communication between both authorized parties to steal 
the information. This threat takes advantage of unsecured communication to read 
communication data. In the proposed protocol, all the data collected by the sensor devices 
are encrypted using AES symmetric encryption with 128-bit key length (ciphertext = 
AES128(data, IV, key)). Even though the attacker can retrieve the encrypted data that is sent 
on the public channel, the attacker still needs the key to decrypt the data. If the attacker 
attempts to brute-force the keys, there are 2128 number of possible keys that make it 
impractical to achieved [15]. 
 

b) Node Capture 
This kind of threat happens when the attacker gains physical access and taking full control 
over a certain node. The attacker then may try to retrieve the encryption key or other 
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important information stored in the memory [27]. In the proposed protocol, the resilience 
against this kind of threats is provided by using the short-term key that did not hardcoded in 
the device’s memory (Hash(SKA) and Hash(SKB)). This key is generated from the key 
exchange scheme and renewed on each session. Therefore, even though the attacker may 
gain physical access to the device, the encryption key is still secure. 
 

c) Fake Node and Malicious 
This security threat happens when the attacker injecting a new device or node into the system 
and then using it to send fake and malicious data. To prevent this kind of threats, the 
proposed protocol requires two devices to do authenticated key exchange before able to send 
any data. Suppose the attacker wants to send the key exchange request to Device B, the 
attacker also needs to send its authentication variable AVC. Since Device B cannot verify the 
AVC value, the request will be rejected. Another scenario when the attacker impersonating 
Device A and want to send its own Qa. Even though the attacker can retrieve the value of 
HA = Hash(AVA) transmitted over the public channel, the attacker still needs the original 
value of AVA to be able to calculate the acceptable CA = (Qa ⊕ AVA). Finding the AVA value 
from HA is known as hash collision and SHA-256 still did not have any collision found [24].  
  

d) Replay Attack 
This security threat occurs when the attacker eavesdrops all the conversation. In this case, 
the authentication data will be used later with the purpose of impersonating. This threat is 
prevented by using the different authentication variable (AV) for each session. The AV value 
is computed from the exclusive OR operation between the IP address and a nonce or random 
number. Suppose the attacker sends the AV-n on the n+10 key exchange process, the AV 
will be invalid since the AVn != AVn+10.  
 

e) Timing Attack 
This is a kind of side-channel attack that analyses the execution time of cryptographic 
algorithms. Every operation takes a varied certain time to execute. By analyzing the 
execution time, the attacker may try to deduce the plain text or even the encryption key. This 
kind of attack usually occurs on the public-key cryptography [15]. In this attack, the attacker 
sends arbitrary data to the target machine and then analyze the decryption time taken by the 
target. The proposed protocol requires any devices to authenticate itself first before able to 
send any valid data. This kind of authentication help on preventing the timing attacks. 
 

B. Formal Verification 
In this section, the proposed key exchange protocol will be validated using the formal 

verification security protocol tool known as Scyther. Many kinds of research on developing a 
security protocol or scheme utilize the Scyther to detects the potential attack and verify the 
correctness of the protocol [28]-[30]. Scyther accepting input in the form of a description of the 
protocol written in Specification and Description Language (SPDL). Each participant in the 
protocol is defined with roles that contain a sequence of events such as sending or receiving 
terms [31]. The security property of the protocol can be verified using Scyther claim events. 
Scyther support two security properties claims which are secrecy and authentication [32].  

The formal verification testing was performed by first translating the current existing 
protocol (ECDH) and proposed protocol specification into the SPDL language. The SPDL then 
will become the input on the Scyther tools that will evaluate and detect any potential attacks. In 
this evaluation, the secrecy properties claim is verified using the Secret event to verify the 
secrecy of the AES encryption key. The events used to claim the authentication properties are 
Aliveness and Weakagree. Aliveness is the weakest form of authentication that only ensures the 
communication party is alive [33]. Weakagree is the authentication claim that ensures the 
communication party is alive and there is an interaction between each other. Figure 5 shows the 
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validation results of the ECDH key exchange protocol that does not provide the authentication 
scheme. Scyther successfully detects the potential attack on the authentication that is shown by 
the Fail status. On the other hand, Figure 6 presents the validation results of the proposed key 
exchange with identity-based authentication. The results show the potential attacks on the 
authentication can be eliminated by providing an authentication mechanism. 

 

 
Figure 5. The result of ECDH key exchange. 

 

 
Figure 6. The result of proposed key exchange. 

 
C. Security Testing 

In this section, the proposed key exchange protocol will be implemented and tested to prove 
its authentication mechanism and data confidentiality. The minimum hardware requirements for 
the proposed protocol are shown in Table 3. In this testing, the proposed protocol is implemented 
on the NodeMCU as the sensor device and Raspberry Pi as the gateway. The device’s 
specifications are shown in Table 4 and Table 5. The topology and the implementation for this 
security testing is shown in Figure 7 and 8. To prove the authentication mechanism, an 
unauthenticated device will generate its own ECDH key pair and send the key exchange request 
to the Raspberry Pi. The Raspberry Pi that accepts the unauthenticated device’s request then 
verifies the request. Since the Raspberry Pi cannot verify the unauthorized device’s 
authentication variable, the key exchange request will be ignored and fail as shown in Figure 9.  
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Table 3. The minimum hardware requirements for protocol implementations. 
Components Minimum Requirements 
Processor 8 bit 
Flash Memory 300 KB 
Communication 
Channels 

2 

Supported Curves Secp160r1, secp192r1, secp224r1, secp256r1, 
and secp256k1 

 
Table 4. The sensor device hardware specifications. 

Components Specifications 
MCU Tensilica 32-bit RISC CPU Xtensa 

LX106 
Bluetooth HC-05 Bluetooth v2.0 (External 

Component) 
Wi-Fi 802.11 b/g/n 
SRAM 64 KB 
DRAM 80 KB 
Flash Memory 4 MB 
Frequency 80 MHz 

 
Table 5. The local gateway hardware specifications. 

Components Specifications 
CPU 1.4 GHz ARM 

Cortex-A53 
Bluetooth BLE 4.2 
Wi-Fi 802.11 b/g/n/ac 
RAM 1 GB 
Storage Micro SD 
Operating System Linux 

 
 

 
Figure 7. Security testing topology. 
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Figure 8. Implementation. 

 

 
Figure 9. Authentication mechanism testing result. 

 

 
Figure 10. Data confidentiality testing result. 

 
To prove the data confidentiality, the unauthorized device will capture or sniff the network 

traffic between the NodeMCU and Raspberry Pi using Wireshark tool. Figure 10 shows the 
traffic captured using Wireshark tool. The MQ Telemetry Transport Protocol is the name of 
transport protocol (OSI Layer 4) used by the NodeMCU to exchange data with the Local 
Gateway. Msg Len is the number of characters in the encrypted message which is 145 characters. 
Topic and topic length are the name of MQTT topic and the length. The Message field contains 
the data that being transferred using the MQTT protocol, in this case, the sensor data. In this 
evaluation, the NodeMCU will send the temperature and humidity data to the Raspberry Pi. 
Figure 10 shows the traffic that has been sniffed is completely encrypted and cannot be read 
without decrypting it. Since the unauthorized device did not have the encryption key, the 
decryption cannot be performed. Therefore, the proposed protocol has proved to secure the 
confidentiality of the sensor data. Table 6 shows the parameters used to implement the proposed 
key exchange protocol in this evaluation. The comparison between the authentication mechanism 
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offered on the proposed protocol with the existing protocol that utilizing dedicated devices can 
be seen on Table 7. Both protocols offer the confidentiality, integrity, and data authentication. 
The differences between the two protocols lie on the authentication mode, communication 
channel and authenticated device requirement. The proposed protocol use point-to-point 
authentication which does not require a dedicated device as authenticator, however it requires 
two communication channels to exchange keys and data. 
 

Table 6. Parameters length. 
Parameter Name Size (bits) 

AVA, AVB 256 
Qa, Qb 512 
α, β 256 
SKA, SKB 256 
AESkey 128 

 
Table 7. Protocol Comparison. 

Factors Dedicated device 
authenticator 

Proposed Protocol 

Confidentiality Yes Yes 
Integrity Yes Yes 
Authentication Yes Yes 
Single point of 
authentication 

Yes No 

Require Multi Channel No Yes 
Require Dedicated 
Authenticator 

Yes No 

 
D. Performance Testing 

This section presents the results of some experiments to evaluate the performance of the 
authenticated key exchange protocol in terms of time complexity and memory complexity. These 
parameters were measured based on the processes between NodeMCU as the sensor device and 
Raspberry Pi as the gateway. In this research, time complexity is a function that describes the 
amount of time needed to process the key exchange protocol. On the other hand, memory 
complexity is a function that describes the amount of memory needed to store the program, those 
are firmware size for NodeMCU and compiled code size for Raspberry Pi, and the amount of 
memory needed to execute the program. 

From the experiments, the processes of key exchange protocol between two devices were 
run for 50 iterations. The average time needed to execute the key exchange protocol is 2284.65 
ms. This amount of time consists of 115.14 ms for identity exchange, 2144.24 ms for key 
exchange, and 25.27 ms for encrypted data exchange. For the memory complexity, it takes 297 
KB of memory to install the firmware into NodeMCU and 7.6 KB for the compiled program 
in the Raspberry Pi. The memory used to execute the programs is described as follows. To 
execute all the functions in NodeMCU, it requires 33.8 KB of memory. This memory is used to 
store the local and global variables. And for the Raspberry Pi, 12.88 KB of memory is required 
to execute variable exchange function, 14.52 KB is required to execute key exchange function, 
and 12.86 KB is required to execute the receiving and data decryption. 
 
5. Conclusion 

In this research, the key exchange protocol based on ECDH is enhanced with an identity-
based authentication mechanism to provide data confidentiality, integrity and authentication for 
IoT sensor layers. The proposed protocol implements point-to-point authentication instead of 
single point of authentication. This authentication mechanism does not require a centralized 
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device authenticator, however it requires multi-channel communication. The proposed protocol 
requires two communication channels, the main channel and the auxiliary channel. The main 
channel is used for key exchange and data communication. The auxiliary channel is used only to 
exchange identity information prior to the key exchange process. This identity information is 
used on the key exchange process as the authentication variable to provide an authentication 
mechanism. The data confidentiality is provided by AES using an encryption key derived from 
the shared secret key. For the evaluation, the protocol resistance was evaluated by doing security 
analysis against common security threats on IoT sensor layers. The proposed protocol has proved 
to secure against eavesdropping, node capture, fake node and malicious, replay attack and timing 
attack. The protocol was also verified by formal verification tool known as Scyther and the 
results showed that no potential attacks were detected. The proposed protocol was implemented 
on the NodeMCU and Raspberry Pi. The results on the Raspberry Pi terminal and Wireshark 
tools show that the proposed protocol successfully provides authentication mechanism and 
confidentiality of the data. For the future works, there’s a research opportunity to study the 
communication channels on the proposed protocol, both the main and auxiliary channel, that best 
suits for IoT devices. 
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