
          International Journal on Electrical Engineering and Informatics - Volume 11, Number 4, December 2019 

 

Robust Decentralized Adaptive Fuzzy Integral Sliding Mode 

Control of Mismatched Uncertain Large-scale Systems 
 

Chaouki Mnasri and Moncef Gasmi 

 

Research Laboratory of Informatics for Industrial Systems (LISI), National Institute of Applied 

Science and Technology (INSAT), University of Carthage, Centre Urbain Nord BP676, Tunis  
mnch77@gmail.com, mcf.gsm@gmail.com 

 

Abstract: The objective of this paper is to propose a robust decentralized adaptive fuzzy integral 

sliding mode control of interconnected uncertain systems. Uncertainties, disturbances and 

interconnections are of mismatched type. The approach, which will be considered, benefits from 

the advantages of the integral sliding mode compared to traditional sliding mode. Moreover, it 

combines the LMI technique with the sliding mode to design a sliding surface guaranteeing the 

satisfaction of H infinity robustness criterion. The proposed local controllers designed for each 

subsystem guaranty the quadratic stability of the global system. The second task considered in 

this work is the synthesis of an adaptive fuzzy control scheme allowing the elimination of the 

phenomenon of chattering and the estimation of the controller parameters. The effectiveness and 

the useful of the obtained results will be discussed through numerical example. 
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1. Introduction 

 The uncertain modeling of the dynamic systems is much closer to the reality of the practical 

systems. Indeed, the presence of uncertainties can be due to the variation of the parameters of 

the system or the inaccuracy of the knowledge of their values. The presence of the nonlinearities, 

as well as the external disturbances could be also at the origin of this uncertain modeling. So, the 

control of these systems has attracted the attention of researchers in recent times and has been 

widely considered. Variable Structure Control (VSC) with Sliding Mode(SM) has a variety of 

attractive features such a fast response, good transient performance, and order-reduction [1,2]. 

An additional salient advantage of this control approach is its completely robustness to systems 

with uncertainties verifying the so-called matching condition [3]. This propriety is at the origin 

of the vast use of SM in the design of robust control for such class of systems. However, the 

Classic Sliding Mode Control (CSMC) provides the desired motion after a sliding mode occurs. 

This insufficiency has been the principal motivation of researchers to proceed to the elimination 

of the reaching phase. A recent method, based on a particular choice of the switching function, 

provides the so-called Integral Sliding Mode Control (ISMC) which allows the existence of 

sliding mode from the initial time [4,5]. Therefore, the system is immediately robust and 

insensitive to uncertainties and disturbances. The application of ISMC in the control of matched 

uncertain MIMO systems has resulted in good performances as robustness and tracking response 

[6]. Inopportunely, both CSMC and ISMC may be unsuccessful in the stabilization of 

mismatched uncertain systems. Because the system dynamics in sliding mode, opposing to 

matched uncertain system, are not uncertainties free. To surmount this problem, the main idea is 

the combination of SMC with other robust techniques. The common existing methods are based 

on CSMC, so that they are affected by the over mentioned insufficiency of SMC with reaching 

phase [7–9]. Recently, more attention is focused on the advantages of ISMC in the control of 

systems with mismatched uncertainties. This method is extended to cover systems with 

mismatched uncertainties in the state matrix, but it is restricted to matched uncertainties in the 

input matrix and the external disturbances [10]. Only a few of the more recently studies have 

included  the  case  of  mismatched  uncertainties in the input matrix [11,12]. Though, no one of  
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them is directly applicable in the presence of the mismatched disturbances and the norm-bounded 

nonlinearities which are not related to the input channel. An original approach based on ISMC 

associated to LMI approach and H characterization has been, recently, developed [13,14]. The 

considered class of uncertain systems can cover large sets of systems; indeed, the mismatched 

uncertainties in both state and input matrices, the norm-bounded nonlinearities and external 

disturbances have been investigated by this approach. This method has several advantages such 

the increase of feasibility domain of the LMI solution [13] and the optimization of the nonlinear 

control gain enabled by the proposed methodology of uncertainties. Furthermore, the chattering 

problem has been surmounted by the design of an Adaptive Fuzzy Integral Sliding Mode 

Controller (AFISMC) [14]. It is generally considered that large-scale and complex systems are 

very difficult to stabilize with a single controller. This is due to computational complexity caused 

by large dimensions and effects of interconnections. Therefore, for designing a large-scale 

control system, the researchers in this field often divided the entire system into several 

subsystems, and utilized the decentralized controller to stabilize each subsystem [15]. Many 

works based on SMC have been carried out in the goal to establish decentralized control 

schemes. When the system contains only matched uncertainties and interconnections, the known 

salient advantages of CSMC have been also verified for this class of large-scale systems [16,17]. 

Moreover, the decentralized SMC of interconnected nonlinear has been considered. Indeed, the 

case of nonlinear systems in regular form has been envisaged in [18,19] and the control of 

complex large-scale systems with non-smooth nonlinearities has been carried out in [20]. The 

advantages and the faculties of SMC have been confirmed in [21] by the real-time 

implementation of decentralized control scheme on a twin-rotor system. The design of 

decentralized controllers based on ISMC has been also considered and the related benefits have 

been preserved such us initial time robustness and invariance in presence of both uncertainties 

and interconnections [22,23]. When the large-scale system contains mismatched perturbation, a 

decentralized sliding mode control scheme based on overlapping method is presented in [24]. 

Only some works consider the case of uncertainties in the input channel [25–28]. Recently, in 

[29] a decentralized adaptive sliding mode control for large-scale systems with mismatched 

perturbations has been presented; however, the class of system considered remains restricted. 

Therefore, the main contribution of the present work is the design of a robust decentralized 

integral sliding mode control based on LMI technique to guaranty a H∞ criterion for a more 

general class of mismatched uncertain large-scale systems. The second task will be the 

proposition of a decentralized adaptive fuzzy ISMC controller. The goal of the proposed control 

scheme is the elimination of chattering problem and the relaxation of the necessity knowledge 

of the exact values of uncertainties and interconnections bounds. In addition, the reachability of 

sliding surface will be maintained. The proposed paper will be organized as follows. In Section 

II some useful preliminary results will be given, as well as the system description. Section III 

will be reserved to the detailed presentation of the proposed approach concerning decentralized 

integral sliding mode control of mismatched large-scale systems. Mathematical proofs of 

proposed theoretical results will be given as well as convenient remarks. In section IV, the 

improvement of the proposed control scheme performances, such as chattering elimination and 

estimation of norm bounds of uncertainties, is then considered with the application of an adaptive 

fuzzy integral sliding mode control law. The efficiency of the proposed control laws will be 

investigated in section V through numerical example. The last section will be allowed to 

conclusion remarks of the work. 

 

2. Preliminary results and system description 

A. Preliminary results 

 In this section, we give some preliminary results that will be helpful to obtain main results.  

Lemma1. [25] Consider the following unforced system: 

  
. . ( , )

.

x A x H w x t

y C x

ì = +ïï
í
ï =ïî

&
                                                                                                 (1) 
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 This system is quadratically stable and satisfies H ¥ : yT w g
¥

< if there exists a quadratic 

Lyapunov function ( ) TV x x Px= , 0P >  such that, for all 0t >  : 

 2 0T TV y y g w w+ - <&                                                                                                      (2) 

Lemma2. [11] For any vectors x and y with appropriate dimensions, the following inequality 

holds: 

 12. . . , 0T T Tx y x x y ya a a-£ + " >                                                                                 (3) 

Lemma3. (Schur complement) [25]: consider a bloc symmetric matrix 

 

TA B

B C

é ù
ê ú
ê ú
ê úë û

                                                                                                                     (4) 

where A and C are square matrices, with C is negative definite. This matrix is negative definite 

if and only if  ( )1TA B C B--  is negative semi-definite. 

 

B. System description 

We will consider a class of mismatched uncertain large-scale systems composed by N 

interconnected subsystems Ei: 

 
[ ] [ ] ( , ) ( ) ( , )

N

i i i i i i i i i i i ij j

j i

i i i

x A A x B B u f x t H t h x t

y C x

w

¹

ìïïï = + D + + D + + +ï
í
ïïï =ïî

å&
                            (5) 

Where: 
n

i
ix Î ¡  is the state, 

m

i
iu Î ¡  is the input control, 

q

i
iy Î ¡  is the controlled output 

( , )
n

i i
if x t Î ¡  is the vector of nonlinearities and un-modeled dynamics, ( )

p

i
itw Î ¡ is the 

square-integrable external disturbance. 
n n

i
i iA
´

Î ¡  is the scale system characteristic matrix, 

n m

i
i iB
´

Î ¡  is the input matrix with full rank m
i
, 

n p

i
i iH
´

Î ¡  is the matrix of external 

disturbance, 
q n

i
i iC
´

Î ¡  is the output matrix. ( )iA tD  and ( )iB tD  represent the system matrix 

uncertainty and the input matrix uncertainty, respectively. ( , )
n

ij j
ih x t Î ¡ represents the 

interconnection term specifying the action of the subsystem E
j

on the subsystem E
i

.  We will 

assume the following to be valid. 

A1) The pair ( ),i iA B is stabilizable. 

A2) There exist known constants ia , ib , ig , 0iw  and 
ija such that : 

i iA aD £ , 
i iB bD £

, ( , )i i i if x t g x£ ,  
0( )i itw w£   and ( , )i i ij jh x t xa£ . 

A3) , 1i i i mB B b+D £ < where 
,i mb  is a positive known scalar and  ( )

1
T T

i i i iB B B B
-

+ º . 

 

3. Decentralized integral sliding mode control 

A. Switching surface choice 

Let us choose the switching function as follows: 

 ( )i i i iS t B x z+= +                                                                                                                    (6) 
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where ,
m

i
iz Î ¡ is the solution of the following dynamic equation: 

 ,i i i i i iz B A B K x+ é ù= - +ë û
& (0) (0)i i iz B x+= -                                                                           (7) 

where: ,
m n

i
i iK
´

Î ¡  is a state feedback gain which should be designed, later, to lead to the 

closed loop system the desired performances in sliding mode.  

The considered sliding surface allows the elimination of the reaching phase characterizing the 

classic sliding mode control, because the initial value (0) 0iS = , for any initial conditions. 

When the state trajectories of the system enter the sliding mode, we have ( ) 0iS t = , and 

( ) 0iS t =& . The time derivative of the switching function is derived as follows: 

 ( ) ( , ) ( , )

N

i i i i i i i i i i i i ij j i i

j i

S B A x B B u f x t B H B h x t K xw+ + +

¹

é ù= D + + D + + + -ë û å&      (8)             

Let us suppose that: 

 
i n i ii

I B B +G = -                                                                                                           (9) 

where 
n n

n
i i

i
I

´
Î ¡  is the identity matrix. Accordingly, it is easy to deduce that: 

 0i i i i i i i iB B B B B B B+ + + + + +G = - = - =                                                                  (10) 

In addition, we can rewrite the uncertainty terms as follows: 

 

, ,

, ,

, ,

, ,

, ,

( ) ( ) ( ),

( ) ( ) ( ),

( , ) ( , ) ( , )

,

( , ) ( , ) ( , ).

i i i m i u

i i i m i u

i i i i m i i u i

i i i m i u

ij j i ij m j ij u j

A t B A t A t

B t B B t B t

f x t B f x t f x t

H B H H

h x t B h x t h x t

ìï D = D + Dïïïï D = D + Dïïïï = +í
ïïï = +ïïïï = +ïïî

                                                                          (11) 

 

where: 

 

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, .

i m i i i u i i

i m i i i u i i

i m i i i u i i

i m i i i u i i

ij m i ij ij u i ij

A B A A A

B B B B B

f B f f f

H B H H H

h B h h h

+

+

+

+

+

ìï D = D D = G Dïïïï D = D D = G Dïïïïï = = Gí
ïïï = = Gïïïï = = Gïïïî

                                                                                   (12) 

 

Furthermore, there exist known positive constants 
,i ma , 

,i ua , 
,i ub , 

,i mg , 
,i ug , 

,ij ma and 
,ij ua  

such that: 

 

, , , ,

, , ,

, , , ,

, , , ,

, ,

, ,

, ,

, .

i m i m i u i u

i m i m u i u

i m i m i i u i u i

ij m ij m j ij u ij u j

A a A a

B b B b

f g x f g x

h x h xa a

ìï D £ D £ïïïïï D £ D £ïï
í
ï £ £ïïïïï £ £ïïî

                                                                          (13) 

 

Consequently, we can rewrite the derivative of the sliding surface as follows: 
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 ( ), , , , ,( ) ( )

N

i i m i m i m i i m i i m i ij m j i i

j i
i

S A x I B u f x H h x K xw

¹

= D + + D + + + -å&             (14)                

Then, we can derive the following expression of the equivalent control: 

 ( )
1

, , , , , ,

N

i eq m i m i m i i m i m i ij m i i

j i
i

u I B A x f H h K xw
-

¹

é ù= - + D D + + + - ûë å                           (15) 

Remark 1. Equation (15) requires that the matrix ( ),m i mi
I B+ D be nonsingular. This 

requirement is guaranteed by assumption A3. 

 

B. Sliding mode stability 

 he sliding mode dynamics are obtained by substituting (15) in (5): 

, , , , , , , ,

N N

i i i i i i i i i i u i i u i i m i i m i m i ij m i u i ij u

j i j i

x A x B K x B K x A x f B A x f H h H hw w

¹ ¹

é ù
ê ú= + + + D + - D + + + + +ê ú
ê úë û

å å% %&      

                                                                                                                                           (16) 

where: 

 ( )
1

, ,i i u m i mi
B B I B

-

= D + D%                                                                                       (17) 

 The system dynamics in the sliding mode are affected by the existence of uncertainties and 

disturbances. Thus, although the sliding mode acts correctly in the sense of eliminating the effect 

of the matched uncertainties and disturbances; the mismatched parts of uncertainties not 

eliminated by the sliding mode alone requires the use of another robust control technique to 

mitigate their effect on closed loop system. For this reason, the H∞ approach is used alongside 

the sliding mode to accomplish the control requirement. Therefore, the objective of this section 

is the design of a state feedback gain Ki for every subsystem Ei. This gain guarantees the stability 

of the closed loop system while satisfying the H∞ constraint 
i i iy g w

¥ ¥
£ . To reach this 

goal, we proceed by means of the LMI method. 

Theorem 1. Consider the uncertain large-scale system (5) with assumption (A1) -(A3), and the 

over mentioned switching surface (6). For every subsystem Ei, if there exists symmetric matrix 

0iX > , matrix iR  and positives scalars 
, , 1, ..., 6k i ke = , Ne  and ,ig  satisfying:  

 0i i

i

é ùX Q
ê ú<ê ú* Yê úë û

                                                                                                           (18) 

where:  

 

, 1, 2, , 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

T
i u i i i i i i u

i

b R X X Hm mé ù
ê ú
ê ú
ê ú
ê ú

Q = ê ú
ê ú
ê ú
ê ú
ê ú
ë û

                                                                        (19) 

 

*
5,

2
,

*
6,

,

0 0 0 0

* 0 0 0

* * 0 0

* * *

* * * *

i i

N i

N i
i

T
i i u

i i

i m

I

I

I

b H

I

e

e

e

g

e

é ù-ê ú
ê ú

-ê ú
ê ú

-ê úY = ê ú
ê ú-
ê ú
ê ú
ê ú-ê úë û

                                                         (20) 
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, , ,, ,

0 0* 0 0

0 0* * 01,
0 0

** * * 2, 03,
* * * *

** 4,* * * *

T b a X b g XX C a X g X i u m i i u i m ii i i u i i u ii

Ii
Ii i

i
Ii i Ii i

Ii i

e

e
e

e

é ùSê ú
ê ú
ê ú-ê ú
ê ú-ê ú
êX = ú
ê ú-ê ú-ê ú
ê ú
ê ú-ê ú
ê ûë

                                 (21)           

 

( )

2
6

,

, 2
1

,

1

1

i u
T T T

i i i i i i i i i k i N i
k

i m

b
A X X A B R R B I

b

e e
=

æ æ öö÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷S = + + + + + +ç ç ÷÷ç ç ÷÷÷÷ç ç ÷÷-ç ç ÷÷ç çè è øø

å                 (22)              

 ( )
2

*
, , ,1k i i m k ibe e= - ,                                                                                                        (23) 

  ( )1, ,1

N

i ji m

j i

Nm a

¹

= - å ,                                                                                         (24) 

  ( )2, ,1

N

i ji u

j i

Nm a

¹

= - å ,                                                                                               (25) 

 i i iR K X=                                                                                                                           (26) 

then, the sliding mode plane is quadratically stable and the given H∞ performance is valid. 

 

Proof. Consider positive-definite matrices , 1, ..,iP i N=  and choose a candidate Lyapunov 

function, 

 

1

( )

N

T
i i i

i

V x x P x

=

= å                                                                                                      (27) 

 

To complete the proof, we proceed by verification of lemma 1:  

( )

{

( )

2

1

, , ,
1

, , , , ,

2 2 2

2 2 2 2 2

N
T T
i i i i i

i
N

T T T T T T T T
i i i i i i i i i i i i i i u i i i i i m i i i i u i

i
N

T T T T T
i i i m i i i i i i i i u i i i i i m i i i i u ij i m ij

j i

V y y

x P A A P P B K K B P x x P A x x P B A x x P f

x P B f x P B K x x P H x P B H x P h B h

g w w

w w

=

=

¹

+ -

é ù= + + + + D - D +ê úë û

æ ö÷çç- + + - + -çççè ø

å

å

å

&

%

% % %

}2T T T
i i i i i i ix C C x g w w

÷÷÷÷

+ -

 

 

 

Using lemma 2, we get 
2 1 2 2 1

, 1, 1, , , 1. . 1.2 T T T T T
i i u i i i i i i i i u i u i i i i i u i i i ix P A x x P x x A A x x P a I xe e e e- -é ùD £ + D D £ +ê úë û

 

( )

2 2
, .2 1 2 1

, 2, 2, , , 2. 2.2

,

2

1

u i m iT T T T T T
i i i m i i i i i i i i m i i i m i i i i i i i i

m i

b a
x P B A x x P x x A B B A x x P I x

b

e e e e- -

é ù
ê ú
ê ú- D £ + D D £ +
ê ú

-ê úë û

% % %  

2 1 2 2 1
, 3, 3, , , 3. . 3.2 T T T T

i i u i i i i i i u i u i i i i u i i i ix P f x P x f f x P g I xe e e e- -é ù£ + £ +ê úë û
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( )

2 2
, .2 1 2 1

, 4, 4, , , 4. 4.2

,

2

1

u i m iT T T T T T
i i i m i i i i i i m i i i m i i i i i i i

m i

b g
x P B f x P x f B B f x P I x

b

e e e e- -

é ù
ê ú
ê ú- £ + £ +
ê ú

-ê úë û

% % %  

( )

2 2
, .2 1 2 1

5, 5, 5. 5.2

,

2

1

u i m iT T T T T T T T
i i i i i i i i i i i i i i i i i i i i i i i

m i

b g
x P B K x x P x x K B B K x x P K K x

b

e e e e- -

é ù
ê ú
ê ú£ + £ +
ê ú

-ê úë û

% % %  

( )

2
,2 1 2 1

, 6, 6, , , 6. 6. , ,2

,

2

1

u iT T T T T T T T T
i i i m i i i i i i i i m i i i m i i i i i i i i m i m i i

m i

b
x P B H x P x H B B H x P x H H

b

w e e w w e e w w- -- £ + £ +

-

% % %  

( )2 1 2
, ,2 ( ) 1

1

T N T T
i i u ij j i i i N u ij j jx P h x x P x N x x

N

e
e a-£ + -

-
 

( )2 1 2
, ,2 ( ) 1

N N

T T T
i i u ij j N i i i N u ij j j

j i j i

x P h x x P x N x xe e a-

¹ ¹

£ + -å å  

( )
( )

2
, 2 1 2

, ,2

,

2 ( ) 1
1 1

u iT N T T
i i i m ij j i i i N m ij j j

m i

b
x P B h x x P x N x x

N b

e
e a-- £ + -

- -

%  

Consequently, we obtain 

( )

{
( )

2

1

2
,2 1

, , 6. , ,2
1

,1

N
T T
i i i i i

i

N
u iT T T T T T

i i i i i u i i i u i i i i i i i m i m i i
i

m i

V y y

b
x x x P H H P x I H H

b

g w w

w w w g e w

=

-

=

+ -

æ ö üï÷ç ï÷ç ï÷ç£ W + + + - + ÷ ýç ÷ ïç ÷ ïç ÷-è ø ïþ

å

å

&

     

  (28) 

 

Where 

( )

( ) ( )
( )

26
, 2

, 2
1

,

2 2 2 2
, , , ,2 1 1 2 1 1 1 2 2

, 1, 2, , 3, 4, , ,2 2

, ,

1

1

1

1 1

u iT T T
i i i i i i i i i i i k i N i

k
m i

u i m i u i m i

u i i i u i i i N u ji m ji

m i m i

b
P A A P P B K K B P P

b

b a b g
a g N

b b

e e

e e e e e a a

=

- - - - -

æ æ öö÷÷ç ç ÷÷ç ç ÷÷ç çW = + + + + + + ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷-è è øø
æ
çç é ùç+ + + + + - +ç ê úë ûçç - -è

å

( )

2
, 1

5,2

,1

N

i
j i

u i T
i i i

m i

I

b
K K

b

e

¹

-

ö÷÷÷÷÷÷÷ø

+

-

å      

           (29)  

then, we can rewrite that 

 ( )2

1

N N
iT T T T

i i i i i i i i
ii j i

x
V y y xg w w w

w
= ¹

ì é ùüï ïï ïé ù ê ú+ - £ í ýê ú ê úë ûï ïê úï ïî ë ûþ
å å& F                                                           (30) 

with 

 

( )

,

2
,2 1

, 6. , ,2

,1

i i u i

u iT Ti
u i i i i i m i m i

m i

P H

b
H P I H H

b

g e-

é ùW
ê ú
ê ú

= ê ú
- +ê ú

ê ú-ê úë û

F                                                              (31) 

thus, lemma 1 is satisfied if, for every subsystem Ei, we have 
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 0i <F                                                                                                                            (32) 

The next inequality can be derived from the last one by using lemma 3: 

 

( )

,

2
, , ,

2

, . , 6,

0

0

0 1

i i u i

T T
u i i i i u i m i

u i m i m i i

P H

H P I b H

b H b

g

e

é ù
Wê ú

ê ú
ê ú- <
ê ú
ê ú

- -ê úë û

                                                                         (33) 

After, pre-multiplying and post-multiplying (33) by { }1, ,i i idiag P I I- , considering 1
i iX P -=  

and i i iR K X=  , the LMI (18) is obtained by a successive use of lemma 3. Therefore, the Proof 

is achieved. 

 

C. Decentralized controller design 

 Now, we proceed to the second task which is the design of the sliding mode control law 

enabling the reachability to the specified switching function. 

Theorem 2. Consider the uncertain large-scale system with (5) assumption (A1) -(A3), and the 

switching surface (6). Suppose that, for every subsystem Ei, the SMC law is: 

 i
i i i i

i

S
u K x

S
r= -                                                                                                   (34) 

where: 

 
( )

1,

.

1

1
i i

m ib
r r=

-
,                                                                                                   (35) 

 1, , , , , , 0

N

i i m i m i i m ji m i i i m i
j i

a b K g x q Hr a w
¹

æ ö÷ç ÷ç= + + + + +÷ç ÷ç ÷çè ø
å                                        (36) 

with iq  is a small positive scalar. Then, a stable sliding mode exists from initial time. 

Proof. Consider the Lyapunov function 
1

N

i
i

V S
=

= å   which is positive definite. The derivative 

of this function respect to time is : 

( )

( )

, , , , ,
1 1

, , , , ,
1

, , ,

T TN N N
i i i

i m i m i m i i m i m i ij m i i
i i j ii i

TN N
i i

i m i i m i m i ij m m i m i i i i i
i j ii i

T
i

i m i i m i m i i

i

i

i

S S S
V A x I B u f H h K x

S S

S S
A x f H h I B K x K x

S S

S
A x f H h

S

w

w r

w

= = ¹

= ¹

ù
é ú= D + + D + + + -ê úë úû

é æ ö ù÷çê ú÷ç= D + + + + + D - -÷çê ú÷ç ÷çè øê úûë

= D + + +

å å å

å å

&
&

}

{

, , ,
1

, , , , , ,
1

1, 1,

, , , , ,
1 ,1

N N
i i

j m i i m i i i i m
i j i i i

TN N
i

i m i i m i m i ij m i m i i i i i m
i j ii

N N
i

i m i i m i m i ij m i m i i
i j i m i

S S
B K x B

S S

S
A x f H h B K x B

S

A x f H h B K x
b

r r

w r r

r r
w

= ¹

= ¹

= ¹

é ù
ê ú- + D - Dê ú
ê úûë

ì éïï ùï ê= D + + + + D - - Dí úêï ûï êï ëî
ù

é ú£ D + + + + D - +ê úë -úû

å å

å å

å å ,

,1

i

i m

m i

B
b

üïïïD ý
ï- ïïþ

 

{ 1, 1, ,

, , , , ,
1 , ,1 1

N N
i i i m

i m i i m i i m io ij m i m i i
i j i i m i m

b
a x g x H h b K x

b b

r r
w

= ¹

üù ïïé ïú£ + + + + - + ýê ú ïë - -ú ïû ïþ
å å  

Or: 

Chaouki Mnasri, et al.

765



 
 

, ,,
1 1 1

N N N N N N

ij m j iji mij m
i j i i j i i j i

h x xa a
= ¹ = ¹ = ¹

£ =å å å å å å  

 

Finally, we get: 

 
1

0
N

i
i

V q
=

£ - <å&  

Then, the considered SMC law drives the system trajectory into sliding surface in finite time 

which concludes the proof. 

Remark 2. The results proposed in this work represent a generalization of these considered 

recently for the case of mismatched uncertain systems [13-14]. Indeed, we can find the same 

results if we consider that N=1. The actual approach inherits same advantages of [13] and [14]. 

Moreover, this controller gives an efficient decentralized scheme making in consideration the 

presence of mismatched interconnections. 

 

4. Decentralized adaptive fuzzy integral sliding mode control 

 To avoid the chattering problem induced by the switching nature of the sliding mode 

controller, the most common method used in literature is the approximation of the sign function 

existing in the control expression by a saturation function. However, the linear nature of the last 

function in the boundary layer affects the closed loop system stability. Consequently, the 

robustness of the sliding mode control cannot be preserved. So, to eliminate chattering presence 

with preservation of the robustness characterization of the control, we propose in this section the 

enhancement of the control procedure by introduction of Fuzzy Logic (FL). After the 

presentation of the adequate fuzzy mechanism, a Decentralized Adaptive Fuzzy Integral Sliding 

Mode Control (DAFISMC) will be proposed. 

 

A. Fuzzy mechanism 

 The proposed DAFISMC is based on the introduction of a Fuzzy Logic inference mechanism 

which replaces the switching control law. For every subsystem, the switching function can be 

written as 

 ,1 , ,

T

i i i k i mi
S s s sé ù= ê úë û

L L                                                                                      (37) 

Let 
,i ks  be the input linguistic variable of FL, and 

,Fi ku  be the output linguistic variable. The 

associated fuzzy sets are expressed as follows: 

• for the antecedent proposition (
,i ks ): P (Positive), N (Negative), and Z (Zero); 

• for the consequent proposition (
,Fi ku ): PE (Positive Effort), NE (Negative Effort), and ZE 

(Zero Effort). 

 

To make the sliding surface attractive, the fuzzy linguistic rule base can be given as follows: 

1. Rule 1: If 
,i ks is P, then 

,Fi ku is PE. 

2. Rule 2: If 
,i ks is Z, then 

,Fi ku is ZE. 

3. Rule 3: If 
,i ks is N, then 

,Fi ku is NE. 

 

The membership functions of the input fuzzy sets are of the triangle type, and those of the output 

fuzzy sets are of the singleton type. The singleton defuzzification method is used in this work. 

Then the fuzzy controller (output of the defuzzification module) can be written as: 
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3

, ,
1

, 3

,
1

ik l ik l
l

Fi k

ik l
l

u

m d

m

=

=

=

å

å

                                                                                                                (38) 

Where: 

  
,0 1ik lm£ £ 0 is the firing strength of rule , 1,.., 3l l = ,  

 ,1 ,2 ,3, 0,ik ik ik ik ikd d d d d= = = -  stand for the centers of the membership functions PE, ZE, 

and NE, respectively.  

Owing to the special choice of triangular membership functions, we get 

3

,
1

1ik l
l

m
=

=å . As a 

result, we can deduce the following: 

 ( ), ,1 ,3Fi k ik ik iku m m d= -                                                                                                     (39) 

 

B. Decentralized adaptive fuzzy controller design 

 In this section, we interest to the design of a DAISMC which use the output of the precedent 

inference mechanism. The following theorem describes the adaptive fuzzy control law which 

guaranties the reachability to sliding surface and the elimination of chattering. 

Theorem 3. Consider the uncertain large-scale system with assumption (A1) -(A3), and the over 

mentioned switching surface. Suppose that, for every subsystem Ei, the DAFISMC law is: 

 ˆ
i i i Fiu K x u= +                                                                                                                   (40) 

where: 

 

( )

,1 , ,

,

, ,1 ,3

1
ˆ ˆ ˆ ˆ ,

1

ˆˆ .

T

Fi Fi Fi k Fi m

i m

Fi k ik ik ik

i
u u u u

b

u m m d

ìï - é ùï =ï ê úï ë û-í
ïï = -ïïî

L L
                                                                     (41) 

 

ˆ
ikd is given by the following adaptive law: 

 ,1 ,2
ˆ , 1, ..,ik ik ik ik ik md b m m= - =                                                                                  (42) 

then, a stable sliding mode exists from initial time. 

Proof. First, we consider that controller applied to the system is the fuzzy one given by: 

 ,1 , ,

,

1

1

T

Fi Fi Fi k Fi m

i m
i

u u u u
b

- é ù= ê úë û-
L L                                                                       (43) 

Let us consider the following Lyapunov candidate function: 

 
1

1 1

( )
N N

T
i i i

i i

V S sign S S
= =

= =å å                                                                                           (44) 

where: 
1

. denotes the norm 1 of a vector and 
,1 ,( ) ( ) ( )T

i i i mi
sign S sign s sign sé ù= ê úë û

L .  

The time derivative of this Lyapunov function is given by 

( ), , , , ,
1 1

( ) ( )
N N N

T T
i i i i m i m i m i i m i m i ij m i i

i i j i
i

V sign S S sign S A x I B u f H h K xw
= = ¹

ù
é ú= = D + + D + + + -ê úë úû

å å å& &  

( ), , , , , , ,
1

( ) ( , ) ( , )
i

N N
T

i i m i m i m F i i m i i i m i i m i ij m j
i j i

sign S A x I B u B K x f x t H h x t
= 

 
 =  + +  +  + + +
 
 

   
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1

( ) , ( , )
i

N N
T

i i i i m i m F i ij m j
i j i

sign S x I B u h x t
= 

 
 =  + + +
 
 

   

with:  

 ( ) , , , ,, ( , )i i i i m i i m i i i m i i m ix A x B K x f x t H  =  + + +  

In addition:  

 , ,
1 1

( ) ( , ) ( ) ( , )
N N N N

T T
i ij m j j ji m i

i j i i j i

sign S h x t sign S h x t

=  = 
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Let us define:  

 ( ) ( ) ,, , ( ) ( , )
N

T
i i i i i i j ji m i

j i

x x sign S h x t  


=  +   

then, we can rewrite that: 

 ( ), , , ,
1 1

, ( ) ( )
imN

T T
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V x sign S u sign S B u 
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  
 + +  

  
   

Or, from the definition of fuzzy rules and the expression of the fuzzy controller (37), we can 

deduce that: 

 , ,
, 1

1
( )

1

im
T

i F i Fi k
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sign S u u
b

=

= −
−
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Consequently, we can deduce that: 
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1 1
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 As a result, 0V  if the following inequality holds: 

 
( )

( )
,

,1 ,3

,i k i i

ik

ik ik

x 


 


−
 (45)

                                                                                                       

 The validity of the last condition is guaranteed by the existence of an optimal value ik as 

proved in Wang’s theorem [31]. The complexity of the function ( ),i i ix  and the difficulty in 

the exact knowledge of uncertainties bounds make the determination of the value ik very 

difficult. In order to surmount this problem, ik  can be estimated; ˆ
ik  is its estimated value. 

The fuzzy controller is replaced by the adaptive one mentioned in theorem 3, using the adaptive 

law (36). The Lyapunov candidate function is modified to become: 

  1 2
1 , ,

1 ¨ 1

1

2

imN

i k i k
i k

V V  −

= =

  
= +  

  
   (46)
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With:  ˆ
ik ik ikd d d= -%  is the estimation error. The time derivative of the new Lyapunov function 

is given by: 

 

( ) ( )

( ) ( )

1
1 , , , , ,1 ,3 , ,1 ,3

1 1 1 1

, ,1 ,3
1 1
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i k i k

mN

i k i i ik ik ik
i k

V V x

x

          

    

−
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   = − −   
  

   

 

 

This, achieves the proof. 

 

5. Illustrative example 

 Consider the following large-scale system with the dynamic equations in the form of (5) 

(N=2): 

Subsystem E1: 1 2,n = 1 1,m =  

 1

0 1
,

1 0.01
A

é ù
ê ú= ê ú-ê úë û

1

0
,

1
B

é ù
ê ú= ê ú
ê úë û

( )
( )1

0.1sin 0
,

0.3 sin 0

t
A

t

é ù
ê úD = ê ú
ê úë û

( )
( )1

0.2 sin
,

0.4 sin

t
B

t

é ù
ê úD = ê ú
ê úë û

 

  

 ( )
( )
( )

11 12
1 1

12 11

0.2 sin
, ,

0.4 sin

x x
f x t

x x

é ù
ê ú= ê ú
ê úë û

1

0.3
,

0.4
H

é ù
ê ú= ê ú
ê úë û

1 sin( ),tw =
1 1 0 ,C é ù= ê úë û

 ( )12 2 21 22

0.2
,

0.4
h x x x

é ù
ê ú= ê ú
ê úë û

 

Subsystem E2: 2 2,n = 2 1,m =  

 

2

0 1
,

1 0
A

é ù
ê ú= ê ú
ê úë û

1

0
,

2
B

é ù
ê ú= ê ú
ê úë û

( )
( )2

0 0.2cos
,

0.3 sin 0

t
A

t

é ù
ê úD = ê ú
ê úë û

( )
( )2

0.3cos
,

0.5cos

t
B

t

é ù
ê úD = ê ú
ê úë û

 

( )
( )
( )

21 22
2 2

22 21

0.3cos
, ,

0.5 sin

x x
f x t

x x

é ù
ê ú= ê ú
ê úë û

2

0.3
,

0.6
H

é ù
ê ú= ê ú
ê úë û

2 sin(0.5 ),tw =
2 0 1 ,C é ù= ê úë û

 

( )21 1 11 12

0.2
,

0.4
h x x x

é ù
ê ú= ê ú
ê úë û

 

 The pseudo-inverses of input matrices are given by 1 0 1 ,B + é ù= ê úë û 2 0 0.5 ,B + é ù= ê úë û
. Then, 

the application of the procedure of uncertainties decomposition given in section II, allows the 

determination of the following parameters: 

Subsystem E1:  

 1, 0.3,ma = 1, 0.1,ua =  1, 0.4,mb = 1, 0.2,ub =  1, 0.4,mg = 1, 0.2,ug =

 12, 0.4,ma = 12, 0.2,ua =

 1, 0.4,mH = 1, 0.3 0 .
T

uH é ù= ê úë û
 

 

Subsystem E2:  
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 2, 0.15,ma = 2, 0.2,ua =  2, 0.25,mb = 2, 0.3,ub =  2, 0.25,mg = 2, 0.3,ug =

 21, 0.2,ma =

 21, 0.2,ua = 2, 0.3,mH = 1, 0.5 0 .
T

uH é ù= ê úë û
 

 

The application of LMI (17) gives the following feasible solutions: 

Subsystem E1:  

 

1

0.2760 -0.5903
,

-0.5903 1.8359
X

é ù
ê ú= ê ú
ê úë û

 1K 19.00 9.01 ,é ù= - ê úë û 1 3, = 1,1 2,10.0677, 0.1639, = =  

3,1 0.0120, =

 

4,1 0.0203, = 5,1 0.1054, = 6,1 0.0067,  = ,1 0.1136N =  

 

Subsystem E2: 

 2

0.0987 -0.2738
,

-0.2738 1.0254
X

é ù
ê ú= ê ú
ê úë û

2K 15.5 5.5 ,é ù= - ê úë û 2 2.5, = 1,2 0.0271, = 2,2 0.0308, =

 3,2 0.0069, =  4,2 0.0093, = 5,2 0.0341, = 6,2 0.0053, = ,2 0.1136N =  

 Firstly, we apply the proposed DISMC to the system with null initial conditions, in order to 

evaluate the H∞ performance. The simulation results are carried out in figure 1 and figure 2. 

Figure 1 shows the state variables responses which are clearly attenuated; indeed, their 

magnitudes do not exceed 0.08. This observation is accentuated by actual values of the H∞ 

performance depicted in figure 2 The related final values are very small. 
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Figure 1. State variables responses with proposed DISMC (null initial conditions) 

 

 
Figure 2. Actual values of H∞ performance with proposed DISMC 

 

 Secondly, we consider the case of no null initial conditions with  10x 1 -1 ,é ù= ê úë û
and 

20x -1 1 .é ù= ê úë û
  Figure 3 and figure 4 indicate, respectively, the evolution of switching functions 

and controllers using the proposed DISMC. The same signals, when DAFISMC is applied, are 

shown in figure 5 and figure 6, respectively. The state variables evolution using DISMC and 

DAFISMC for both uncertain large-scale system and nominal subsystems (e.g.: in absence of all 

uncertainties, disturbances and interconnections) are given by figure 7. 

 From these simulation results, it is obvious that the proposed schemes result in a stable sliding 

mode from initial time. Though, it is clear from the controller evolution that the DISMC approach 

is accompanied with chattering phenomenon. This disadvantage is overcome by the DAFISMC 

over the elimination of high frequency discontinuities in the controller. The state variables 

responses according to both approaches are superposed. So that, the DAFISMC preserves the 

same dynamical performances of the closed loop system as the first approach. In addition, these 

responses are close to small vicinity around those of nominal subsystems, which confirms the 

robustness of the proposed approaches. 

 Moreover, to compare the proposed DFISMC approach to the classic method of avoiding 

chattering phenomenon presumed by the approximation of the sign function by a saturation 

function, the figures 5, 6 and 7 illustrate also simulation results using this method with a 

saturation function (with boundary layer of 0.1). It is obvious from the controller evolution in 
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figure 6 that the chattering is avoided. From the evolution of state variables in figure 7, 

satisfactory results are obtained. However, it is clear from figure 5 that the sliding surfaces are 

more deviated from the origin which confirm that this method do not preserves the sliding mode 

stability in the boundary layer because of the linearity of the saturation function around the 

origin.  

 

 

 
Figure 3. Switching surfaces for both subsystems with proposed DISMC 
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Figure 4. Controllers evolution for both subsystems with proposed DISMC 

 

 

 
Figure 5. Switching surfaces for both subsystems with proposed DFISMC and DISMC with 

saturation approximation 
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Figure 6. Controllers evolution for both subsystems with proposed DFISMC and DISMC with 

saturation approximation 
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Figure 7. State variables evolution using DISMC, DFISMC and DISMC with saturation 

approximation for both uncertain large-scale system and nominal subsystems 

 

6. Conclusion 

 In this paper, the problem of designing robust decentralized integral sliding mode control of 

large-scale systems with mismatched uncertainties, disturbances and interconnections has been 

considered. Based on LMI, a sufficient condition of the quadratic stability of sliding mode 

dynamics with H∞ performance has been proposed. The immediate sliding mode existence has 

been guaranteed by the proposed control law, and as a result the robustness has been improved. 

The induced chattering phenomenon has been eliminated by the proposed DAFISMC. The 

efficacy and the validity of the proposed approaches have been illustrated through numerical 

examples. Further work will extend the proposed method to large-scale systems with polytopic 

mismatched uncertainties and nonlinear large-scale systems.  
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