

A New Approach for Optimal Power Flow Solution Based on Two Step Initialization with Multi-Line FACTS Device

A. V. Naresh Babu¹ and S. Sivanagaraju²

¹Dept. of EEE, DVR & Dr. HS MIC College of Technology, Kanchikacherla, Andhra Pradesh, India ²Dept. of EEE, University College of Engineering, JNTUK, Kakinada, Andhra Pradesh, India

Abstract: In this article, a new intelligent search evolution algorithm (ISEA) is proposed to minimize the generator fuel cost in optimal power flow (OPF) control with multi-line flexible alternating current transmission systems (FACTS) device which is interline power flow controller (IPFC). Unlike the OPF solution methods existing in the literature, in the proposed algorithm, a two step initialization process have been adopted which eliminates the mutation operation and also it gives optimal solution with less number of generations. The proposed algorithm has been examined and tested on a standard IEEE-30 bus system without and with IPFC. The test results indicate that the proposed algorithm with IPFC can obtain better solution than without IPFC.

Keywords: Optimal power flow, optimization techniques, flexible alternating current transmission systems (FACTS) device, fuel cost minimization.

1. Introduction

In recent years, with ever-increasing demand for electricity, the power transfer grows, the power system becomes increasingly more complex to operate and the system can become less secure for riding through the major outages. The electric companies are looking for ways to maximize the utilization of their existing transmission systems, therefore controlling the power flow in the transmission lines. There are emerging technologies available, which can help electric companies to deal with above problems. One of such technologies is FACTS device which is a recent development in high power electronics technology [1-3].

The interline power flow controller (IPFC) is a new member of FACTS controllers. Like the static synchronous compensator (STATCOM), static synchronous series compensator (SSSC) and unified power flow controller (UPFC), the IPFC also employs the voltage sourced converter as a basic building block. The UPFC and IPFC consists at least two converters. It is found that, in the past, much effort has been made in the modeling of the UPFC for power flow analysis [4-7]. However, UPFC aims to compensate a single transmission line, whereas the IPFC is conceived for the compensation and power flow management of multi-line transmission system. Further, it has been shown that the power injection model (PIM) of FACTS devices is a powerful model than other models [8, 9].

Ref. [10] presents a hybrid tabu search and simulated annealing approach to minimize the generator fuel cost in optimal power flow control with two types of FACTS devices namely, thyristor controlled series capacitor (TCSC) and thyristor controlled phase shifter (TCPS). A new optimal reactive power flow method is proposed to minimize the losses and to obtain best voltage profiles with unified power flow controller and also the fuzzy formulation of the problem is solved using an EP algorithm [11]. The optimal power flow controller (UPFC) is presented for longitudinal systems [12]. Ref. [13] proposes a thyristor controlled series capacitor (TCSC) firing angle model for optimal power flow solution using Newton's method. [14] Illustrates the use of evolutionary strategies to obtain the optimal values of control variables for the FACTS located power system.

A differential evolution algorithm to minimize the generator fuel cost in optimal power

Received: September 2nd, 2011. Accepted: April 9th, 2012

A. V. Naresh Babu and S. Sivanagaraju

flow control with thyristor controlled series capacitor (TCSC) and thyristor controlled phase shifter (TCPS) has been presented [15]. A study of the implementation of the new load flow equations format in an optimal power flow program with UPFC based on extended conic quadratic (ECQ) format has been reported [16]. A multi objective non-linear optimization problem for secure bilateral transaction determination using AC distribution factors with UPFC in hybrid electricity markets have been discussed [17]. An efficient parallel GA for the solution of large-scale OPF problem with shunt FACTS devices has been presented [18]. Careful study of the former literature reveals that there is a single step initialization process along with mutation operation and single line FACTS device. But, in the proposed algorithm the initialization is done in two steps so that the mutation operation is not required and also it gives better solution with less number of generations. Further, a multi-line FACTS device which is IPFC has been used in this paper. The feasibility of the proposed algorithm is demonstrated for a standard IEEE-30 bus system without and with IPFC. The obtained OPF results are compared without and with IPFC. The results reveal that best solution obtained by the proposed algorithm with IPFC is quite encouraging and useful in optimal power flow environment. The rest of the paper is organized as follows: Section 2 explains the operating principle and

power injection model of IPFC. Section 3 illustrates optimal power flow problem formulation with IPFC. Section 4 describes the proposed algorithm. Section 5 gives overall solution procedure. The effectiveness of proposed algorithm for optimal power flow solution through numerical example is presented in section 6 and finally, conclusions are given in section 7.

2. Multi-Line FACTS Device: Interline Power Flow Controller (IPFC)

A. Operating Principle of IPFC

In its general form the interline power flow controller employs a number of dc-to-ac converters each providing series compensation for a different line. In other words, the IPFC comprises a number of Static Synchronous Series Compensators (SSSC). The simplest IPFC consists of two back-to-back dc-to-ac converters, which are connected in series with two transmission lines through series coupling transformers and the dc terminals of the converters are connected together via a common dc link as shown in Figure1 [19, 20]. With this IPFC, in addition to providing series reactive compensation, any converter can be controlled to supply real power to the common dc link from its own transmission line

Figure 1. Schematic diagram of two converter IPFC

B. Power Injection Model of IPFC

In this section, a mathematical model for IPFC which will be referred to as power injection model is derived. This model is useful to study the impact of the IPFC on the power system network and can easily be incorporated in the power flow algorithm. Usually, in the steady state analysis of power systems, the VSC may be represented as a synchronous voltage source injecting an almost sinusoidal voltage with controllable magnitude and angle. Based on this, the equivalent circuit of IPFC is shown in Figure 2.

In Figure 2, V_i , V_j and V_k are the complex bus voltages at the buses *i*, *j* and *k* respectively, defined as $V_m = V_m \angle \theta_m$ (m=i, *j* and *k*). Vse_{in} is the complex controllable series injected voltage source, defined as $Vse_{in} = Vse_{in} \angle \theta se_{in}$ (n=j,k) and Zse_{in} (n=j,k) is the series coupling transformer impedance. The injection model is obtained by replacing the voltage

source (Vse_{in}) as current source (Ise_{in}) in parallel with the transmission line. For the sake of simplicity, the resistance of the transmission lines and the series coupling transformers are neglected. Therefore, the current source can be expressed as

$$Ise_{in} = -jbse_{in}Vse_{in}$$

$$V_{i} \xrightarrow{I_{ji}} + \underbrace{Vse_{ji}}_{Ke} \underbrace{Zse_{ji}}_{V_{j}} V_{j} \\ Re\left(Vse_{ji}I_{ji}^{*} + Vse_{ik}I_{ki}^{*}\right) = 0 \\ I_{ki} + \underbrace{O}_{Vse_{jk}} \underbrace{Zse_{jk}}_{Zse_{jk}} V_{k}$$

$$(1)$$

Figure 2. Equivalent circuit of two converter IPFC

Now, the current source (Ise_{in}) can be modeled as injection powers at the buses *i*, *j* and *k*. The complex power injected at i^{ih} bus is

$$S_{inj,i} = \sum_{n=j,k} V_i \left(-Ise_{in}\right)^*$$
(2)

Substitute (1) in (2)

$$S_{inj,i} = \sum_{n=j,k} V_i (jbse_{in}Vse_{in})^*$$
(3)

After simplification, the active power and reactive power injections at i^{th} bus are

$$P_{inj,i} = \operatorname{Re}(S_{inj,i}) = \sum_{n=j,k} (V_i V s e_{in} b s e_{in} \sin(\theta_i - \theta s e_{in}))$$
(4)

$$Q_{inj,i} = \operatorname{Im}(S_{inj,i}) = -\sum_{n=j,k} \left(V_i V s e_{in} b s e_{in} \cos(\theta_i - \theta_i s e_{in}) \right)$$
(5)

The complex power injected at n^{th} bus (n=j,k) is

$$S_{inj,n} = V_n \left(Ise_{in} \right)^* \tag{6}$$

Substitute (1) in (6)

$$S_{inj,n} = V_n \left(- jbse_{in} Vse_{in}\right)^*$$
⁽⁷⁾

After simplification, the active power and reactive power injections at n^{th} bus are

$$P_{inj,n} = \operatorname{Re}(S_{inj,n}) = -V_n V s e_{in} b s e_{in} \sin(\theta_n - \theta s e_{in})$$
(8)

$$Q_{inj,n} = \operatorname{Im}(S_{inj,n}) = V_n V s e_{in} b s e_{in} \cos(\theta_n - \theta s e_{in})$$
⁽⁹⁾

A. V. Naresh Babu and S. Sivanagaraju

Based on (4), (5), (8), and (9), power injection model of IPFC can be seen as three dependent power injections at buses i, j and k as shown in Figure 3.

Figure 3. Power injection model of two converter IPFC

As IPFC neither absorbs nor injects active power with respect to the ac system, the active power exchange between the converters via the dc link is zero, i.e.

$$\operatorname{Re}\left(Vse_{ij}I_{ji}^{*}+Vse_{ik}I_{ki}^{*}\right)=0$$
(10)

Where the superscript * denotes the conjugate of a complex number. If the resistances of series transformers are neglected, (10) can be written as

$$\sum_{m=i,j,k} P_{inj,m} = 0 \tag{11}$$

3. Formulation of the OPF Problem with IPFC

`

In this article, minimization of fuel cost is considered as an objective function to examine the performance of the proposed algorithm without and with IPFC. The optimal solution must satisfy all the equality and inequality constraints. The OPF problem with IPFC is expressed as follows:

$$\operatorname{Min} \sum_{i=1}^{n_{g}} (a_{i} P_{gi}^{2} + b_{i} P_{gi} + c_{i}) \ \$/h$$
(12)

Subject to:

$$Pg_{i} - Pd_{i} - \sum_{j=1}^{nb} |V_{j}| |V_{j}| |Y_{ij}| \cos(\theta_{ij} - \delta_{i} + \delta_{j}) + P_{inj,m} = 0$$
(13)

$$Qg_{i} - Qd_{i} + \sum_{j=1}^{nb} |V_{j}| |V_{j}| |Y_{ij}| \sin(\theta_{ij} - \delta_{i} + \delta_{j}) + Q_{inj,m} = 0$$
(14)

$$Pg_i^{\min} \le Pg_i \le Pg_i^{\max} \qquad i = 1, 2, .., ng$$
(15)

$$Qg_i^{\min} \le Qg_i \le Qg_i^{\max} \qquad i = 1, 2, ..., ng$$
(16)

$$V_i^{\min} \le V_i \le V_i^{\max} \qquad i = 1, 2, \dots, nb \tag{17}$$

$$T_i^{\min} \le T_i \le T_i^{\max}$$
 $i = 1, 2, ..., nt$ (18)

A New Approach for Optimal Power Flow Solution Based on Two Step

$$Qc_i^{\min} \le Qc_i \le Qc_i^{\max} \qquad i = 1, 2, ..., nc$$
(19)

$$Vse^{\min} \le Vse \le Vse^{\max}$$
 (20)

$$\theta s e^{\min} \le \theta s e \le \theta s e^{\max} \tag{21}$$

where $a_i, b_i \& c_i$ are cost co-efficients of generator at bus *i*.

ng is the number of generator buses.

 $Pg_i \& Qg_i$ are the active and reactive power generations at i^{th} bus.

 $Pd_i \& Qd_i$ are the active and reactive power demand at i^{th} bus.

nb is the number of buses.

 $V_i \& V_i$ are the voltage magnitudes of $i^{th} \& j^{th}$ bus.

 $\delta_i \& \delta_i$ are the voltage angles of $i^{th} \& j^{th}$ bus.

 $|Y_{ii}| \& \theta_{ii}$ are the bus admittance matrix elements between $i^{th} \& j^{th}$ bus.

 $Pg_i^{\min} \& Pg_i^{\max}$ are the minimum and maximum active power generation limits at i^{th} bus. $Qg_i^{\min} \& Qg_i^{\max}$ are the minimum and maximum reactive power generation limits at i^{th} bus.

 $V_i^{\min} \& V_i^{\max}$ are the minimum and maximum voltage limits at i^{th} bus

 $T_i^{\min} \& T_i^{\max}$ are the minimum and maximum tap settings of i^{th} transformer. *nt* represents number of transformer tap settings.

 $Qc_i^{\min} \& Qc_i^{\max}$ are the minimum and maximum reactive power injection limits of i^{th} compensator and *nc* represents number of compensators.

4. Intelligent Search Evolution Algorithm (ISEA)

The intelligent search evolution algorithm tries to approach the target in an optimal manner for finding the optimal or near optimal solution to any mathematical optimization problem. The initial population is randomly generated with the control parameter limits in two steps. Then, the evolutionary operators like crossover or recombination and selection are performed to all individuals until a stopping criterion is reached. The major stages of the proposed algorithm are briefly described as follows:

A. Two Step Initialization

The population is generated by using the following equation

$$x_{i,j} = x_j^{\min} + rand(0,1) \quad (x_j^{\max} - x_j^{\min})$$
(22)

where i = 1, 2, ..., ps and j = 1, 2, ..., ncv.

ps = population size.

ncv = number of control variables.

 $x_j^{\min} \& x_j^{\max}$ are the lower and upper bounds of j^{th} control variable.

rand (0,1) is a uniformly distributed random number between 0 and 1.

In this article, a two step initialization process is adopted. The two step initialization process provides better probability of detecting an optimal solution to the power flow equations that would globally minimize a given objective function. In the first step, initial population is

178

A New Approach for Optimal Power Flow Solution Based on Two Step

generated as a multi-dimensional vector of size $(ps \times ncv)$ and it is considered as a village. All the control variables in the village must satisfy the constraints. Evaluate the value of cost function for each string in the village. Select the best string from the village corresponding to minimum cost. Repeat the procedure for number of villages (nv). In the second step, combine all the best strings from each village to form multi-dimensional vector [X] of size $(nv \times ncv)$ and this new population is used for evolutionary operations. For clear reference, the two step initialization process is shown in Figure4. The superscript in Figure4 represents village number.

B. Recombination

In this study, an efficient recombination operator has been used so that search along variables is also possible. If $x_i^{(j)}$ and $x_i^{(k)}$ are the values of variables x_i in two strings *j* and *k*. The crossover between these two values may produce the following new value

$$x_i^{new} = (1 - \lambda) x_i^{(j)} + \lambda x_i^{(k)}$$

C. Selection

For the present work, sorting and ranking selection procedure is used.

D. Stopping Criteria

In the current work, the number of generations reaches the given maximum number of generations is used as stopping criteria.

5. Intelligent Search Evolution Algorithm for OPF with IPFC

- The proposed algorithm procedure for OPF with IPFC is described as follows:
- Step 1: Read the system data and IPFC data. Choose population size, number of villages and maximum number of generations.
- Step 2: Generate a string corresponding to number of control variables using equation (22).
- Step 3: Run the Newton-Raphson load flow and check all the constraints.
- Step 4: If all the constraints are satisfied, find the cost .Then, store the cost and corresponding string. Otherwise, reject the string.
- Step 5: Repeat steps 2 to 4 for number of villages. Store the minimum cost and corresponding string from each village to form new population as shown in Figure4.
- Step 6: Perform recombination operation on new population using equation (23).
- Step 7: Run the Newton-Raphson load flow and check all the constraints.
- Step 8: If all the constraints are satisfied, find the cost .Then, store the cost and corresponding string. Otherwise, reject the string.
- Step 9: Stop the process, if the maximum number of generations is reached. Otherwise, go to step 6.

6. Results and Discussions

In this section, a standard IEEE 30-bus system [21] has been considered to demonstrate the effectiveness and robustness of ISEA (proposed algorithm) without and with IPFC. In 30-bus test system, bus 1 is considered as slack bus, while bus 2,3,5,8,11 and 13 are taken as generator buses and other buses are load buses. A MATLAB program is implemented for the test system on a personal computer with Intel Pentium dual core 1.73 GHz processor and 512 MB RAM. Five runs have been performed for the test system. The optimal solution results over these five runs have been tabulated. The input parameters of ISEA for the test system are given in Table 1.

S.No	Parameters	Quantity
1	Number of villages	5
2	Population per village	5
3	Recombination constant(λ)	0.5
4	Number of iterations	10

Table 1. Input parameters of ISEA for IEEE 30 bus system

Initially, the optimal power flow solution i.e. active power generation, transformer tap settings, injected MVAR, cost and power loss for IEEE 30-bus system are calculated using proposed method without IPFC. Next, for the same system the optimal power flow solution is obtained using proposed method with IPFC. The one converter of IPFC is embedded in a line between the buses 27-30 which is considered as 1st line and the other converter of IPFC is placed in a line between the buses 29-30 which is considered as 2nd line and bus 30 is selected as common bus for two converters. The active power generation, transformer tap settings, injected MVAR, cost and power loss for test system without and with IPFC is shown in Table 2. The bus voltages for test system without and with IPFC are shown in Table 3. IPFC parameters obtained for test system are given in Table 4.

Figure 5. Convergence characteristics of IEEE 30 bus system using ISEA without IPFC.

From Table 2, it can be seen that total active power generation required and power loss has been reduced because of IPFC. Further, it is observed that there is a significant reduction in the cost because of IPFC. From Table 3, it is clear that the voltage profiles has been improved for most of buses because of IPFC and also the voltage at bus 30 is increased which is a common bus for two converters of IPFC.

Figure 6. Convergence characteristics of IEEE 30 bus system using ISEA with IPFC.

Figure 7. Convergence characteristics of IEEE 30 bus system using ISEA without & with IPFC

S.No	Parameter		ISEA without IPFC	ISEA with IPFC
1	wer generation (MW)	PG1	156.868	164.678
		PG2	48.260	48.372
		PG5	24.676	23.795
		PG8	24.232	22.431
	al pc	PG11	20.654	15.735
	Re	PG13	17.134	16.569
	(n.q	VG1	1.024	1.043
	ges (VG2	1.006	1.032
2	volta	VG5	0.968	1.012
2	or v	VG8	0.980	0.987
	erat	VG11	1.064	1.019
	Gene	VG13	1.023	1.070
	Transformer tap setting(p.u)	Т 6-9	0.978	1.009
3		T 6-10	0.959	1.028
5		T 4-12	0.980	1.008
		Т 28-27	0.936	0.959
	Shunt compensators (MVAR)	QC10	1.725	1.453
		QC12	3.429	3.769
		QC15	2.980	1.027
		QC17	2.855	2.060
4		QC20	2.038	2.756
		QC21	2.366	2.332
		QC23	3.435	1.089
		QC24	3.057	0.355
		QC29	2.484	4.028
5	Total real power generation (MW)		291.824	291.678
6	Total real power loss (MW)		8.424	8.278
7	Total cost (\$/h)		808.979	806.130

Table 2. Comparison of OPF solution for IEEE 30 bus system using ISEA without and with IPFC

In addition, the cost as a function of iterations for test system using proposed algorithm without and with IPFC is shown in Figure5 and Figure6 respectively. Further, the comparison of convergence characteristics without and with IPFC is shown in Figure7. From these, it can be seen that, as the number of iterations increase, the cost decreases and it is nearly constant above 6 iterations with out and with IPFC, which indicates that the number of iterations required for the proposed method is less.

Bus No.	ISEA without IPFC		ISEA with IPFC	
	Voltage magnitude (volts)	Voltage angle (deg)	Voltage magnitude (volts)	Voltage angle (deg)
1	1.024	0	1.043	0
2	1.006	-3.263	1.032	-3.446
3	0.995	-4.967	1.016	-5.063
4	0.988	-6.083	1.009	-6.203
5	0.968	-9.897	1.012	-10.136
6	0.981	-7.182	0.999	-7.215
7	0.968	-8.865	0.996	-8.946
8	0.980	-7.395	0.987	-7.298
9	1.019	-8.642	0.995	-8.953
10	1.005	-10.685	0.985	-10.888
11	1.064	-6.372	1.019	-7.103
12	1.010	-9.823	1.023	-10.441
13	1.023	-8.492	1.070	-9.227
14	0.998	-10.847	1.006	-11.407
15	0.997	-11.087	1.000	-11.481
16	1.001	-10.520	1.000	-10.882
17	1.000	-10.896	0.986	-11.170
18	0.989	-11.736	0.984	-12.086
19	0.987	-11.914	0.978	-12.238
20	0.992	-11.697	0.981	-12.001
21	0.995	-11.236	0.976	-11.438
22	0.996	-11.230	0.977	-11.425
23	0.994	-11.684	0.986	-11.891
24	0.989	-11.842	0.973	-11.983
25	1.001	-11.875	0.990	-12.043
26	0.983	-12.309	0.972	-12.487
27	1.017	-11.609	1.009	-11.781
28	0.976	-7.696	0.991	-7.704
29	1.004	-13.071	1.001	-13.396
30	0.989	-13.863	0.994	-14.015

Table 3. Comparison of bus voltages and its angles for IEEE 30 bus system using ISEA without and with IPFC

IPPC parameters for TEEE 50 bus system				
S.No	Parameter	Quantity		
1	Vse (p.u)	0.119		
2	θse (deg.)	-3.112		

Table 4IPFC parameters for IEEE 30 bus system

7. Conclusion

In this paper, an intelligent search evolution algorithm has been proposed to solve optimal power flow problem in the presence of interline power flow controller. The proposed method employs a two step initialization process and there is no need of mutation operation. The results demonstrate the effectiveness and robustness of the proposed method with interline power flow controller. The results obtained for test system using the proposed method without and with IPFC are compared and observations reveal that the generation cost is less with IPFC. Also, it is clear that the proposed method gives optimal solution with less number of generations which results in less computation time.

References

- [1] N. G. Hingorani and L. Gyugyi, "Understanding FACTS-concepts and technology of flexible AC transmission systems," *IEEE press, First Indian Edition*, 2001.
- [2] Y.H.Song and A.T.Johns, "Flexible AC Transmission Systems," IEE press, 1999.
- [3] E. Acha, C. R. Fuerte-Esquivel, H. Ambriz-Perez and C. Angeles-Camcacho, "FACTSmodelling and simulation in power networks," John Wiley & Sons, 2004.
- [4] M. Noroozian, L. Ängquist, M. Ghandhari, and G. Andersson, "Use of UPFC for optimal power flow control," *IEEE Trans. Power Del.*, vol.12, no. 4, pp. 1629–1634, Oct. 1997.
- [5] Y. Xiao, Y. H. Song, and Y. Z. Sun, "Power flow control approach to power systems with embedded FACTS devices," *IEEE Trans. Power Syst.*, vol. 17, no. 4, pp. 943– 950, Nov. 2002.
- [6] Carsten Lehmkoster, "Security constrained optimal power flow for an economical operation of FACTS-devices in liberalized energy markets," *IEEE Trans. Power Delivery*, vol. 17, pp. 603-608, Apr. 2002.
- [7] S. Y. Ge and T. S. Chung, "Optimal active power flow incorporating power flow control needs in flexible AC transmission systems," *IEEE Trans. Power Syst.*, vol.14,no.2, pp. 738-744, 1999.
- [8] J. Y. Liu, Y. H. Song and P. A. Mehta, "Strategies for handling UPFC constraints in steady state power flow and voltage control," IEEE Trans. Power Syst., vol.15, no.2, pp. 566-571, 2000.
- [9] Y. Xiao, Y. H. Song and Y. Z. Sun, "Power injection method and linear programming for FACTS control," *IEEE Power Engg., society winter meeting*, vol. 2, pp. 877-884, 2000.
- [10] W. Ongsakul and P. Bhasaputra, "Optimal power flow with FACTS devices by hybrid TS/SA approach," *Electrical Power and Energy Syst.*, vol. 24, pp.851-857, 2002.
- [11] B. Venkatesh, M. K. George and H. B. Gooi, "Fuzzy OPF incorporating UPFC," *IEE Proc.- Gener.Transm.Distrib.*,vol.151,no.5,pp.625-629, Sept. 2004.
- [12] Rodrigo P. B,Luis S. V, Juan R. P, Jaime D. N and Rigoberto A. T, "OPF with SVC and UPFC modeling for longitudinal systems," *IEEE Trans. Power Syst.*,vol.19,no.4, pp. 1742-1753,Nov.2004.
- [13] Hugo A. P, Enrique A and Claudio R. F. E, "TCSC- firing angle model for optimal power flow solutions using Newton's method," *Electrical Power and Energy Syst.*, vol. 28, pp.77-85, 2006.
- [14] Jose A. D. N, Jose L. B. A, Alexis D, Durlym R and Emilio P.V, "Optimal parameters of FACTS devices in electic power systems applying evolutionary strategies," *Electrical Power and Energy Syst.*, vol. 29, pp.83-90, 2007.

- [15] M.Basu, "Optimal power flow with FACTS devices using differential evolution," *Electrical Power and Energy Syst.*, vol. 30, pp.150-156, 2008.
- [16] Rabih A. Jabr, "Optimal power flow using an extended conic quadratic formulation," *IEEE Trans. Power Syst.*, vol.23, no.3, Aug.2008.
- [17] Ashwani Kumar S and S.Chanana "New multi-objective optimization problem for secure bilateral transaction determination with UPFC in hybrid electricity markets," *Electric Power Components and Systems*, vol. 36, pp. 555-574, 2008.
- [18] B. Mahdad, K. Srairi and T. Bouktir "Optimal power flow for large scale power system with shunt FACTS using efficient parallel GA," *Electrical Power and Energy Syst.*, vol. 32, pp.507-517, 2010.
- [19] A. V. Naresh Babu, S. Sivanagaraju, Ch. Padmanabharaju and T.Ramana "Power flow analysis of a power system in the presence of interline power flow controller(IPFC)," *ARPN Journal of Engineering and Applied Sciences*, vol.5, no.10,pp.1-4, Oct. 2010.
- [20] A. V. Naresh Babu and S. Sivanagaraju, "Mathematical modelling, analysis and effects of interline power flow controller(IPFC) parameters in power flow studies," *Proc. of 4th IEEE- India Int. Conf. on Power Electronics, New Delhi, India*, Jan. 2011.
- [21] IEEE 30-bus system data available at http://www.ee.washington.edu/research/pstca.

A. V. Naresh Babu received his B.Tech in electrical and electronics engineering from RVR & JC CE, Andhra Pradesh, India, in 2003 and M.Tech in power systems from Jawaharlal Nehru Technological University-Kakinada, Andhra Pradesh, India, in 2007. He is currently pursuing Ph.D from the department of electrical and electronics engineering, Jawaharlal Nehru Technological University-Kakinada.

He is currently Associate Professor in the department of electrical and electronics engineering at DVR &Dr. HS MIC College of Technology. His

research interests include FACTS controllers, power electronics applications to power systems and Optimization Techniques.

S. Sivanagaraju received his B.Tech in electrical and electronics engineering from Andhra University, Andhra Pradesh, India in 1998, M.Tech in electrical power systems from Indian Institute of Technology (IIT), Khargpur, West Bengal, India in 2000 and Ph.D in Electrical and Electronics Engineering from Jawaharlal Nehru Technological University-Hyderabad, Andhra Pradesh, India in 2004. Dr.S.Sivanagaraju is currently senior Associate Professor in the department of electrical and electronics engineering at Jawaharlal Nehru Technological University-Kakinada. He

received two National awards (Pandit Madan Mohan Malaviya memorial prize award and best paper prize award) from the Institute of Engineers (India) for the year 2003-2004. His research interests include FACTS controllers, Distribution Systems automation and Optimization Techniques.