
 International Journal on Electrical Engineering and Informatics - Volume 12, Number 3, September 2020

Development of Authenticated Key Exchange Protocol
for IoT Sensor Layer

Yoanes Bandung and Arvandy

School of Electrical Engineering and Informatics, Institut Teknologi Bandung

Bandung, Indonesia
bandung@stei.itb.ac.id, arvandy.vandy@gmail.com

Abstract: An authenticated key exchange for the Internet of Things (IoT) sensor layer is
discussed in this paper. This paper presents an enhanced key exchange protocol to provide an
authentication scheme and data confidentiality for IoT sensor layer. In our approach, we
incorporate an identity-based authentication scheme into the existing key exchange protocol
based on Elliptic Curve Diffie Hellman (ECDH). We utilize two communication channels for
the process, main channel and auxiliary channel. The main channel is used to exchange key and
sensor data and the auxiliary channel is used to exchange the identity information prior to the
key exchange process. To provide the data confidentiality, AES encryption algorithm is
implemented with a key derived from shared secret key to ensure the Perfect Forward Secrecy.
For the evaluations, there are four parameters that are evaluated: the protocol resistance, formal
verification of protocol, the protocol security, and performance testing. The protocol resistance
was evaluated using security analysis against common security threats on IoT sensor layer. The
formal verification of the proposed protocol was evaluated using Scyther, and the protocol
security was evaluated using attack scenarios (i.e., authentication and sniffing attack) to prove
the authentication and confidentiality. The performance testing was conducted to measure time
complexity and memory complexity of the protocol. The experiment results show that the
proposed protocol is able to provide an authentication mechanism, data confidentiality, and
resilience against common security threats at IoT sensor layers.

Keywords: IoT Security, Sensor Layer, Authenticated Key Exchange, ECDH, AES.

1. Introduction

Internet of Things (IoT) refers to a system that consists of many devices and layers that are
connected to the internet to provide many functionalities for end-users such as control,
monitoring, and task automation. The IoT device usually is equipped with sensors and
computational power to collect data and enable deployment in many different environments.
There are many services that can be provided by the IoT system such as home monitoring,
medical, smart shopping system, and many other services. These services offer huge benefits for
people’s daily life, but also offers concern regarding the security and privacy of the data collected
by the sensors [1].

Sensor layer is the lowest layer on the IoT system where all the sensor devices either connect
to each other or connected to the central device as the local gateway. One of the security issues
on this layer lies in the security and privacy of the data collected by the sensor. The research on
this layer mainly focuses on encryption algorithm and key management to overcome this issue
[2]. The research on the encryption algorithm focuses on developing a fast and lightweight
algorithm that has low computational cost to be used on the IoT devices. The research on key
management focuses on developing a key exchange mechanism responsible for generating and
distributing the encryption key. On the other hand, the authentication scheme also needed to
ensure the devices that communicate in the sensor layer are the valid devices [3]. One Time
Password (OTP) based authentication [4], identity-based with public-key certificate
authentication [5], and token-based authentication [6] are some researches that have been done
by previous researchers to provide authentication for sensor devices in IoT.

 Received: March 24th, 2019. Accepted: July 23rd, 2020
 DOI: 10.15676/ijeei.2020.12.3.11

607

Even though a lot of researches have been done to provide an authentication scheme in the
sensor layer, the previous research more focuses on implementing authentication by adding a
new device that acts as the authenticator. Shivraj et al. [4] implement OTP-based authentication
using a central cloud that responsible for generating and distributing the OTP. Salman et al. [5]
implement identity-based authentication using public key certificates that require a device to acts
as the Certificate Authority (CA) server. Aman et al. [6] offer another solution for authentication
scheme using token-based that also requires a device to acts as the authorization server. The
addition of a new device means the requirement for extra resources is needed and the
authenticator device that manages all the authentication scheme also has a risk of being a single
point of failure (SPOF). In this case, if the device authenticator is compromised, the whole
authentication scheme in the sensor layer will be compromised too.

In this research, we offer an alternative for the authentication scheme in IoT sensor layers
that is applied on the key exchange process. We utilize two communication channels, the main
and the auxiliary channel. The main channel is used for key exchange process and sensor data
communication. The auxiliary channel is used to exchange identity information prior to the key
exchange process. We utilize key exchange protocol based on Elliptic Curve Diffie Hellman
(ECDH) that will be authenticated by identity information that are exchanged over the auxiliary
channel. The identity information then will be used on the key exchange process as the
authentication variables. The ECDH key exchange will generate the same shared secret key for
the participants. This key can be used directly for encryption, but it does not provide Perfect
Forward Secrecy (PFS), which is a security property that guarantees the safety of the secret keys
in case the private key is compromised. To provide PFS in our authentication scheme, the secret
key will be derived using a hash function to be later be used as the key on Advanced Encryption
Standard (AES) algorithm. The usage of AES aims to secure the sensor’s data that are transmitted
over the network.

In this research, the Design Research Methodology (DRM) by Blessing et al. [7] was
adopted to conduct the research. The DRM framework consists of four stages: research
clarification, descriptive study I, prescriptive study, and descriptive study II. Research
clarification intends to find the research goal, focus, and scope through the intensive literature
study and analysis. After finding the goal and focus of the research, the descriptive study I aims
to understand the existing solutions, determine which parts that can be improved and what is the
researcher’s desired outcome. The prescriptive study aims to realize the expected outcome into
the proposed design. The last stage, descriptive study II focus on evaluation process by
investigating the outcome of the researcher proposed design and its ability to matches the desired
outcome. In this research, the evaluation of the proposed design consists of four aspects which
are the resistance of protocol, the verification of the protocol, the security testing, and the
performance testing.

The rest of this paper is written into a several parts. On the next part, we present the result
of literature analysis from previous researches that are related to the providing authentication
scheme for IoT sensor layers. Secondly, we present our proposed authenticated key exchange
protocol. Thirdly, we present the experimental results to prove the outcome matches with our
research goal which is to provide authentication mechanism and data confidentiality. The
research’s conclusion is written in the last part of this paper.

2. Related Works
This section describes some previous research works that have been done related to our

research. The main topic of this research is the security of IoT, and the first stage of this research
method is the research clarification. In this stage, we did literature analysis to find the research
goal and focus derived from the research topic. The security of IoT become a popular research
topic due to its rapid increasement of the IoT devices and applications. Yang et al. [2] did a study
on IoT privacy and security issue in 2017. In their research, the security of IoT is analyzed on
each layer that consists of perception or sensor layer, network layer, transport layer, and
application layer. The research for security and privacy issues on the sensor layer are focuses on

Yoanes Bandung, et al.

608

the detection of the faulty sensor node and the encryption algorithms and key management. The
faulty sensor node can be caused by the physical attack on the devices or compromised over the
networks. To keep the service quality, the system needs to have the ability to detect the faulty
node and take the actions. Many researchers did studies on the faulty node detections [8]-[10]
that focus on identifying faulty nodes, detecting intrusion, and deriving the probability of the
intrusion.

Another security issue is finding a suitable encryption algorithm and key management that
can be utilized on sensor layers. This is to ensure the confidentiality and privacy of data on the
layer. Research on encryption algorithm focus on developing a lightweight, fast, and low
computational cost algorithm. Goyal and Sahula [11] did research on providing a lightweight
encryption algorithm for IoT devices using ECDH and AES encryption. Usman et al. [12]
developed a new symmetric encryption algorithm that named Secure IoT (SIT). The proposed
encryption algorithm is the merge of a Feistel and uniforms SPN with 64-bit cipher and key.
Nandini and Vanitha [13] did a study on modern lightweight cryptography algorithms for IoT.
In their study, the modern lightweight cryptography branch such as HISEC, PRINCE, OLBCA,
PRESENT, PRINT, TWINE, and KLEIN are intensively analyzed using cryptanalysis. The
analysis result shows the number of S-boxes on algorithm increase the security but also the cost.

Finding a key management scheme that acceptable for sensor devices have been researched
continuously by previous researchers. Public key cryptography has been considered as one of
the convenient solutions due to its scalability and simple key management. Gaubatz et al. [14]
did research to find the most recent state of public key cryptography for low power devices. In
their research, there are three most suitable algorithms that can be implemented on the low power
devices: NtruEncrypt, Elliptic Curve Cryptography (ECC), and Rabin’s scheme. The size of the
key become the reason ECC is suited for small sensor devices in IoT. As shown in Table 1, the
ECC requires much smaller key size compared to the Rivest-Shamir-Adleman (RSA) algorithm
that provides the equal cryptographic strength [15]. The ECC’s strength depends on the ability
to solve the discrete logarithm.

Table 1. The key size comparisons of ECC and RSA [15].
RSA (bit) ECC (bit)
15360 512+
7680 384-511
3072 256-383
2240 224-255
1024 160-223

ECC is an asymmetric encryption algorithm that covers cryptography mechanism such as
key agreement and digital signatures [16]. ECC technique is built upon the elliptic curve that
utilized to efficiently generates a small and fast cryptographic key [17]. The core function of the
ECC operation is the scalar multiplication of k.P. Parameter P is a point on the ECC curve while
k is a positive number. Computing the result of k.P into Q will be resulting in another point on
the curve. Finding the k value with the knowledge of Q and P are proved to be difficult. Until
now, there is no sub-exponential-time method that able to solve the discrete logarithm using
properly selected parameters. ECDH is one of the ECC variants that provides key agreement
protocol. Both parties that want to perform the key exchange and generating a shared secret key
need to agree upon the curve type, field size, and some domain parameters as described in the
Algorithm 1 [16].

Development of Authenticated Key Exchange Protocol

609

Algorithm 1 ECDH
1) A and B each choose a random number that less than n to be their private key (ka and

kb), where n is the domain parameter.
2) A and B compute their public key, Qa = ka * G and Qb = kb * G, where G is the domain
parameter
3) A and B exchange their public keys.
4) A compute shared secret key, K = ka * Qb.
5) B compute shared secret key, K = kb * Qa.

The usage of ECC algorithms for key management scheme in the IoT system have been

studied continuously. Dahshan [18] studied a key management mechanism based on ECC and
the results show that the ECC has the high-security level of secrecy using small key size
compared to other protocol such as the distributed key management protocols. Anggorojati et al.
[19] did a study on cryptography key management that utilize ECC on the Machine to Machine
(M2M) cloud platform. The results show the feasibility to implement the ECC key agreement
despite the delay occurred when processing the certificate. Kodali and Nakoti [20] did a study to
implements ECDH public key cryptography on the IoT sensor devices. In their study, the
implementation uses NodeMCU ESP8266 and NIST P-192 curve to produce the same encryption
key for the sensors. Based on the experimental results, the ECDH implementation requires
234,729 of 1,044,464 total storages on the ESP8266. From the experimental result, it can be
concluded that the ECDH security model is feasible for sensor devices in the IoT system.

Even though the ECDH able to provide the key exchange management, it does not have an
authentication scheme. Both parties that receiving the public key cannot verify if the received
public key is originated from the trusted party or from the third impersonation party. This can be
led to an attack known as Man-in-the-Middle (MiTM) as illustrated in Figure 1. This kind of
attack happens when the attacker alters the original connection between two parties to make the
communication flow through the attacker [21]. By redirecting the communication, the attacker
can control and eavesdrop the entire communication that happens between both parties. To avoid
this attack, the implementation of ECDH is usually being combined with other authentication
algorithms such as digital signature or custom authentication scheme.

Figure 1. Man-in-the-Middle Attack [21].

Works on [22] studied on securing Voice over the Internet Protocol (VoIP) communication

using ECDH as the key agreement protocol on the mobile phone [22]. The ECDH is combined
with identity-based authentication to overcome the lack of authentication on the ECDH protocol.
To achieve this, the proposed protocol utilizes Short Message Service (SMS) on the mobile
phone to exchange the identity prior to the key exchange process. This identity information is
sent manually by the user before starting the key exchange process. The results are validated
using Scyther tools and proved to successfully overcome the authentication issue on the ECDH
protocol despite the execution time that slightly increases.

Yoanes Bandung, et al.

610

Shivraj et al. [4] have done research to provide an authentication scheme for IoT sensor
layer based on Elliptic Curve Cryptography. In their research, they combine the Lamport’s One
Time Password (OTP) with a lightweight Identity Based Elliptic Curve Cryptography scheme
(IBE-ECC). The OTP will be used as the authenticator when the ECC key exchange occurs. In
their authentication scheme, they implement the Private Key Generator (PKG) at IoT cloud
platform that responsible for generating and distributing OTP. Sensor device will need to register
itself first to PKG to obtain public and private keys. The authentication scheme happens when
both devices receive the same OTP from the PKG that will be used as validation when receiving
an authentication request. The result concludes that the proposed authentication based on OTP
can be implemented in the real IoT system and can be an alternative for providing two-way
authentication for IoT devices. The security of the proposed OTP generation scheme also proved
to be as difficult as solving the computational problem on the Diffie-Hellman algorithm.

An alternative solution for authentication scheme in the IoT system was also offered by
Salman et al. [5] that implementing public-key certificates consist of three devices: sensor,
gateway, and controller. In their research, the authentication process has three phases. The first
phase is started by the gateway requesting the public key certificate to the controller. This
certificate will be used by the gateway when doing authentication to the controller. The next
phase is sensor registration, the sensor will request the authentication to the gateway by sending
its identity information. The gateway will perform the identity checks and after it confirmed, the
request will be forwarded to the controller. The public key for the sensor will be generated by
the controller along with the IPv6 address. The controller will be sent back the encrypted hash
of the IPv6 address, the sensor’s public key, and the gateway’s public key to the gateway. The
gateway will decrypt and save the hash of sensor identity H(IPv6) and the sensor public key.
This information then will be sent to the sensors to be later used as the authentication parameters
on the last phase. This authentication scheme has some challenges on the computation needed
by the sensor. The sensor also needs more storages to store its private key, controller’s public
key, gateway’s public key, and its identity. The proposed scheme was validated using the formal
verification security protocol tool known as AVISPA and the results shown that the scheme has
security against MiTM, replay attacks, and masquerade.

Aman et al. [6] did research to implements token-based security for IoT with the energy
tradeoff that performed dynamically. The proposed scheme utilizes the authentication
framework of OAuth 2.0 to provide authentication on large-scale networks. Authentication based
on the OAuth 2.0 framework requires every sensor device to do authentication with the
authorization server first before start accessing another resources or devices. To authenticate
itself, the sensor device sends its ID and a random number to the authorization server. This ID
will be checked by the authorization server, if the ID is not found in the memory, the request will
be rejected. Otherwise, if the ID is found, the authorization server will generate an access token
with predefine scope and time-limited session and sent it back to the sensor. This access token
then will be used by sensor devices to authenticate among other devices. Based on the
experimental results, the proposed security scheme is secure against different kind of attacks and
able to reduce the power consumption up to 69% for authorization and authentication process,
and up to 45% for data communication.

Most of the previous research that provides an authentication scheme for IoT sensor device
more focus on utilizing a device authenticator. Even though the scheme has proved to be secure
and feasible to be implemented, it requires more resources, in this case, a less constraint device
that manages the authentication mechanism for all devices. Centralized authentication also has
the disadvantages of being a single point of failure [23]. When the resources for the
authentication device is unavailable for some reasons such as system failure or cyber attacks,
then all the devices that depend on their authentication will not operate accordingly. Therefore,
in this research, we propose an authentication scheme that occurred when cryptography key
exchange process to provide authentication as well as confidentiality of the data without using a
dedicated device authenticator.

Development of Authenticated Key Exchange Protocol

611

3. Proposed Work
In this section, the proposed authentication scheme for key exchange protocol is described

as part of stage three on our research methods which is the protocol design. The proposed scheme
consists of three stages: identity’s information exchange, authenticated key exchange, and secure
data communication. In phase 1, the device’s identity (IDA, IDB, AVA, AVB) are exchanged over
the auxiliary channel. This identity information will be used later on the key exchange process
to proves the device identity. The key exchange process will be resulting in the same secret key
on both devices. This secret key then derived and used as AES’s key for secure data
communication. Some notations used in this paper are defined in Table 2.

Table 2. The Proposed Scheme’s Notations.
Notation Description

IDA Device A hostname
IDB Device B hostname
IPA Device A IP Address
IPB Device B IP Address

Nonce Pseudorandom numbers
AVA Device A authentication variable
AVB Device B authentication variable

α, Qa Device A ECDH keypair
β, Qb Device B ECDH keypair
CA, CB The result of XOR operation

between public key and
authentication variable

HA, HB The hash of the authentication
variable

SKA, SKB Shared Secret key
AESkey AES-128 encryption key

⊕ XOR operation
Fp Prime finite field
G Base point

A. Identity Information Exchange

In this stage, the two devices will send each other identity’s information using the auxiliary
channel as shown in Figure 2. This is to ensure the identity information (IDA, IDB, AVA, AVB) are
known to both devices. The ID is taken from the device hostname, and the AV is the result of
exclusive OR operation between IP address and a nonce (random number). Device A will initiate
the exchanges by sending its identity to the Device B. Device B will receive the identity and
store it temporarily in the memory. Device B then sent back its own identity to the Device A.
Both devices will keep this identity to be used in the authentication mechanism.

Figure 2. Identity Information Exchange.

Yoanes Bandung, et al.

612

B. Authenticated Key Exchange
In this stage, the proposed authenticated key exchange scheme is developed from the ECDH

key exchange protocol combined with the identity-based authentication. The device’s identity
consists of identifier and authentication variable (AV) that have been exchanged in the previous
stage. The proposed key exchange scheme contains several steps as shown in Figure 3 below.

Figure 3. Authenticated Key Exchange.

Development of Authenticated Key Exchange Protocol

613

Known Variable: Ep, α, β, G, AVA, AVB
Step 1: Device A generates its ECDH key pair (α and Qa).
Step 2: Device A computes additional variable CA and HA. CA value is

computed from exclusive OR operation between the Qa and Device
A authentication variable. The HA value is computed from the hash
function of the Device A authentication variable.

Step 3: Device A sends its ID, CA and HA to Device B.
Step 4: Device B receives and verify if the HA value is correct or not by also

calculating its own HA and did the value comparison.
Step 5: If verified, Device B extracts the Device A Qa by doing exclusive

OR operation of CA and AVA.
Step 6: Device B generates its ECDH key pair (β and Qb). Device B also

compute secret key SKB from the multiplication of β with Device A
Qa.

Step 7: Device B computes additional variable CB and HB. The CB value is
computed from the exclusive OR operation of Qb with the Device
B authentication variable. The HB value is computed from the hash
of exclusive OR operation between the ID of Device A and the
secret key of Device B.

Step 8: Device B sends its ID, CB, and HB to Device A.
Step 9: Device A receive and extract Device B Qb from exclusive OR

operation of CB and AVB. Device A will also compute its secret key
SKA from the multiplication of α with Device B Qb.

Step 10: At this point, Device A and Device B has the same shared secret
key, SKA = SKB. To verify it, Device A computes HB’, which the
result of hash(IDA ⊕ SKA) and compare it with the received HB. In
this step, Device A also sends its id and HB’ to the Device B so it can
be verified if they share the same secret keys. To provide FPS, this
secret key will be hashed before using it as an encryption on the
AES.

The usage of XOR operation aims to secure the Qa, Qb and AVA, AVB value. The variables

that known to public are CA and CB. CA value is computed from Qa ⊕ AVA operation. CB value is
computed from Qb ⊕ AVB operation. To be able to derive Qa and Qb value from CA and CB, the
attacker needs to know the AVA and AVB value, Qa = CA ⊕ AVA, Qb = CB ⊕ AVB. To be able to
derive AVA and AVB value from CA and CB, the attacker needs to know the Qa and Qb value, AVA
= CA ⊕ Qa, AVB = CB ⊕ Qb. Qa, Qb and AVA, AVB values are only known to both parties that
want to do the key exchange. The authentication of key that being exchanged is provided by the
Hash(AVA) and Hash(IDA ⊕ SKA) operations. The authentication variable AVA only known by
both parties. Even though the attacker can sniff the HA value sent in the public channel, the AVA
cannot be retrieved since the value has been secured by the hash function. When attacker try to
perform the impersonation attack by sending its own public key to both of the devices, the
attacker needs to calculate the correct CA, CB, HA, and HB value that only can be known if the
hash value which is one-way function can be reversed. The security of the SHA-256 hash
function still strong and did not have collisions found yet [24]. In this phase, the secret key that
is resulted from the key exchange process did not use directly for encryption. The secret key is
derived first using the hash function to provide PFS, which is a property of security protocol that
ensuring the secret key will not be able to derive from the compromised private key [25].

C. Secure Data Communication

Secure data communication can be achieved after both parties have the same encryption key.
In this stage, the sensor data retrieved by the Device A will be encrypted using symmetric

Yoanes Bandung, et al.

614

cryptography algorithms AES. The selection of a symmetric algorithm for encryption is due to
its faster performance compared to the public key encryption [15]. The selection of AES as the
encryption algorithm is simply due to its acknowledgment as the world’s standard encryption
algorithm since 2001. The encryption process on this phase is shown in Figure 4. The AES
encryption accepts input in the form of sensor’s data, encryption key, and the Initialization
Vector (IV) and produces the encrypted data. IV is a number generated randomly using a certain
pseudorandom function that is available on the implemented software. The usage of AES
encryption with IV aims to avoid statistical cryptoanalysis. IV is often utilized when the plaintext
value tends to be constant and slightly different. IV must be unique to each encryption process
to avoid the repetition during the data encryption process. IV can be kept public or private. IV
will be mixed first with the plaintext before the encryption process occurs to ensure the
randomness of the generated ciphertext. By implementing AES with IV, the ciphertext will be
completely different even though the plaintext value is identic.

Figure 4. Secure Data Communication.

4. Result and Discussion

This section describes the evaluation process of the proposed work that part of stage four on
our research methods. In this stage, the proposed protocol will be evaluated using four
evaluations: protocol resistance, formal verification of the proposed protocol, security testing,
and perfomance testing.

A. Protocol Resistance

Protocol resistance is used to analyze the ability of protocol on preventing the potential
attacks. In this testing, the protocol resistance is evaluated by doing security analysis against
common security threats on the IoT sensor layers. The common security threats used on this
testing is based on the research did by Burhan et al. [26] as follows.
a) Eavesdropping

Eavesdropping is one of the typical security threats in the wireless sensor networks where
the unauthorized party intercept the communication between both authorized parties to steal
the information. This threat takes advantage of unsecured communication to read
communication data. In the proposed protocol, all the data collected by the sensor devices
are encrypted using AES symmetric encryption with 128-bit key length (ciphertext =
AES128(data, IV, key)). Even though the attacker can retrieve the encrypted data that is sent
on the public channel, the attacker still needs the key to decrypt the data. If the attacker
attempts to brute-force the keys, there are 2128 number of possible keys that make it
impractical to achieved [15].

b) Node Capture
This kind of threat happens when the attacker gains physical access and taking full control
over a certain node. The attacker then may try to retrieve the encryption key or other

Development of Authenticated Key Exchange Protocol

615

important information stored in the memory [27]. In the proposed protocol, the resilience
against this kind of threats is provided by using the short-term key that did not hardcoded in
the device’s memory (Hash(SKA) and Hash(SKB)). This key is generated from the key
exchange scheme and renewed on each session. Therefore, even though the attacker may
gain physical access to the device, the encryption key is still secure.

c) Fake Node and Malicious
This security threat happens when the attacker injecting a new device or node into the system
and then using it to send fake and malicious data. To prevent this kind of threats, the
proposed protocol requires two devices to do authenticated key exchange before able to send
any data. Suppose the attacker wants to send the key exchange request to Device B, the
attacker also needs to send its authentication variable AVC. Since Device B cannot verify the
AVC value, the request will be rejected. Another scenario when the attacker impersonating
Device A and want to send its own Qa. Even though the attacker can retrieve the value of
HA = Hash(AVA) transmitted over the public channel, the attacker still needs the original
value of AVA to be able to calculate the acceptable CA = (Qa ⊕ AVA). Finding the AVA value
from HA is known as hash collision and SHA-256 still did not have any collision found [24].

d) Replay Attack
This security threat occurs when the attacker eavesdrops all the conversation. In this case,
the authentication data will be used later with the purpose of impersonating. This threat is
prevented by using the different authentication variable (AV) for each session. The AV value
is computed from the exclusive OR operation between the IP address and a nonce or random
number. Suppose the attacker sends the AV-n on the n+10 key exchange process, the AV
will be invalid since the AVn != AVn+10.

e) Timing Attack
This is a kind of side-channel attack that analyses the execution time of cryptographic
algorithms. Every operation takes a varied certain time to execute. By analyzing the
execution time, the attacker may try to deduce the plain text or even the encryption key. This
kind of attack usually occurs on the public-key cryptography [15]. In this attack, the attacker
sends arbitrary data to the target machine and then analyze the decryption time taken by the
target. The proposed protocol requires any devices to authenticate itself first before able to
send any valid data. This kind of authentication help on preventing the timing attacks.

B. Formal Verification
In this section, the proposed key exchange protocol will be validated using the formal

verification security protocol tool known as Scyther. Many kinds of research on developing a
security protocol or scheme utilize the Scyther to detects the potential attack and verify the
correctness of the protocol [28]-[30]. Scyther accepting input in the form of a description of the
protocol written in Specification and Description Language (SPDL). Each participant in the
protocol is defined with roles that contain a sequence of events such as sending or receiving
terms [31]. The security property of the protocol can be verified using Scyther claim events.
Scyther support two security properties claims which are secrecy and authentication [32].

The formal verification testing was performed by first translating the current existing
protocol (ECDH) and proposed protocol specification into the SPDL language. The SPDL then
will become the input on the Scyther tools that will evaluate and detect any potential attacks. In
this evaluation, the secrecy properties claim is verified using the Secret event to verify the
secrecy of the AES encryption key. The events used to claim the authentication properties are
Aliveness and Weakagree. Aliveness is the weakest form of authentication that only ensures the
communication party is alive [33]. Weakagree is the authentication claim that ensures the
communication party is alive and there is an interaction between each other. Figure 5 shows the

Yoanes Bandung, et al.

616

validation results of the ECDH key exchange protocol that does not provide the authentication
scheme. Scyther successfully detects the potential attack on the authentication that is shown by
the Fail status. On the other hand, Figure 6 presents the validation results of the proposed key
exchange with identity-based authentication. The results show the potential attacks on the
authentication can be eliminated by providing an authentication mechanism.

Figure 5. The result of ECDH key exchange.

Figure 6. The result of proposed key exchange.

C. Security Testing

In this section, the proposed key exchange protocol will be implemented and tested to prove
its authentication mechanism and data confidentiality. The minimum hardware requirements for
the proposed protocol are shown in Table 3. In this testing, the proposed protocol is implemented
on the NodeMCU as the sensor device and Raspberry Pi as the gateway. The device’s
specifications are shown in Table 4 and Table 5. The topology and the implementation for this
security testing is shown in Figure 7 and 8. To prove the authentication mechanism, an
unauthenticated device will generate its own ECDH key pair and send the key exchange request
to the Raspberry Pi. The Raspberry Pi that accepts the unauthenticated device’s request then
verifies the request. Since the Raspberry Pi cannot verify the unauthorized device’s
authentication variable, the key exchange request will be ignored and fail as shown in Figure 9.

Development of Authenticated Key Exchange Protocol

617

Table 3. The minimum hardware requirements for protocol implementations.
Components Minimum Requirements
Processor 8 bit
Flash Memory 300 KB
Communication
Channels

2

Supported Curves Secp160r1, secp192r1, secp224r1, secp256r1,
and secp256k1

Table 4. The sensor device hardware specifications.

Components Specifications
MCU Tensilica 32-bit RISC CPU Xtensa

LX106
Bluetooth HC-05 Bluetooth v2.0 (External

Component)
Wi-Fi 802.11 b/g/n
SRAM 64 KB
DRAM 80 KB
Flash Memory 4 MB
Frequency 80 MHz

Table 5. The local gateway hardware specifications.

Components Specifications
CPU 1.4 GHz ARM

Cortex-A53
Bluetooth BLE 4.2
Wi-Fi 802.11 b/g/n/ac
RAM 1 GB
Storage Micro SD
Operating System Linux

Figure 7. Security testing topology.

Yoanes Bandung, et al.

618

Figure 8. Implementation.

Figure 9. Authentication mechanism testing result.

Figure 10. Data confidentiality testing result.

To prove the data confidentiality, the unauthorized device will capture or sniff the network

traffic between the NodeMCU and Raspberry Pi using Wireshark tool. Figure 10 shows the
traffic captured using Wireshark tool. The MQ Telemetry Transport Protocol is the name of
transport protocol (OSI Layer 4) used by the NodeMCU to exchange data with the Local
Gateway. Msg Len is the number of characters in the encrypted message which is 145 characters.
Topic and topic length are the name of MQTT topic and the length. The Message field contains
the data that being transferred using the MQTT protocol, in this case, the sensor data. In this
evaluation, the NodeMCU will send the temperature and humidity data to the Raspberry Pi.
Figure 10 shows the traffic that has been sniffed is completely encrypted and cannot be read
without decrypting it. Since the unauthorized device did not have the encryption key, the
decryption cannot be performed. Therefore, the proposed protocol has proved to secure the
confidentiality of the sensor data. Table 6 shows the parameters used to implement the proposed
key exchange protocol in this evaluation. The comparison between the authentication mechanism

Development of Authenticated Key Exchange Protocol

619

offered on the proposed protocol with the existing protocol that utilizing dedicated devices can
be seen on Table 7. Both protocols offer the confidentiality, integrity, and data authentication.
The differences between the two protocols lie on the authentication mode, communication
channel and authenticated device requirement. The proposed protocol use point-to-point
authentication which does not require a dedicated device as authenticator, however it requires
two communication channels to exchange keys and data.

Table 6. Parameters length.
Parameter Name Size (bits)

AVA, AVB 256
Qa, Qb 512
α, β 256
SKA, SKB 256
AESkey 128

Table 7. Protocol Comparison.

Factors Dedicated device
authenticator

Proposed Protocol

Confidentiality Yes Yes
Integrity Yes Yes
Authentication Yes Yes
Single point of
authentication

Yes No

Require Multi Channel No Yes
Require Dedicated
Authenticator

Yes No

D. Performance Testing

This section presents the results of some experiments to evaluate the performance of the
authenticated key exchange protocol in terms of time complexity and memory complexity. These
parameters were measured based on the processes between NodeMCU as the sensor device and
Raspberry Pi as the gateway. In this research, time complexity is a function that describes the
amount of time needed to process the key exchange protocol. On the other hand, memory
complexity is a function that describes the amount of memory needed to store the program, those
are firmware size for NodeMCU and compiled code size for Raspberry Pi, and the amount of
memory needed to execute the program.

From the experiments, the processes of key exchange protocol between two devices were
run for 50 iterations. The average time needed to execute the key exchange protocol is 2284.65
ms. This amount of time consists of 115.14 ms for identity exchange, 2144.24 ms for key
exchange, and 25.27 ms for encrypted data exchange. For the memory complexity, it takes 297
KB of memory to install the firmware into NodeMCU and 7.6 KB for the compiled program
in the Raspberry Pi. The memory used to execute the programs is described as follows. To
execute all the functions in NodeMCU, it requires 33.8 KB of memory. This memory is used to
store the local and global variables. And for the Raspberry Pi, 12.88 KB of memory is required
to execute variable exchange function, 14.52 KB is required to execute key exchange function,
and 12.86 KB is required to execute the receiving and data decryption.

5. Conclusion

In this research, the key exchange protocol based on ECDH is enhanced with an identity-
based authentication mechanism to provide data confidentiality, integrity and authentication for
IoT sensor layers. The proposed protocol implements point-to-point authentication instead of
single point of authentication. This authentication mechanism does not require a centralized

Yoanes Bandung, et al.

620

device authenticator, however it requires multi-channel communication. The proposed protocol
requires two communication channels, the main channel and the auxiliary channel. The main
channel is used for key exchange and data communication. The auxiliary channel is used only to
exchange identity information prior to the key exchange process. This identity information is
used on the key exchange process as the authentication variable to provide an authentication
mechanism. The data confidentiality is provided by AES using an encryption key derived from
the shared secret key. For the evaluation, the protocol resistance was evaluated by doing security
analysis against common security threats on IoT sensor layers. The proposed protocol has proved
to secure against eavesdropping, node capture, fake node and malicious, replay attack and timing
attack. The protocol was also verified by formal verification tool known as Scyther and the
results showed that no potential attacks were detected. The proposed protocol was implemented
on the NodeMCU and Raspberry Pi. The results on the Raspberry Pi terminal and Wireshark
tools show that the proposed protocol successfully provides authentication mechanism and
confidentiality of the data. For the future works, there’s a research opportunity to study the
communication channels on the proposed protocol, both the main and auxiliary channel, that best
suits for IoT devices.

6. Acknowledgment

The authors would like to thank Mokhamad Arfan Wicaksono for doing part of experiments
and collecting data.

7. References
[1]. A. Mosenia and N. K. Jha, “A Comprehensive Study of Security of Internet-of-Things,”

IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 4, pp. 586-602, 2017.
[2]. Y. Yang, L. Wu, G. Yin, L. Li and H. Zhao, “A Survey on Security and Privacy Issues in

Internet-of-Things,” IEEE Internet of Things J., vol. 4, no. 5, pp. 1250-1258, 2017.
[3]. I. Ali, S. Sabir, and Z. Ullah, “Internet of Things Security, Device Authentication and

Access Control: A Review,” International Journal of Computer Science and Information
Security, vol. 14, no. 8, August 2016.

[4]. Shivraj V L, Rajan M A, M. Singh, and Balamuralidhar P, “One Time Password
Authentication Scheme based on Elliptic Curves for Internet of Things (IoT)”, The 5th IEEE
National Symposium on Information Technology: Towards New Smart World, pp. 1-6,
2015.

[5]. O. Salman, S. Abdallah, I. H. Elhaji, A. Chehab, and A. Kayssi, “Identity-based
authentication scheme for Internet of Things”, 2016 IEEE Symposium on Computers and
Communication, 2016.

[6]. M. N. Aman, S. Taneja, B. Sikdar, K. C. Chua, and M. Alioto, “Token-Based Security for
the Internet of Things With Dynamic Energy-Quality Tradeoff”, IEEE Internet of Things
Journal, 2018.

[7]. L. T. M. Blessing and A. Chakrabarti, DRM, a Design Research Methodology. New York,
NY: Springer, 2008.

[8]. A. P. R. da Silva, M. H. T. Martins, B. P. S. Rocha, A. A. F. Loureiro, L. B. Ruiz, and H.
C. Wong, “Decentralized Intrusion Detection in Wireless Sensor Networks”, Proc. 1st
ACM Int. Workshop Qual. Service Amp Security Wireless Mobile Netw, pp. 16-23, 2005.

[9]. J. Chen, S. Kher, and A. Somani, “Distributed Fault Detection of Wireless Sensor
Networks”, Proc. Workshop Dependability Issues Wireless AdHoc Netw. Sensor Netw., pp.
65-72, 2006.

[10]. Y. Wang, X. Wang, B. Xie, D. Wang, and D. P. Agrawal, “Intrusion detection in
homogeneous and heterogeneous wireless sensor networks,” IEEE Trans. Mobile Comput.,
vol. 7, no. 6, pp. 698–711, Jun. 2008.

[11]. T. Goyal and V. Sahula, “Lightweight security algorithm for low power IoT devices”, 2016
International Conference on Advances in Computing, Communications and Informatics,
pp. 1725-1729, 2016.

Development of Authenticated Key Exchange Protocol

621

[12]. M. Usman, I. Ahmed, M. I. Aslam, S. Khan, and U. A. Shah, “SIT: A Lightweight
Encryption Algorithm for Secure Internet of Things,” International Journal of Advanced
Computer Science and Applications, vol. 8, no. 1, 2017.

[13]. P. Nandhini and V. Vanitha, “A Study of Lightweight Cryptographic Algorithms for IoT”,
International Journal of Innovations & Advancement in Computer Science, vol. 6, issue 1,
2017.

[14]. G. Gaubatz, J. P. Kaps, E. Ozturk, and B. Sunar, “State of the art in ultra-low power public
key cryptography for wireless sensor networks,” Proc. 3rd IEEE Int. Conf. Pervasive
Comput. Commun. Workshops, pp. 146–150, 2005.

[15]. W. Stallings, Cryptography and Network Security Principles and Practice, 6th ed. New
Jersey: Pearson Education, Inc., 2014.

[16]. M. Amara and A. Siad, “Elliptic Curve Cryptography and Its Applications”, 2011 7th
International Workshop on Systems, Signal Processing and their Applications, 2011.

[17]. S. K. Verma and D. B. Ojha, “A Discussion on Elliptic Curve Cryptography and Its
Applications”, International Journal of Computer Science Issues, vol. 9, Issue 1, no. 1,
2012.

[18]. H. Dahshan, “An Elliptic Curve Key Management Scheme for Internet of Things”,
International Journal of Applied Engineering Research, vol. 11, no. 20, pp. 10241-10246,
2016.

[19]. B. Anggorojati, N. R. Prasad, and R. Prasad, “Elliptic Curve Cryptography based Key
Management for the M2M Local Cloud Platform”, 2016 International Conference on
Advanced Computer Science and Information Systems, pp. 73-78, 2016.

[20]. R. K. Kodali and A. Naikoti, “ECDH based security model for IoT using ESP8266,” 2016
International Conference on Control, Instrumentation, Communication and Computational
Technologies, pp. 629-633, 2016

[21]. S. Roy and C. Khatwani, “Cryptanalysis and Improvement of ECC Based Authentication
and Key Exchange Protocols”, Cryptography Journal, vol. 1, Issue 1, 2017.

[22]. Y. Bandung and A. P. Putra, “Development of Key Exchange Protocol to Enhance Security
of Voice over Internet Protocol on Mobile Phone,” International Journal on Electrical
Engineering and Informatics, vol. 9, no. 1, March 2017.

[23]. R. O. Sinnott, D. W. Chadwick, T. Doherty, D. Martin, A. Stell, G. Stewart, L. Su, and J.
Watt, “Advanced Security for Virtual Organizations: The Pros and Cons of Centralized vs
Decentralized Security Models,” Eighth IEEE International Symposium on Cluster
Computing and the Grid, 2009.

[24]. A. Sahu and S. M. Ghosh, “Review Paper on Secure Hash Algorithm With Its Variants”,
International Journal of Technical Innovation in Modern Engineering & Science, vol. 3,
Issue 05, 2017.

[25]. S. Mandal and S. Mohanty, “Multi-Party Key-Exchange with Perfect Forward Secrecy”,
2014 International Conference on Information Technology, pp. 362-367, 2014.

[26]. M. Burhan, R. A. Rehman, B. Khan, and BS. Kim, “IoT Elements, Layered Architectures
and Security Issues: A Comprehensive Survey”, Sensors Journal, vol. 18, 2018.

[27]. M. V. Bharathi, R. C. Tanguturi, C. Jayakumar, and K. Selvamani, “Node Capture Attack
in Wireless Sensor Network: A Survey”, 2012 IEEE International Conference on
Computational Intelligence and Computing Research, pp. 1-3, 2012.

[28]. N. Kahya, N. Ghoualmi, and P. Lafourcade, “Formal Analysis of PKM using Scyther
Tool”, 2012 International Conference on Information Technology and e-Services, pp. 1-6,
2012.

[29]. U. U. Rehman and A. G. Abbasi, “Secured Layered Architecture for Session Initiation
Protocol based on SIPSSO: Formally Proved by Scyther”, 2015 12th International
Conference on Information Technology – New Generations, pp. 185-190, 2015.

[30]. H. Yang, A. Prinz, and V. Oleshchuk, “Formal Analysis and Model Checking of a Group
Authentication Protocol by Scyther”, 2016 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, pp. 553-557, 2016.

Yoanes Bandung, et al.

622

[31]. Cas Cremers, Scyther User Manual, Helmholtz Center for Information Security (CISPA),
2014.

[32]. D. Basin, C. Cremers, and C. Meadows, Model Checking Security Protocols, Springer,
2015.

[33]. V. S. Gorbatov, I. Y. Zhukov, and O. N. Murashov, “Assessment of Threats to the Security
of the Cryptographic Authentication Mechanisms of the Monitor Devices of Vehicles”,
Breakthrough directions of scientific research at MEPhl: Development prospects within
the Strategic Academics Units, 2017.

Yoanes Bandung received the B.E., M.E., and D.E. degrees in Electrical
Engineering from Institut Teknologi Bandung (ITB), Indonesia, respectively in
2000, 2002, and 2008. In 2009, he joined the School of Electrical Engineering
and Informatics ITB as a lecturer and affiliated with Information Technology
Research Group. In 2014, he was a post-doctorate researcher in Department of
Computer Science and Engineering, Frederick University of Cyprus through the
Erasmus Mundus STRoNG-TiES Program. He is a member of the Institute of
Electrical and Electronics Engineers (IEEE). His research interests are in the

areas of digital signal processing, multimedia computing and communication, information
security engineering, and Internet of Things (IoT).

Arvandy graduated from Politeknik Caltex Riau (PCR), Pekanbaru and
received Bachelor Degree in Informatics Engineering in 2013. In 2017, he
continued his study to Master Degree in Electrical Engineering with
specialization in Information Security Engineering and Management on Institut
Teknologi Bandung (ITB). In 2018, he obtained a certification from Offensive-
Security as the Offensive Security Certified Professional (OSCP). His research
interests are in the areas of network and information security engineering.

Development of Authenticated Key Exchange Protocol

623

