A Vectorial modeling for the Permanent Magnet Synchronous Machine (polyphase) based on multimachine approach

Abdelkrim Sellam¹, Boubakeur Dehiba¹, Mohamed Badreddine Benabdallah³, Mohamed Abid¹, Nacéra Bachir Bouiadjra³, Boubakeur Bensaid¹, and Mustapha Djouhri⁴

¹Laboratoire ERICOM, Université UDL de Sidi Bel Abbes, ALGERIA
²Université des sciences et technologie d’Oran, ALGERIA
³Applied Micro Electronic Laboratory, Université UDL de Sidi Bel Abbes, ALGERIA
⁴Laboratoire ICEPS, Université UDL de Sidi Bel Abbes, ALGERIA
bbnas63@yahoo.fr

Abstract: Our goal in this article is to present a model based on the Vectorial modelling associated with the multimachine concept. And we finish this work by a simulation to understand the behavior of the machine pentaphase (polyphase) in normal mode. The polyphase machines are developed mainly in the field of variable speed drives of high power because increasing the number of phases on the one hand allows to reduce the dimensions of the components in power modulators energy and secondly to improve the operating safety. By a vector approach (vector space), it is possible to find a set of single-phase machine and / or two-phase fictitious equivalent to polyphase synchronous machine. These fictitious machines are coupled electrically and mechanically but decoupled magnetically. This approach leads to introduce the concept of the equivalent machine (multimachine multiconverter system MMS) which aims to analyze systems composed of multiple machines (or multiple converters) in electric drives. A first classification multimachine multiconverter system follows naturally from MMS formalism. We present an example of a pentaphase synchronous machine.

Keywords: Polyphase machines, multimachine concept, vector space, eigenvectors, eigenvalues, pentaphase machine.

1. Introduction:

Through the many advances in technology, the power applications high and average at speed variable are increasingly made on the based on the whole electrical machinery-static converters. For applications of high power density, low rotor losses and reduced inertia, the permanent magnet synchronous machines [1] are best suited. However with the traditional structures of static converters and high power machines, the power transmitted between the power source and the mechanically receiver cannot be treated appropriately. The use of current switches associated with machine double-star [2] on the one hand allows to reduce the power transmitted by each converter and, secondly, to reduce the torque ripple of the machine. Despite this improvement, the torque ripples are important, especially for low speeds. The polyphase machines are an interesting alternative to reducing constraints applied to the switches and coils. Indeed, the increase in the number of phases allows a fractionated of power, and therefore a reduction in switched voltages at a given current. In addition, these machines can reduce the amplitude and increasing the frequency of the torque ripple, which allows at the mechanical loading of filter them more easily. Finally, increasing the number of phases provides increased reliability by allowing run, one or more faulted phases [7]. The polyphase machines are found in areas such as marine, railway, petrochemical industry, avionics, automotive, etc.

In our research we try to give a simple mathematical model based on the multimachine concept that will allow us to study the behavior of the polyphase machine (pentaphase) by simulation in Matlab Simulink.

Received: January 18th, 2013. Accepted: March 29th, 2013
2. Principle of modeling Vector

A. Assumptions and presentation of the machine

- The effects of skin, shock absorbers, saturation, and variation of reluctance of the magnetic circuit are neglected.
- The emf induced in the stator windings are solely due to the rotor magnets which have a shape that is due only to the magnets and the structure of the windings. Armature reaction magnetic (due to stator currents) does not change the form of the emf.
- The phases are the same and offset by an \(\alpha = \frac{2\pi}{n} \), \(n \) is the number of phase of the machine.

The emf induced in-phase depends only on the speed of the rotor and structural parameters such as: \(e_k = f_k(\theta) \cdot \Omega, f_k(\theta) \) is a function of the form dependent of the rotor position \(\theta \) and rotational speed \(\Omega \).

Figure 1 shows a bipolar machine where the magnitude \(g \) is a voltage, current or flux on the phase \(k \) is denoted \(g_k \).

![Figure 1. Representation of the polyphase synchronous machine](image)

B. Definition of a natural basis:

If we associate the n-phase machines \([3]\) Euclidean vector space \(E^n \) of dimension \(n \), an orthonormal basis of the space \(B^n: B^n = \left\{ x^n_1, x^n_2, \ldots, x^n_n \right\} \)

It is called natural when the vector \(g \) can be written as:

\[
g = g_1 \cdot x^n_1 + g_2 \cdot x^n_2 + \ldots + g_n \cdot x^n_n \quad (1)
\]

\(g_1, g_2, \ldots, g_n \) : Measurable magnitudes of the stator phases. Consequently in this space can therefore be defined vectors:

- Voltage: \(v = v_1 \cdot x^n_1 + v_2 \cdot x^n_2 + \ldots + v_n \cdot x^n_n \)
- Current: \(i = i_1 \cdot x^n_1 + i_2 \cdot x^n_2 + \ldots + i_n \cdot x^n_n \)
The voltage vector of the machine is:

$$\vec{v} = R_s \dot{\vec{i}} + \left[\frac{d\vec{\Phi}_s}{dt} \right] / B^n + \vec{e}$$ \hspace{1cm} (2)

The projection of the machine voltage \vec{v} to a vector \vec{k} of the voltage of a phase stator gives:

$$v_k = \vec{v} \cdot \vec{x}_k = R_s \cdot i_k + \left[\frac{d\vec{\Phi}_{sk}}{dt} \right] / B^n + e_k$$ \hspace{1cm} (3)

This is the equation of the stator voltage with a phase:

- Φ_{sk}: the flux in the phase k created by the stator currents.
- e_k: is the emf induced in the phase k created by rotor magnets. Assumptions of unsaturation and non reluctance variation can define a linear relationship $\vec{\Phi} = \lambda \vec{i}$ between the current vector and the stator flux more usually written in the form of a matrix with constant coefficients:

$$\Phi_s = \begin{bmatrix} I_S \end{bmatrix} (4)

$$

L_{sk} is the inductance of a stator phase

L_{jk} Mutual inductance between stator phases.

The instantaneous power is transiting in the machine:

$$p = \sum_{k=1}^{n} v_k \cdot i_k = \vec{v} \cdot \vec{i}$$ \hspace{1cm} (5)

By replacing the expression vector voltage (2), we obtain the following equation:

$$p = R_s \vec{i}^2 + \left[\frac{d\vec{\Phi}_s}{dt} \right] / B^n \cdot \vec{i} + \vec{e} \cdot \vec{i}$$ \hspace{1cm} (6)

- Electrical power lost by Joule effect are: $p_j = R_s \vec{i}^2$
- The magnetic power is: $p_w = \left[\frac{d\vec{\Phi}_s}{dt} \right] / B^n \cdot \vec{i}$
- Electromagnetic power is: $p_{em} = \vec{e} \cdot \vec{i}$
- The electromagnetic torque is: $C_{em} = \frac{\vec{e} \cdot \vec{i}}{\Omega}$

Ω is the instantaneous speed of the rotor.
C. Modelling of the machine with n phases in a base ensuring decoupling magnetic

The relation $\Phi_s = \lambda I_s$, which is one of the morphism, between the current vector and stator flux remains true whatever the base of the space E^n chosen [4].

The base where exist the magnetic decoupling is that in which one coordinated stator flux vector can be expressed as a function of a single coordinate of the current vector (matrix diagonal inductance).

Diagonalization of an inductance matrix requires research of the eigenvalues and eigenvectors associated with them. We define the eigenvalues Λ_k the morphism λ as being solutions of the characteristic equation: $\det[\Lambda[I_n] - [I_n^L]] = 0$

I_n is the identity matrix of dimension n.

The eigenvalues are real because the inductance matrix is symmetric. The hypothesis of regularity spatial of phases construction, allows us to affirm that inductance matrix is circulant. Circularity property allows us to calculate analytically the eigenvalues by using the formula for circulant determinant. These two conditions are respected; the complex eigenvalues are given by the solutions of the equation:

$$\prod_{l=1}^{n} \left(\Lambda - \sum_{k=1}^{n} \left(L_{s_1 s_2 k} \cdot \frac{2 j \pi [l-1][k-1]}{n} \right) \right) = 0 \tag{7}$$

j is the complex operator.

Equation (7) is divided into n equations each having a specific value as a solution of the morphism λ. These n eigenvalues are given in complex forms which are associated eigenvectors.

These complex coordinate vectors form an orthonormal basis of the Hermitian space associated to machine. We want, as with the transform Concordia, work with real coordinates eigenvectors associated with real eigenvalues. The inductance matrix is symmetrical, therefore the values Λ_k are real. We notice that: $\Lambda_k = \Lambda_{n-k+2}$ then there exists an eigenvector associated with the eigenvalue Λ_k.

It is therefore in the plane spanned by the vectors of an infinite orthonormal bases generated by the eigenvectors.

The property $e^{j(n-k)2\pi/n} = e^{-j2k\pi/n}$ allows determining an orthonormal basis composed of eigenvectors with real coefficients such that:

The new matrix inductance $[L_s^d]$, characteristic morphism in the new basis $B^d = \{x_1^d, x_2^d, ..., x_n^d\}$ becomes:

$$[L_s^d] = \begin{bmatrix} \Lambda_1 & 0 & \cdots & 0 \\ 0 & \Lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Lambda_n \end{bmatrix} \tag{8}$$

This matrix is diagonal and we recall that the inductances of the matrix are at least equal in pairs (eigenvalue of multiplicity of order 2).

This research eigenvalues associated to the inductance matrix can formulate a generalized Concordia transformation with transition matrix as the natural base to base decoupling [5].

Bases of departure and arrival are orthonormal,
This transformation has the property to preserve the instantaneous power regardless of the base in which it is expressed.

D. The equations of the machine in a base decoupling

A vector \vec{g} the initial space decomposes into:

$$\vec{g} = \sum_{g=1}^{N} g \vec{g}$$ \hspace{1cm} (9)

Let N be subspaces each associated to an eigenvalues Λ_g. $g \vec{g}$ is the projection of the vector \vec{g} on the subspace E^g.

The new equation of the flux vector and current:

$$\Phi_s = \sum_{g=1}^{N} \Phi_{sg} = \sum_{g=1}^{N} \Lambda_g \vec{g}$$ \hspace{1cm} (10)

Allows writing in each sub-space, a new voltage equation:

$$\vec{v}_g = R_s i_g + \left[\frac{d\Phi_{sg}}{dt} \right]_{/E^g} + e_g$$ \hspace{1cm} (11)

Using the property (10) into (11):

$$\vec{v}_g = R_s i_g + \Lambda_g \left[\frac{d\vec{g}_i}{dt} \right]_{/E^g} + e_g$$ \hspace{1cm} (12)

The electrical power which transits into the real machine is expressed by [6]:

$$p = \sum_{g=1}^{N} v_g \cdot i_g$$ \hspace{1cm} (13)

By replacing the expression of voltage (12) in the power equation (13) we obtain:

$$p = \sum_{g=1}^{N} \left(R_s \left(\vec{g}_i \right)^2 + \Lambda_g \left[\frac{d\vec{g}_i}{dt} \right]_{/E^g} \cdot \vec{g}_i + e_g \cdot i_g \right)$$ \hspace{1cm} (14)

The previous equation shows that the energy transits through N fictitious machines, independent magnetically associated with N eigenspaces. Consequently, the actual torque is written:
\[C = \sum_{g=1}^{N} C_g \quad (15) \]

With:
\[C_g \cdot \Omega = e_g \cdot i_g. \]

Remark:
Equation (14) shows that each fictive machine produces a torque participant in the creation of a total torque. These \(N \) fictitious machines are mechanically coupled: they rotate at the same speed and are rigidly coupled to the same mechanical shaft.

3. Pentaphase machine application

A. Presentation of the machine

We model [8], for the application, a synchronous machine with permanent magnets pentaphase. This machine is represented symbolically in Figure 2.

![Figure 2. Representation of the pentaphase machine](image)

B. Modelling of the machine in the natural basis

We associate the five phases a Euclidean vector space \(E^5 \) of dimension 5. We write in an orthonormal base \(B^n \) the voltage equation of the machine:

\[\ddot{v} = R_s \cdot \dot{i} + \left[\frac{d\Phi_s}{dt} \right]_{B^n} + \ddot{\epsilon} \quad (16) \]

\[B^n = \{ x_1, x_2, x_3, x_4, x_5 \} \quad \text{Orthonormal basis} \]

In linear mode, there exists morphism between vectors stator flux and current, such as:

\[\Phi_s = \lambda \dot{i} \quad (17) \]
With:

- \(L \) the inductance of a phase \(L = L_p + l_f \);
- \(M_1 \) The mutual inductance between two phases shifted from \(\pm \frac{2\pi}{5} \);
- \(M_2 \) The mutual inductance between two phases shifted from \(\pm \frac{4\pi}{5} \).

emf vector:
\[
\vec{e} = e_1 \cdot \vec{x}_1 + e_2 \cdot \vec{x}_2 + e_3 \cdot \vec{x}_3 + e_4 \cdot \vec{x}_4 + e_5 \cdot \vec{x}_5
\]

With:
\[
e_k = e_k = E_{\text{max}} \sin(\omega t - \frac{2(k-1)\pi}{5}), k = 1, \ldots, 5
\]

\(E_{\text{max}} \) is the maximum value of the emf with \(k \) emf coefficient and \(\Omega \) the rotational speed of the rotor.

C. Modelling in a base decoupling

There exists an orthonormal basis \(B^d = \{\vec{x}_z, \vec{x}_p \alpha, \vec{x}_p \beta, \vec{x}_s \alpha, \vec{x}_s \beta\} \) in which the inductance matrix is diagonal:

\[
[p^d] = \begin{pmatrix}
\Lambda_1 & 0 & 0 & 0 & 0 \\
0 & \Lambda_2 & 0 & 0 & 0 \\
0 & 0 & \Lambda_5 & 0 & 0 \\
0 & 0 & 0 & \Lambda_3 & 0 \\
0 & 0 & 0 & 0 & \Lambda_4
\end{pmatrix}
\]

(19)

It appears then double values:

\[
\begin{align*}
\Lambda_1 &= L + 2(M_1 + M_2) \\
\Lambda_2 &= \Lambda_5 = L - 2 \left(M_1 \cdot \cos \left(\frac{3\pi}{5} \right) + M_2 \cdot \cos \left(\frac{\pi}{5} \right) \right) \\
\Lambda_3 &= \Lambda_4 = L - 2 \left(M_1 \cdot \cos \left(\frac{\pi}{5} \right) + M_2 \cdot \cos \left(\frac{3\pi}{5} \right) \right)
\end{align*}
\]

Inductors are associated with eigenvectors.

There is a single eigenvalue and two double eigenvalues. This property allows us to decompose the vector space \(E^5 \) at three orthogonal subspaces, namely:

- A subspace \(E^z \) generated by the eigenvector \(\vec{x}_z \) associated with the eigenvalue \(\Lambda_2 = \Lambda_1 \).

This subspace is a straight line called homopolar.
- A subspace E^p generated by the eigenvectors $(x_p\alpha, x_p\beta)$ associated to the eigenvalue:
\[\Lambda_p = \Lambda_2 = \Lambda_5. \]

This subspace is called the primary plan.

- A subspace E^s generated by the eigenvectors $(x_s\alpha, x_s\beta)$ associated with the eigenvalue
\[\Lambda_s = \Lambda_3 = \Lambda_4. \]

This subspace is called the secondary plan.

The vector $\vec{g} = \vec{g}_h + \vec{g}_p + \vec{g}_s$

D. Equivalence between real and fictitious machine

\[\vec{V} = R\vec{I} + \frac{d\vec{\phi}}{dt} + \vec{\varepsilon} = \vec{V}_h + \vec{V}_p + \vec{V}_s \]

1: Equation electrical of a real machine.
2: Equation electrical of the fictitious machines \{ Real machine ↔ fictitious machines \}

A fictive machine may be associated with each subspace, respectively

- A machine associated with the two-phase principal plan possessing the time constant and
 emf induced the most important.

\[\vec{V}_p = R\vec{I}_p + \Lambda_p \frac{d\vec{I}_p}{dt} + \vec{\varepsilon}_p \]

The fictitious principal machine is magnetically decoupled and depend of his own current principal.

- A machine associated with the plan secondary at two-phase possessing the electrical constant
 time lowest and emf induced the less important.

\[\vec{V}_s = R\vec{I}_s + \Lambda_s \frac{d\vec{I}_s}{dt} + \vec{\varepsilon}_s \]

The fictitious secondary machine is magnetically decoupled and depends of his own current secondary.

- A machine phase associated with the straight line with the homopolar electric time constant
 and emf induced weaker.

\[\vec{V}_h = R\vec{I}_h + \Lambda_h \frac{d\vec{I}_h}{dt} + \vec{\varepsilon}_h \]

The fictitious homopolar machine is magnetically decoupled and depend of his own current homopolar.

4. Simulation of the pentaphase machine

We implement the model of the machine on the software numerical simulation Matlab Simulink. Us apply a load at startup resistant $C_r = 1 N.m$ we take the speed loop fixed to the rated speed 157 rad / s.

emf :

\[e_k = E_{\text{max}} \sin(\omega_t - \frac{2(k-1)\pi}{5}), k = 1, ..., 5 \]

The currents are sinusoidal and in phase with the emf

\[i_k = I_{\text{max}} \sin(\omega_t - \frac{2(k-1)\pi}{5}), k = 1, ..., 5 \]

k means the number of the phase. For our machine there are 5 phases (k phases).
A. *emf in the basis of Concordia for fictitious machines*: Figure 3

![Figure 3](image)

Figure 3. emf in fictitious machines (The basis of Concordia).

emf in the principal machine:
\[e_{\alpha p} = \sqrt{5/2} E_{\text{max}} \sin(\omega t) \]
\[e_{\beta p} = -\sqrt{5/2} E_{\text{max}} \cos(\omega t) \]

emf in the secondary machine:
\[e_{\alpha s} = 0 \]
\[e_{\beta s} = 0 \]

emf in homopolar machine:
\[e_h = 0 \]

Interpretation (figure 3):
We note that the emf in the basis of Concordia for fictitious machines that only that emf of the fictitious principal machine is different from zero.

B. *Currents in the basis of Concordia for fictitious machines*: Figure 4

![Figure 4](image)

Figure 4. Current in fictitious machines (The basis of Concordia).

Current in the principal machine:
\[i_{\alpha p} = \sqrt{5/2} I_{\text{max}} \sin(\omega t) \]
\[i_{\beta p} = -\sqrt{5/2} I_{\text{max}} \cos(\omega t) \]
Current in the secondary machine:
\[i_{cs} = 0, \quad i_{\beta s} = 0 \]

Current in the homopolar machine:
\[i_h = 0 \]

Interpretation (figure 4):
We note that the current in the basis of Concordia for fictitious machines that only that current of the fictitious principal machine is different from zero.

C. The emf in the fictitious machine (the base of Park): Figure 5
\[e_h = 0, \quad e_{pd} = 0, \quad e_{sd} = 0 \quad e_{sq} = 0 \]

![Figure 5. emf in the fictitious machine (Base of Park)](image)

Interpretation (figure 5):
We notice (Figure 5) in the basis of Park, that the components of the emf are zero except the principal emf quadratic component which is a constant (≠ 0).

D. Current in the fictitious machine (the base of Park): Figure 6
\[i_{sd} = 0, \quad i_{sq} = 0 \]

![Figure 6. Current in the fictitious machines (Basis of Park).](image)
Interpretation (figure 6): We notice (Figure 6) in the basis of Park, the currents electrical of the homopolar and secondary machine are zero but the currents of the principal machine are constants nonzero.

E. The electromagnetic torque: Figure 7

\[C_n = \frac{1}{\Omega} (e_{z^2} + e_{\alpha\beta} p_{\alpha\beta} + e_{\alpha\beta} q_{\alpha\beta} p_{\alpha\beta}) \]

\[C_n = \frac{1}{\Omega} (e_{pq} p_{pq}) = \frac{5}{2} \frac{E_{\max}}{\Omega} \frac{I_{\max}}{\Omega} = \frac{5}{2} k_I \max \]

\[k_I = \frac{E_{\max}}{\Omega} \]

![Figure 7. electromagnetic torque](image)

Interpretation (figure 7):
We remark (Figure 7) that the torque is constant is equal to the load torque after a transitional regime.

F. The speed of the pentaphase machine: Figure 8

![Figure 8 The speed of the pentaphase machine](image)

Interpretation (figure 8):
We find after a short transitional regime, the curve becomes a constant of 157rd/s which is the rated speed of the machine.
General interpretation of the simulation:

The simulations allow us to observe the emf in fictitious machines and currents in the basis of Park. The transformation of Park applied to these magnitudes indicates that only the component (q) of the emf of the principal machine is a nonzero constant (Figure 5). One can observe that the homopolar emf is zero, which is coherent for a machine sinusoidal, balanced and non-electrically coupled. Accordingly, the homopolar machine produces no torque ($C_h = 0$) as well as for the secondary machine ($C_s=0$). So the principal machine (two-phase) alone produces torque. We find that the torque is constant $C = C_h + C_p + C_s = C_p$ (Figure 7).

With: $C_h = 0$ and $C_s = 0$

Conclusion

A polyphase machine is composed of n windings spatially $2\pi/n$ and powered by the voltage phase-shifted temporally $2\pi/n$. These machines are characterized by a magnetic coupling between phases.

The generalization of the method of space vector allows defining a base change of dimension n, implying a simplification of the study of the machine by diagonalization of the matrix inductance. This change leads to subspaces orthogonal base of dimension 2 and 1, each subspace can be independent.

Association the vector space modelling and concept multimachine allows us to consider a polyphase machine as equivalent to a set of fictitious machines mechanically coupled. The study of a complex machine turns into several studies of simple machines.

References

Abdelkrim Sellam, born November 5th, 1963 in Sidi Bel Abbes (Algeria), he took his degree of engineering status at University of Science and Technology of Oran (Algeria). He then had his magister degree at the University of Sidi Bel Abbes (Algeria). He works in the area of electrical machines in particular polyphase synchronous machines dedicated to renewable energies (bbnas63@yahoo.fr).

Boubakeur Dehiba received the B.S., M.S., and Ph.D degrees in electrical engineering from University of Sidi Bel Abbes, Algeria, in 1990, 1997, and 2005, respectively. He is currently professor of electrical engineering at University of Sidi Bel Abbes, Algeria. His mains areas of research interests are modelling and simulation of electric machines, control of electric drives, polyphase system.

Mohamed Badreddine Benabdallah was born in Morocco in 1956. He studied at the University of Sciences and Technology in Oran (Algeria) and holds both an Engineer and Masters Degree in the Electrical Machines Field. For several years, he was part of the Technical Staff of many Algerian Enterprises and was involved in many National Projects. In 1984, he started his teaching experience as a Lecturer in the Electrical Engineering Department at the Djilali Liabes Sidi Bel Abbes University in Algeria. He is a Founding Member of the IRECOM laboratory (Interaction Network Converter Machines Lab.). Processes using design optimization based on experiments and data mining is his special fields of interest.

Mohamed ABID graduated from the Faculty of Electrical Engineering, Djillali Liabes University of Sidi Bel-Abbes (UDL-SBA), Algeria in 1990. He received the M.Sc. and Ph.D. degrees from UDL-SBA in 1997 and 2005, respectively. He is currently a professor at UDL-SBA and researcher at the IRECOM Laboratory, Algeria. His research interests include intelligent control, robust and adaptive control and applications on the electric power systems and electrical drives, modeling and simulation, stability and robustness. E-mail: irecom_abid@yahoo.fr

Nacéra Bachir Bouiadja was born April 23, 1968 in Sidi Bel Abbes (Algeria). She graduated state of engineering at the University of Sidi Bel Abbes in 1993 and his magister degree in microelectronics at the same university in 1996. Currently, she is preparing her doctoral degree in microelectronics status on work done between the University Blaise Pascal in Clermont-Ferrand (France) and the applied Microelectronic Laboratory to the University of Sidi Bel Abbes. She has also taught in the Department of Electronics at the University of Sidi Bel Abbes since 1996 where she supervised students graduated in the fields of microelectronics, telecommunications, renewable energy, medical electronics and general electronics.
Bouhaveur Bensaid, born October 15th, 1966 in Oran (Algeria), he took his degree of engineering status at University of Science and Technology of Oran (Algeria). He then had his magister degree at the University of Sidi Bel Abbes (Algeria). He works in the area of electrical machines.

Mustapha Djouhri, born November 29th, 1981 in Sidi Bel Abbes (Algeria), he took his degree of engineering status at University of Science and Technology of S.B.A. (Algeria). He then had his magister degree at the University of Sidi Bel Abbes (Algeria). He works in the area of electrical machines.