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Abstract: We propose in this work a method of electrocardiogram (ECG) signal 
pretreatment by the application of Discreet Wavelet Transform DWT by automatically 
determining the optimal order of decomposition. After the purification of the original 
signal, we describe an algorithm to detect R waves based on the Dyadic Wavelet 
Transform DyWT by applying a windowing process. This algorithm is validated on a 
sample of synthesis ECG signal with and without noise which we have proposed and on 
real data. Finally, once the R peaks of real data are detected, we use three methods of 
RR intervals analysis by calculating the standard deviation of heart rate and applying 
the Fast Fourier Transform FFT and the Wavelet Transform on detected RR intervals to 
study the Heart Rate Variability (HRV). A comparative study between the analysis 
results of detected RR intervals in healthy and diseased subjects through the application 
of the FFT and the Wavelet Transform will be given. 
 
Keywords: electrocardiogram, R peaks, Wavelet Transform, Fast Fourier Transform, 
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1. Introduction 
 The detection of cardiac arrhythmias is a crucial point in the cardiac diseases diagnosis. An 
arrhythmia is characterized by the irregularity of the heart rate. A heart rate is regular if it is of 
the order of 60 beats per minute; otherwise; it's called bradycardia or tachycardia. The most 
commonly used modality for the arrhythmia diagnosis is the ECG. The detection of this cardiac 
irregularity is based on the R peaks detection and analysis of their regularity (RR intervals).  
 In this context, several studies have been conducted. For example, in the derivative based 
methods [1, 2, 3], to detect the R peaks, the authors use the first derivative (respectively second 
derivative in [2, 4]). They locate for this purpose, the complex QRS by the thresholding of the 
derivative. These works suffer mainly from two limitations: their sensitivity to noise and the 
choice of a threshold. Other works exploit nonlinear analysis methods, especially the neural 
networks [5, 6] and non-stationary analysis tools such as wavelets that are the most used [7, 8, 
9]. Particularly in [7], for the QRS complex detection by Discreet Wavelet Transform, The 
authors have used different mother wavelets: Cubic Spline, Haar and Daubechies4 (Db4), 
where the choice of decomposition scale is empirical .They have shown that the best results are 
given by the Cubic Spline and the Db4 wavelets. Once the R peaks are detected, the diagnosis 
of cardiac arrhythmia passes through the analysis of the RR interval regularity. Several 
techniques are used, we can cite: the use of the FFT for the extraction of the frequency 
parameters to analyze the sympathetic and parasympathetic systems participation in the 
regulation of heart rate [10, 11]. The authors in [12] use statistical methods to analyze the RR 
intervals in the time domain. Other works [13] use wavelets to study Heart Rate Variability in 
both frequency and time domains.  
 The objective of this work is to propose a robust wavelet method to detect R peaks and 
compare different algorithms for RR interval analysis. Major interest of the recent paper is 
shed some light to the automatic calculation of optimal wavelet decomposition scale. In a first  
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step, to reduce the sensibility to the noise, we suggest to generalize the ECG signal 
pretreatment through the implementation of a bandpass filter which comprises a low pass filter 
based on DWT (Db2) and a high pass filter based on DWT (Db11). Our contribution is situated 
at this level in the determination of the decomposition level in an automatic manner basing on 
the sampling frequency and the bandwidth of the ECG signal for each of the used filters. Once 
the signal is purified, we proceed to the R peaks detection. In a second step, we propose to 
apply a windowing of the ECG signal in order to solve the problem of thresholding and false 
detections caused by the variability of the R peaks morphology. To validate our approach and 
test its robustness by a report to the noise ratio and the R peaks morphology, we will apply it 
first on synthetic data and then on real data which are relative to 10 subjects (healthy and 
pathological). A comparison of our results for the R peaks detection with those of other studies 
[2, 5, 7] will be given. Finally, for the RR intervals analysis of real data, we propose the use of 
three methods: the calculation of heart rate and standard deviation, the FFT and the Wavelet 
Transform. 
 
2. Detection and Analysis of R Peaks  
 The detection and analysis of the R peaks method proposed in this paper is composed of 
three phases: pretreatment, detection and analysis (Figure 1). 
 Pretreatment:  the first phase consists in filtering the ECG signal by a high pass filter in 

cascade with a low pass filter. 
 R peaks detection: the second phase consists in using the Wavelet Transform method to 

extract the R peak positions. 
 R peaks analysis: finally, using as input the R peak positions, we aim to study Heart Rate 

Variability. We propose to use three different methods: Statistical analysis, FFT and 
Wavelet Transform. 

 

 
Figure 1. The block diagram of the automatic ECG Processing chain. 

 
A. Wavelet Transform  
 The Wavelet Transform is a convolution of the wavelet function ψ(t) with the signal x(t). 
The Continuous Wavelet Transform CWT is defined by the Equation 1: 
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 Where ψ is the mother wavelet, a is the scale factor and b is the translation parameter. 
 The scale factor a discretization and parameter b translation by an appropriate sampling 
grid is required to faster calculations. This discretization gives the Dyadic Wavelet Transform 
DyWT: 
 jketbja 2.2 ==  

 dtj
kttx

j
kjCkjxDyWT )

2
()(22,),( ∫

∞

∞−

−−
== ψψ                            (2)                           

 Where j and k are two integers. 
 In the discrete case, the Wavelet Transform requires the decomposition and the 
reconstruction of the signal.  
 At the decomposition phase, the Wavelet Transform is modified to a filter bank tree using 
the multi-level decomposition by a low pass filter h(n) and a high pass filter g(n) (Figure 2) 
[14]. At each level, the signal is decomposed into two components: approximation (cAj) and 
detail (cDj). The former represents the general shape of the signal or low frequency 
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components. The later represents short and quick events or high frequency components. The 
approximation and details coefficients are respectively defined by Equations 3 and 4: 
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Where j is the decomposition level. 
 The reconstruction phase begins with the oversampling data followed by two reconstruction 
filters hത and gതto obtain the original signal as expressed by the equation 5. 

 ∑
∞

∞−
∑
∞

∞−
−++−+== )2()(1)2()(1)()( nkgnjcDnkhnjcAkjcAtx                                      (5) 

 

 
Figure 2. Filter bank trees of: (a) decomposition (DWT), (b) reconstruction (IDWT). 

 
B. Step by step design method 
B.1 Pretreatment of ECG Signals 
 During the recording of ECG signals, different types of noise from various sources 
(artifacts, calibration of the device, electrical activity of muscles ...) can be superimposed to the 
original signal. To purify the signal, many methods have been proposed: Adaptive filtering 
[15], digital filtering [16] and wavelet filtering [17, 18]. In particular, the authors in [17, 18] 
have used the Wavelet transform with an empirical scale factor. 
 Using the knowledge that wavelet filtering is efficient and accurate in the compute of the R 
peaks positions without change of the shape or position of the original signal, we propose to 
use this technique to filter the ECG signal. Our contribution is the automatically determination 
of the scale factor which optimizes the purification of the signal using two criteria: the signal 
sampling frequency and the knowledge that most of the noises are located at frequencies below 
1.5 Hz and higher than 50 Hz [19].  
 For this purpose, we propose a band pass filter which is constituted by a high pass filter 
with cutoff frequency 1.5 Hz in cascade with a low pass filter which its cutoff frequency equals 
to 50 Hz. First, the application of high pass filter eliminates baseline variations. Then, the 
application of low pass filter removes high frequency noise (Figure 3).  
 The scale and type of the mother function parameters are specific to each filter. Thus, the 
automatic compute of optimal scale in the case of a sampling frequency of 256 Hz gives the 
order six for high pass filtering and order two for the low pass filtering.  
 

 
 

Figure 3. The block diagram of the ECG pretreatment phase. 
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 For the choice of the mother function, we have achieved a comparative study using various 
types of mother functions: coiflet, symlet and Daubechies. The best results are obtained by the 
use of the Db11 mother wavelet in the case of high pass filtering and the Db2 wavelet in the 
case of low pass filtering. 
 The high pass filter is constituted by three stages (Figure 4). The first consists in 
decomposing the original ECG signal by DWT in its components of approximation and detail. 
The second consists in removing variations in the baseline generally characterized by low 
frequencies of the order of 0.1 Hz. The presence of these variations is seen for large orders of 
approximation coefficients of the DWT. Solving this problem requires setting to zero the last 
approximation coefficients. Finally in the third stage, we calculate the IDWT by using the new 
coefficients to reconstruct the signal where the variations of the baseline are eliminated 
(Equation (5)). 
 

 
Figure 4. The low frequency filtering block diagram, cA are the approximation  

coefficients of DWT. 
 
 The low pass filtering process is constituted by four stages (Figure 5). The first consists in 
calculating the DWT to order 2 of the ECG signal to get the detail coefficients (Equation (4)). 
In the second step, we calculate the mean μ (Equation (6)) from the absolute values of the first 
detail coefficients cD1 (k) then the standard deviation σ (Equation (7)).    
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Where N is the number of the detail coefficients cD1. 

 
6745.0
μσ =                                                                                                                         (7) 

 
Where 0.6745 is an empirical value used to calibrate the mean with standard deviation for a 
Gaussian process [20].                                                                                                                
 
The threshold value is obtained by Equation 8: 
 )(2 NLnS σ=                                                                                                                  (8) 
 
The third step is to select the detail coefficients (cD) using Equation 9: 
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 Finally, in the fourth step we compute the IDWT using the new coefficients to reconstruct 
the denoised signal (Equation (5)). 
 

 
Figure 5. The high frequencies filter block diagram, cDi is the detail coefficients of DWT. 
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 With a sampling frequency of 256Hz, the selected frequencies range of the filtered signal 
varies in the range 2 Hz and 32 Hz. 
 
B. 2. R Peaks Detection  
 As input we use a purified ECG signal. We aim to detect R peak positions. For this we have 
to resolve a key problem which is the R peak morphology variations (Figure 6). Using the 
hypothesis that on small intervals of time, the R peaks do not admit a large variability in its 
morphology, we propose to apply a time windowing on the ECG signal. The window allows 
the reduction of false detections when using small intervals of time. 
 For the R peaks detection, we propose the use of the DyWT for their ability to detect and 
locate accurately the waves. Similarly to the pretreatment, we apply the same process (B.1) to 
the scale compute and the mother function choice. As input, we have the QRS complex (Figure 
8) whose frequencies vary between 5Hz and 15Hz, therefore a scale of order 4 and a choice of 
Db4 mother wavelet. The Db4 wavelet is very interesting for the detection and location of R 
peaks due to the strong resemblance of its model to the ECG signal. Our method is organized 
in the following steps:  
 Step 1: We use as input a filtered ECG signal by the use of a band pass filter as described in 

(B.1), we calculate the DyWT of the ECG signal in the scale 24 (j = 4) using the Equation 
(2). 

 Step 2: We initialize the window time to 4s. We calculate the total number N of windows 
throughout the ECG recording where N is obtained by : 
Time window =4; 
Total time=Total number of samples/ sampling frequency; 
Portion number=round(total time/window time); 

 Step 3: For each window, we find the positive maxima and the negative minima of the 
DyWT by report in a threshold S1 (= 0.45 * max signal amplitude) and a threshold S2       
(= 0.28 * min signal amplitude) respectively. This step determines the negative minima- 
positive maxima couples DyWT of the possible complex QRS. 

 Step 4: having computed all possible QRS, it is now necessary to remove the redundant 
minima and maxima and the isolated couples. For this, we eliminate among two minima 
(respectively maxima), the farthest minimum (respectively maximum) from the maximum 
(respectively minima) of the couple. As output, we only obtain the closest negative 
minima- positive maxima couples which are the most likely to be the Wavelet Transform of 
the QRS complex. 

 Step 5: We locate the R peaks of QRS complexes from different intervals limited by the 
negative minima-positive maxima couples by looking for the points in which the DyWT 
nullifies. 

 Step 6: After calculating the P peak total number M and arranging all the M peaks in a 
single vector, we calculate the RR intervals between two successive R peaks as follows: 
RR(j)=peak position R (j+1)-peak position R (j). 
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Figure 6. R peak morphology variations. 
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B.3 RR intervals Analysis 
 The RR interval analysis consists in studying the Heart Rate Variability (HRV). The HRV 
is a measure of the heart rate variations. It is usually calculated by analyzing the time series of 
beat to beat intervals from ECG (RR interval) or traces of blood pressure. It is obtained by 
measuring the time between RR intervals on the electrocardiogram. The values of RR intervals 
are then plotted versus time, giving a curve called tachogram of HRV or RR tachogram (Figure 
7). This tachogram is a combination of sinusoidal waves of different frequencies. 
 

 
Figure 7. Tachogram of HRV. 

 
 There are various heart rate variability analysis, which can be subdivided into linear 
analysis (time and frequency) and nonlinear analysis (wavelet). The time domain methods are 
computationally simple, but lack the ability to discriminate between sympathetic and para-
sympathetic contributions of HRV. The studies of HRV employed the fast Fourier transform 
(FFT) for Power Spectral Density (PSD). A time-scale method developed in recent years 
allows studying these non stationary ECG signals: the wavelet method whose principle is to 
describe the evolution of a signal at different levels of temporal resolution [21]. The evolution 
of the frequency over time is thus particularly interesting for non-stationary signals. In this 
work, we chose to compare the RR interval analysis using the three following methods: 
Statistical analysis, FFT and Wavelet Transform.  
 
Statistical Analysis 
 For the analysis of RR intervals, we interest primarily in the extraction of beat frequency 
(F) in beats per minute (beats / min or rpm). For the measure of this beat frequency, we need to 
have the average and the excursion of periods around this average: F ± ΔF which we can 
deduce from the R peaks detection algorithm previously exposed. 
 The first parameter is derived from the developed R peaks detection algorithm by the 
following formulas: 

 RR Distance:
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With: L: total length of the recording (sample number). 
        Tech: the sampling period (s). 
        NQRS: Number of detected QRS. 
 
 ΔF is the value of the standard deviation which is the difference between the maximum 
value and minimum value of the RR interval: 
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A rhythm is irregular if the frequency variation is greater than 10%. 
 
 Fourier analysis 
 The objective of using the FFT in the RR analysis is to address the regulation of the cardiac 
activity by the Autonomic Nervous System (ANS) in different situations. The FFT divides the 
RR intervals by extracting the sinusoidal waves that compose it. It expresses the amount of 
variation for different frequencies and displays the results in a spectrum of power density. 
 The Power Spectral Density describes how the power of a signal or time series is 
distributed with frequency. The function of Power Spectral Density shows the force variations 
as a function of frequency. In other words, it represents the variations of high and low 
frequencies. 
 In this representation, the total observed HRV is expressed in terms of total spectral power. 
The spectral representation is used to extract the total observed HRV from variability 
attributable to each of the sinusoids composing the spectrum. Thus, it is possible to calculate a 
power spectrum in a frequency band. For example, if the respiratory frequency is between 45 
and 60 cycles per minute, the HRV of respiratory origin occurs in a frequency band between 
0.7 and 1 Hz. The power spectrum in this band corresponds to the part of the HRV related to 
respiration, which is determined by a parasympathetic mediation.  
 The frequency variations are established between 0 and 0.4 Hz. The power spectrum of a 
high frequency (HF) is estimated in the range of 0.15 to 0.4 Hz [10]. The oscillation in this 
frequency band is known as the Traube-Hering waves. This band is led by breathing and 
appears to be mainly derived from a vagal activity (parasympathetic). It corresponds to the 
respiratory arrhythmia. 
 The power spectrum of a low frequency (LF) is estimated between 0.04 and 0.15 Hz [10]. 
The oscillation in this frequency band is known as the Mayer wave. There is a peak, usually 
around 0.12 Hz. This band is derived from the vagal and sympathetic activity and was 
supposed to reflect the delay in the baroreceptor loop. In fact, the heart rate oscillations in the 
LF area are related to the activity of the baroreflex system. Parasympathetic and sympathetic 
systems are both involved: when the activity of a system increases, the other decreases. The 
increase of the LF in the RR interval spectrum is often due to an activation of the sympathetic 
system. After the vagal blockade, there is an important decrease of low frequencies in the RR 
interval spectrum, which completely disappears after a beta-adrenergic blockade.  
 The Component of a very low frequency (VLF) is estimated in the range of 0.003 to 0.04 
Hz [10]. It reflects the regulatory mechanisms in the long term, probably related to 
thermoregulation, vasomotor, the renin-angiotensin system or other factors. These rhythms are 
difficult to analyze with the traditional methods of the spectral analysis. 
 In this Fourier analysis, we are also interested in calculating the normalized low and high 
frequency power  (LFnu and Hfnu) as 100*LF/(total power- VLF) and 100*HF/(total power - 
VLF),  respectively, and the LF/HF ratio. This ratio represents an evaluation of the autonomic 
nervous system balance (sympathetic/parasympathetic). A decrease in this score might indicate 
either increase in parasympathetic or decrease in sympathetic tone. 
 
Wavelet  analysis 
 The decomposition of a signal by Wavelet Transform requires a mother function adequately 
regular and localized. The analysis amounts to sliding a window of different levels containing 
the wavelet function, all along the signal. The calculation gives a serial list of coefficients 
named wavelet coefficients, which represent the correlation evolution between the signal and 
the chosen wavelet at different levels of analysis all along the signal. 
 In our analysis, we have used the Db4 Wavelet Transform. For each recording, the wavelet 
coefficients were calculated on various RR Tachograms, giving seven separate levels of 
analysis named 2, 4, 8, 32, 64 and 128. Then, we have calculated the variability power, level by 
level, as the sum of coefficient squares. Thus, we have obtained, for each recording, the 
variability power for each level. 
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 The sum of wavelet power coefficients at levels 2, 4, and 8 roughly corresponds to the 
Fourier high frequencies (an index of parasympathetic activity). The wavelet power 
coefficients at levels16 and 32 approximately correspond to the Fourier low frequencies. The 
wavelet power coefficients at levels 64 and 128 correspond to the Fourier very low 
frequencies, and the LF/HF wavelet ratio to the Fourier ratio. The low and high frequencies 
indices can be also calculated in normalized units, as it is described in the Fourier analysis.  
 
3. Materials 
 In this section, we present our materials. First, we describe the ECG signal and the 
synthetic data used to validate the pretreatment and R peak detection phases. Then, we provide 
an example of using real ECG signals in order to show our approach efficiency (pretreatment, 
R peak detection and RR interval analysis). 
 
A. ECG Signal 
 The ECG is a signal that reflects the activity of the heart muscle. It is characterized by five 
separate waves designated as P, Q, R, S and T (Figure 8). These waves are related to the 
activity of the atria and ventricles under activation or recovery. The Frequencies for each wave 
provide variations depending on the heart rate. The change in the beat rate beat is called 
Arrhythmia. The frequency band of the ECG signals is approximately 50 to 100 Hz for a 
normal subject. 
 The RR interval between the R peaks is used for the cardiac arrhythmia diagnosis. A slow 
rhythm (heart rate <50 beats / mn and the distance RR> 1.2s) corresponds to the bradycardia. 
The accelerated rhythm (heart rate> 100 beats / mn and the distance RR <0.6s) corresponds to 
the tachycardia. 
 

 
Figure 8. Standard waves of a normal electrocardiogram. 

 
B. Synthetic Data 
 We use a theoretical signal similar to the real ECG signals (Figure 9). This signal consists 
only of line segments and coincides with a cardiac cycle. The synthetic ECG signal will be 
formed by successive translations of the simulated signal portion. We consider a heart rate of 
about 70 beats per minute, which corresponds to a healthy subject. This heart rate leads to a 
cycle time tc = 0.860s. The sampling frequency is 256 Hz. Two consecutive samples are thus 
distant from 0004s. This signal is represented by the following equation: 
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 λX are the slopes of the segments, γX and a are real constants; X Є {P, PQ, QR, RS, ST, TF} 
such that 
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We consider u (t) the unit level function. 
 

 
Figure 9. Main model of simulated ECG signal. 

 
 To test the robustness of the approach in case of noise, we have chosen to simulate a noisy 
signal by the addition of Gaussian noise (Figure 10 (b)) such as the probability density function 
of n-dimensional Gaussian noise is: 

 )2/)()(exp()det)2()( 12
1

μμ −−−Π= −
−

xKxKxf tn                                                  (14) 
 
 Where x is a length-n vector, K is the n-by-n covariance matrix, µ is the mean value vector, 
and the superscript t indicates matrix transpose.  
 
C. Real Data 
 The proposed R peak detection method is evaluated using the MIT-BIH arrhythmia 
database. It contains 10 minutes of ECG recordings sampled at 256 Hz. The ECG records from 
this database include signals with acceptable quality, sharp and tall P and T waves, small QRS 
complex, negative QRS complex, wider QRS complex, baseline drift, muscle noise, sudden 
changes in QRS morphology, sudden changes in QRS amplitudes, multiform premature 
ventricular contractions, long pauses and irregular heart rhythms. 
 
4. Results and Discussions 
A. Synthetic Data 

 
  

 
 
 
 
 
 
 

Figure 10. Sample synthetic ECG signal:  
(a) initial signal, (b) noisy, (c) filtered by the Daubechies filter. 
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 To purify the noisy synthetic signal, we apply the Db11 high pass filtering in cascade with 
the Db2 wavelet low pass filtering (Figure 10 (c)). 
 In Table 1, we present a comparative study by applying the DyWT method on four 
synthetic signals: initial, noisy, filtered without windowing and filtered with windowing. The 
number of cardiac cycles of these signals is equal to 600 cycles. 
 

Table 1. Number of R peaks detected of synthetic signals by the DyWT. 
original signal 

without windowing 
noisy signal 

without windowing 
Filtered signal 

without windowing 
Filtered signal 

with windowing 
600 510 583 597 

 
 According to Table 1, we find that the R peak number is the most raised in the case of an 
initial signal. This is due to the absence of the noise and to the identical morphology of the R 
peaks of the synthetic ECG signal. However, in the case of the noisy signal, the detection rate 
is low. We notice that this rate increases in the case of the filtered signal, more particularly in 
the case of the filtered signal using the windowing process. 
 
B. Real Data 
B.1 Pretreatment of ECG Signal 
 To use the adopted method in a robust way to effectively detect the R peak and at the 
demand of the expert, we eliminate the noise associated with the measurement approach 
(Figure 11). 

 
Figure 11. (a) original ECG signal,  

(b) ECG signal without artifacts (red) superimposed on initial ECG. 
 
 In addition, the real data must be filtered to mitigate the undesirable components, such as 
the P wave, T wave, the drift of the baseline and the noise from the electric grid. As for the 
synthetic data, the recordings of the ECG signal are filtered by the DWT using the Daubechies 
wavelet (Figure 12). 

 
 
 
 

 
 
 
 
 
 
 

Figure 12. (a) original ECG signal, (b) ECG signal without artifacts, (c) ECG signal filtered. 
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B.2 Detection of R Peaks 
 From the detection results, we will evaluate the results basing on two criteria: the first one 
being the rate of Non Detection (ND) which is the number of labeled R peaks that are not 
detected. The second being the False detection rate (FD) recorded in the absence of a R peak.  
The proposed algorithm achieves a significant improvement in the detection of R peaks under 
time varying QRS complex morphology and different kinds of noise and artifacts. The 
effectiveness of the proposed method in terms of the number of Non Detection and False 
Detection is shown in Table 2.   

 
Table 2. Results of the R peaks detection by the proposed algorithm. 

 

Record 
The number 
of present R 

peaks 
R detected F D N D % Error 

1 567 567 0 0 0% 
2 556 555 0 1 0.18% 
3 649 646 1 4 0.77% 
4 651 645 0 6 0.92% 
5 558 553 1 6 1.25% 
6 577 573 0 4 0.69% 
7 511 505 0 6 1.17% 
8 350 344 0 6 1.33% 
9 550 549 0 1 0.18% 
10 1236 1236 3 3 0.48% 

Total 6105 6073 5 37 0.68% 
 
 We note from Table 2 that the results of detection by the DyWT method are very 
satisfactory, seen the rate of false detections and non detections total is equal to 0.68%. Thus 
our detection algorithm realize a percentage of R peaks detection equal to 99.32% despite the 
existence of different types of waves and noises in the recordings which can falsify the 
detection. Moreover, the DyWT method is very efficient in terms of precision of R peaks 
location. We make this location by a threshold for the negative minimum and a threshold for 
the positive maximum. Thus we detect only the real R peaks and not the other waves. 
 Finally, the overall performance of proposed method is compared with five R peak 
detectors reported in the literature [2, 5, 7]. 
 

Table 3. R peak detection performance comparison with other methods. 

Ref. Method the number of 
present R peaks FD ND % Detection 

rate 

[2] Second discrete 
derivative stage 109456 884 2112 97.26% 

[5] 

Neural Network 
based Adaptive 

Matched 
Filtering 

4335 35 20 98.73% 

[7] Cubic 
Spline DWT 22273 14 6 99.57% 

[7] Haar DWT 22273 205 44 99.02% 
[7] Db4 DWT 22273 46 24 99.54% 
Our 

algorithm Db4 DyWT 6105 5 37 99.32% 
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B.3 Analysis of RR Intervals 
Statistical analysis 
 In our study, we have L (total length of the recording) = 153600, ssampT

256
1=   

So the beat frequency is equal to: 

 QRS
samp

QRS N
TL
N

mnbeatsF .1,0
.
.60

)/( ==                                                                                (15) 

 From the proposed R peaks detection algorithm, we calculate the standard deviation which 
is an indicator of the overall variability in the heart rate. The automatic extraction result of this 
parameter is given in Table 4. 
 

Table 4.  Frequency recordings deduced by proposed algorithm application. 
Record Frequency (rpm) Standard 

Deviation 
1 56.7 9.21 
2 55.5 4.9 
3 64.6 6.3 
4 64.5 5.56 
5 55.3 2.89 
6 57.3 4.27 
7 50.5 3.79 
8 34.4 12.33 
9 54.9 3.993 
10 123.6 13.21 

 
Fourier analysis 
 We study the Power Spectral Density (PSD) of 10 minutes RR intervals of three subjects: 
the first is healthy (record 1), the second suffers from tachycardia (record 10) and the third 
suffers from Bradycardia (record 8). We calculate frequency indices of HRV which are 
presented in Table 5. 
 The results depicted in Table 5 demonstrate that the PSD obtained in all frequency bands 
(VLF, LF and HF) decreases with the increase in heart rate. These results indicate that HRV 
measurement is affected by the slowness or the acceleration of the heartbeat. 
Moreover, the evolution of the LF/ HF, LF/LF+HF and HF/LF+HF reports is different at the 
three subjects. At a tachycardia subject, the LF percentage is greater than the HF percentage 
which indicates that the sympathetic nerves are more active and this situation causes the heart 
 

Table 5. Indices of HRV Fourier analysis. 
Indices Healthy 

subject 
Tachycardia 

subject 
Bradycardia 

subject 
VLF (ms2) 353.840 82.848 3315.3 
LF (ms2) 445.3 392.776 460 
HF (ms2) 434.4 208.201 553.776 

Ratio (LF/HF) 1.025 1.886 0.83 
Total power (ms2) 1233.54 683.825 4329.076 

LFnu 50.619 65.356 45.374 
HFnu 49.380 34.643 54.625 

 
rate of the subject to be quicker than the ordinary situation. However, at a bradycardia subject, 
we notice that the ANS behavior is characterized by an increase of the concentrated power at 
the HF band level with regard to the LF band. The pursuit of these changes is clear in the LF 
and HF powers of Fourier analysis in each subband measured in normalized units. These 
changes generate the parasympathetic stimulation and consequently slowing the heart rate. At 
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the healthy subject, the LF/HF ratio is approximately equal to 1 which reflects autonomic 
nervous system equilibrium.  
 
Wavelet  analysis 
 We are also interested in studying the temporal evolution of the frequency organization. It 
is the field of wavelet method application. We are interested in the HRV study of 10 minutes 
RR intervals of the same three subjects used in the Fourier analysis. Also, we calculate the 
time-frequency indices of HRV which are presented in Table 6. The results depicted in this 
Table confirm the results obtained in the HRV Fourier analysis.  
 

Table 6. Indices of HRV wavelet analysis. 

Indices Healthy 
subject 

tachycardia 
subject 

bradycardia 
subject 

VLF (s2) 4.7138 1.995 38.6 
LF (s2) 4.8725 3.2142 4.8944 
HF (s2) 4.8588 2.2112 6.6039 

Ratio (LF/HF) 1.002 1.453 0.741 
Total power (s2) 14.4451 7.4204 50.0983 

LFnu 50.07 59.243 42.566 
HFnu 49.93 40.756 57.433 

 
5. Conclusion 
 The spectral analysis is currently highly demanded by clinicians in order to obtain clinical 
markers for certain diseases. The study of the Heart Rate Variability appears to be a useful 
indicator for the diagnosis, prognosis and treatment of certain diseases. In this context, the 
objective of this work is to study the HRV in healthy and sick persons, using the FFT in the 
frequency domain and the wavelet transform in the time-frequency domain. 
 Starting with the filtering algorithms of the ECG, we performed a low frequency filter to 
eliminate deviations from the baseline by a filter based on the coefficients of the DWT and 
zeroing of the approximation coefficients which are responsible for the movements of the 
baseline. Then we propose filtering the noise of rapid changes in the ECG signal by 
thresholding the coefficients of the detail. To continue this work, we develop an algorithm for 
the localization of the R peak of the QRS complex by applying in ECG signal a method that is 
based on DyWT. In the case of QRS complex, this method gives a defining couple negative 
minimum-positive maximum, and an interval in which we have investigated the R peaks. The 
main advantages of this method are its robust noise performance, its flexibility in analyzing 
non-stationary ECG data and less time consuming for long time ECG signal. 
 The obtained results show that the R peaks can be estimated with a good accuracy. From 
the R peaks detection algorithm, we deduce the heartbeat frequencies and the standard 
deviation of recordings. Finally, we study the HRV in healthy and diseased subjects in the 
frequency and time-frequency domains.  
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