

 International Journal on Electrical Engineering and Informatics - Volume 6, Number 4, December 2014

Online State Elimination in Accelerated reinforcement Learning

Safreni Candra Sari, Kuspriyanto, Ary Setijadi Prihatmanto,
and Widyawardana Adiprawita

School of Electrical Engineering and Informatics, Institut Teknologi Bandung

Jalan Ganesha 10, Bandung, 40132, Indonesia
safrenicsari@yahoo.com, kuspriyanto@lskk.ee.itb.ac.id, asetijadi@lskk.ee.itb.ac.id,

wadiprawita@stei.itb.ac.id.

Abstract: Most successes in accelerating RL incorporated internal knowledge or human
intervention into the learning system such as reward shaping, transfer learning,
parameter tuning, and even heuristics. These approaches could be no longer solutions to
RL acceleration when internal knowledge is not available. Since the learning
convergence is determined by the size of the state space where the larger the state space
the slower learning might become, reducing the state space by eliminating the
insignificant ones can lead to faster learning. In this paper a novel algorithm called
Online State Elimination in Accelerated Reinforcement Learning (OSE-ARL) is
introduced. This algorithm accelerates the RL learning performance by distinguishing
insignificant states from the significant one and then eliminating them from the state
space in early learning episodes. Applying OSE-ARL in grid world robot navigation
shows 1.46 times faster in achieving learning convergence. This algorithm is generally
applicable for other robotic task challenges or general robotics learning with large scale
state space.

Keywords: Reinforcement Learning, robot learning, Reinforcement Learning,
Accelerated Reinforcement Learning, Soccer robotics.

1. Introduction
 Robot learning is a research field at the intersection of machine learning and robotics. It
studies techniques allowing a robot to acquire novel skills or adapt to its environment through
learning algorithms. A remarkable variety of problems in robotics may be naturally phrased as
problems of Reinforcement Learning[1]. Reinforcement learning enables a robot to
autonomously discover an optimal behavior through trial-and-error interactions with its
environment. RL is a well-known technique for the solution of problems where agents need to
act with success in an unknown environment, learning through trial and error
[2].Unfortunately, convergence of any RL algorithm requires extensive exploration of the
state-action space, which can be very time consuming. Therefore acceleration of learning
processes is one of important issues in reinforcement learning[3, 4].
 Most successes in accelerating RL incorporated internal knowledge or human intervention
into the learning system, such as reward shaping, transfer learning, parameter tuning, and even
heuristics. These approaches could be no longer solutions to RL acceleration where internal
knowledge is not available. This paper proposed a novel approach in improving the RL
learning performance called by accelerating the speed of the learning convergence without
involving heuristics or any internal knowledge.
 Since the learning convergence is determined by the size of the state space where the larger
the state space the slower learning might become, reducing the state space by eliminating the
insignificant states can lead to faster learning. In this research a novel method called Online
State Elimination in Accelerated Reinforcement Learning (OSE-ARL) is introduced. This
algorithm distinguishes insignificant states from the significant one from early learning
episode, which reducing the state space during the learning process.

 Received: February 28th, 2014. Accepted: December 9th, 2014

665

 The remainder of this paper is organized as follows. Section II briefly reviews RL
approaches and describes the Qሺߣሻand SARSAሺߣሻalgorithm, while Section III presents a
 review of some existing approaches to speed up RL. Next, Section IV shows how the
learning speed can be improved by eliminating some insignificant states from the state space
during the learning process. Then, section V details the mapping grid world robot navigation
into RL and the experiments performed in the domain, and analyses the results obtained.
Finally, section VI presents conclusions and future directions.

2. Reinforcement Learning
 Reinforcement Learning [3] is a theoretically-grounded machine learning method designed
to allow an autonomous agent to maximize its long-term reward via repeated experimentation
in, and interaction with, its environment. Under certain conditions, Reinforcement Learning is
guaranteed to enable the agent to converge to an optimal control policy, and has been
empirically demonstrated to do so in a series of relatively simple test bed domains[5].The
common approach in RL is to model the process of learning a task as a Markov Decision
Process (MDP). The MDP is defined as the 4-tuple ܵۃ, ,ܣ ,ݎܲ ܣ whereܵ is a set of states and ,ۄܴ
is a set of actions. The state transition probability density function ܲݎ: ܵ ൈ ܣ ൈ ܵ ՜ ሾ0,1ሿ
defines the probability density over ܵ for the next stateݏ௧ାଵ א ܵ after executing action ܽ௧ א ܣ
in state ݏ௧ א ܵ. The reward function ܴ: ܵ ൈ ܣ ൈ ܵ ՜ Թ defines the reward of a state transition
as ݎ௧ାଵ ൌ ܴሺݏ௧, ܽ௧, :ߨ ௧ାଵሻ. A control policy (or simply policy)ݏ ܵ ൈ ܣ ՜ ሾ0,1ሿ defines the
action selection probability density for all actions in all states. An MDP has the Markov
property, which means that transitions only depend on the current state-action pair and on
neither past state-action pairs nor on information excluded fromݏ. This implies that ݏ must
contain all relevant state information on the agents and the environment.

The agent’s goal is to maximize, at each time-step k, the expected discounted return ܴ:

ܴ௧ ൌ ∑൛ܧ ௧ା௝ାଵݎ௝ߛ
∞
௝ୀ଴ ൟ (1)

where ߛ א ሾ0,1ሻ is the discount factor, and the expectation is taken over the probabilistic state
transitions. The quantity ܴ௧ compactly represents the reward accumulated by the agent in the
long run. The discount factorߛ can be regarded as encoding increasing uncertainty about
rewards that will be received in the future, or as a means to bind the sum that otherwise might
grow infinitely.

The value function ܸగሺݏሻgives the expected return of the following policy ߨ from state ݏ:

 ܸగሺݏሻ ൌ ௧ݏ|గሼܴ௧ܧ ൌ ሽݏ ൌ ∑గ൛ܧ ௧ା௝ାଵݎ௝ߛ

∞
௝ୀ଴ หݏ௧ ൌ ൟ (2)ݏ

where ܧగሼ·ሽ denotes the expected value given that the agent follows policy ߨ. The task of the
agent is, therefore, to maximize its long-term performance, while only receiving feedback
about its immediate, one-step performance. One way it can achieve this is by computing an
optimal action-value function. The action-value function or Q-function ܳሺݏ, ܽሻ gives the
estimated return of choosing action ܽ in state ݏ and following the control policy afterwards:

ܳగሺݏ, ܽሻ ൌ ௧ݏ|గሼܴ௧ܧ ൌ ,ݏ ܽ௧ ൌ ܽሽ ൌ ∑గ൛ܧ ௧ା௝ାଵݎ௝ߛ
∞
௝ୀ଴ หݏ௧ ൌ ,ݏ ܽ௧ ൌ ܽൟ (3)

 A policy that is better than or equal to all other policies with respect to ܴ for all ݏ א ܵ is an
optimal policy, denoted כߨ. All optimal policies share the same optimal value function ܸכሺݏሻ
and optimal action-value functionܳכሺݏ, ܽሻ.
 Temporal Difference (TD) learning methods have the goal to estimate ܸగሺݏሻ or ܳగሺݏ, ܽሻ.
TD methods estimate the (action-) value function at time step ݇, ܳ௞ሺݏ, ܽሻ, by bootstrapping

Safreni Candra Sari, et al.

666

from an initial estimate, using information from single state transitions. Because TD methods
learn from single observed state transitions, they do not need a model. They work on-line, for
both episodic tasks and infinite horizon tasks. The following recursive reformulation of
ܳగሺݏ, ܽሻ (reformulationܸగሺݏሻis analogous) shows the relation between ܳగሺݏ௞, ܽ௞ሻ and
ܳగሺݏ௞ାଵ, ܽ௞ାଵሻ,

ܳగሺݏ, ܽሻ ൌ ௧ାଵݎగሼܧ ൅ ܳగሺݏ௧ାଵ, ܽ௧ାଵሻ|ݏ௧ ൌ ,ݏ ܽ௧ ൌ ܽሽ (4)

This formulation can be used to derive the TD error ்ߜ஽,௧ାଵof the transition, which gives the
difference between the current estimate ܳ௧

గሺݏ௧, ܽ௧ሻ and the estimatebased on ݎ௧ାଵ and
ܳ௧

గሺݏ௧ାଵ, ܽ௧ାଵሻ:

஽,௧ାଵ்ߜ ൌ ௧ܳߛ௧ାଵݎ
గሺݏ௧ାଵ, ܽ௧ାଵሻ െ ܳ௧

గሺݏ௧, ܽ௧ሻ (5)

The TD error is used to update the estimate of ܳ௧
గሺݏ௧, ܽ௧ሻ. For discrete state-action spacesܳcan

be updated as follows:

ܳ௧ାଵ
గ ሺݏ௧, ܽ௧ሻ ൌ ܳ௧

గሺݏ௧, ܽ௧ሻ ൅ ஽,௧ାଵ (6)்ߜߙ

in which ߙ א ሺ0,1ሿ is the learning rate or step size.
 In TD control, the policy is directly derived from ܳሺݏ, ܽሻ. An important policy is the greedy
policy, which selects ܽ௧,௚௥௘௘ௗ௬, the action with the highest estimated return:

ܽ௧,௚௥௘௘ௗ௬ ൌ ݃ݎܽ max௔′ ܳగሺݏ௧, ܽ′ሻ (7)

while greedy actions exploit the knowledge gained and currently stored in ܳሺݏ, ܽሻ, new
knowledge can be gained from selecting exploratory, non-greedy actions. A widely used action
selection policy that includes exploratory actions is the ߳-greedy policy ߨఢି௚௥௘௘ௗ௬ሺݏ௧, ܽ௧ሻwhich
is defined such that a random action is selected with probability ߳(uniformly sampled from ܣ)
and ܽ௧,௚௥௘௘ௗ௬otherwise:

,௧ݏఢି௚௥௘௘ௗ௬ሺߨ ܽ௧ሻ ൌ ቐ
1 െ ߳ ൅ ఢ

|஺ሺ௦ሻ|
, ݂݅ܽ௧ ൌ ܽ௧,௚௥௘௘ௗ௬

ఢ
|஺ሺ௦ሻ|

, ݂݅ܽ௧ ് ܽ௧,௚௥௘௘ௗ௬
 (8)

with ߳ א ሾ0,1ሿthe exploration rate and |ܣሺݏሻ|the number of actions in ܣ within state ݏ. For a
goodtrade-off between exploration and exploitation, the value for ߳is typically chosenfrom the
range [0.01,0.20] [6].
 Popular on-line TD control algorithms are Q-learning and SARSA. SARSA is an on-policy
algorithm, estimating the value function for the policy being followed. Q-learning is an on-
policy algorithm under which ܳሺݏ, ܽሻ converges to the optimal value function ܳכሺݏ, ܽሻ
belonging to the optimal policy כߨ, independently of the policy actually followed during
learning. The TD-errors for these algorithms are computed as follows:

஽ೄಲೃೄಲ,௧ାଵ்ߜ ൌ ௧ାଵݎ ൅ ,௧ାଵݏ௧ሺܳߛ ܽ௧ାଵሻ െ ܳ௧ሺݏ௧, ܽ௧ሻ (9)
஽ೂ,௧ାଵ்ߜ ൌ ߛ௧ାଵݎ ൅ max௔′ ܳ௞ ሺݏ௧ାଵ, ܽ௧ାଵሻ െ ܳ௧ሺݏ௧, ܽ௧ሻ (10)

 To speed up convergence, SARSA and Q-learning can be combined with eligibility
traces[3], thereby forming SARSA(ߣ) and Q(ߣ), respectively. With eligibility traces, the TD
error is not only used to update ܳ௧ሺݏ, ܽሻ for ݏ ൌ ,௧ݏ ܽ ൌ ܽ௧, but also for state-action pairs that
were visited earlier in the episode. In this process, more recently visited ሺݏ, ܽሻ-pairs receive a

Online State Elimination in Accelerated reinforcement Learning

667

stronger update than pairs visited longer ago. For discrete state-action spaces, ܳሺݏ, ܽሻ is
updated, ݏ׊ א ܽ׊ ,ܵ א :as follows ,ܣ

ܳ௧ାଵ
గ ሺݏ, ܽሻ ൌ ܳ௧

గሺݏ, ܽሻ ൅ ,ݏ஽,௧ାଵ݁௧ାଵሺ்ߜߙ ܽሻ (11)
with

݁௧ାଵሺݏ, ܽሻ ൌ ൜݁ߣߛ௧ሺݏ, ܽሻ ൅ ݏ݂݅ ,1 ൌ ܽ ௧ andݏ ൌ ܽ௧
,ݏ௞ሺ݁ߣߛ ܽሻ otherwise (12)

where ݁௧ሺݏ, ܽሻ contains the eligibility of a state-action pair at time step ݐ with ݁଴ሺݏ, ܽሻ ൌ 1, and
λ the (eligibility) trace discounting factor. For Q(ߣ), the eligibility of preceding states is only
valid as long as the greedy policy is followed.

 Thus, for Q(ߣ), ݁is also reset after an exploratory action. Choosing a value for ߣ can be
done in the same way as for using a characteristic time scale for the eligibility of the agent's
actions.

Figure 1. Tabular SARSA(λ).

 SARSA is an on-policy TD control method, which the first step is to learn an action-value
function rather than a state-value function. In particular, for an on-policy method we must
estimate ܳగሺݏ, ܽሻfor the current behavior policy ߨ and for all states ݏand actions ܽ. When we
consider transitions from state-action pair to state-action pair, and learn the value of state-
action pairs, formally these cases are identical: they are both Markov chains with a reward
process. The theorems assuring the convergence of state values under TD(0) also apply to the
corresponding algorithm for action values:

ܳሺݏ௧, ܽ௧ሻ ՚ ܳሺݏ௧, ܽ௧ሻ ൅ ௧ାଵݎሾߙ ൅ ,௧ାଵݏሺܳߛ ܽ௧ାଵሻ െ ܳሺݏ௧, ܽ௧ሻሿ (13)

 This update is done after every transition from a non terminal state ݏ௧. If ݏ௧ାଵis terminal,
then ܳሺݏ௧ାଵ, ܽ௧ାଵሻis defined as zero. This rule uses every element of the quintuple of
events,ሺݏ௧, ܽ௧, ,௧ାଵݎ ,௧ାଵݏ ܽ௧ାଵሻ, that make up a transition from one state-action pair to the next.
This quintuple gives rise to the name SARSA for the algorithm. The general form of the
complete eligibility trace version of SARSA or SARSA(λ) is given in Figure 1.
 One of the most important breakthroughs in reinforcement learning was the development of
an off-policy TD control algorithm known as Q-learning [7]. Its simplest form, 1-step Q-
learning is defined by

ܳሺݏ௧, ܽ௧ሻ ՚ ܳሺݏ௧, ܽ௧ሻ ൅ ௧ାଵݎሾߙ ൅ ߛ max௔ ܳሺݏ௧ାଵ, ܽሻ െ ܳሺݏ௧, ܽ௧ሻሿ (14)

Initialize ܳሺݏ, ܽሻ arbitrarily and ݁ሺݏ, ܽሻ ൌ 0, for all ݏ, ܽ
Repeat (for each episode):
 Initialize ݏ, ܽ
 Repeat (for each step of episode):
 Take action ܽ, observer ݎ, ′ݏ
 Choose ܽ′ from ݏ′ using policy derived from Q (e.g., ߳-greedy)
ߜ ՚ ݎ ൅ ,′ݏሺܳߛ ܽ′ሻ െ ܳሺݏ, ܽሻ
 ݁ሺݏ, ܽሻ ՚ ݁ሺݏ, ܽሻ ൅ 1
 For all ݏ, ܽ:
 ܳሺݏ, ܽሻ ՚ ܳሺݏ, ܽሻ ൅ ,ݏሺ݁ߜߙ ܽሻ
 ݁ሺݏ, ܽሻ ՚ ݁ሺݏ, ܽሻ ൅ 1
′ݏ ՚ ;ݏ ܽ′ ՚ ܽ
 until ݏ is terminal

Safreni Candra Sari, et al.

668

 In this case, the learned action-value function, ܳ, directly approximates ܳכ, the optimal
action-value function, independent of the policy being followed. This dramatically simplifies
the analysis of the algorithm and enabled early convergence proofs. The policy still has an
effect in that it determines which state-action pairs are visited and updated. However, all that is
required for correct convergence is that all pairs continue to be updated. The complete
algorithm in pseudo code is given in figure 2.

Figure 2. Tabular version of Watkins's Q(λ) algorithm.

3. Approach on Accelerated Reinforcement Learning
 The quality of the learning itself is measured based on eventual convergence to optimal,
speed of convergence to optimality and regret [4]. Although many algorithms come with a
provable guarantee of asymptotic convergence to optimal behavior [7], an agent that quickly
reaches a plateau at 99% of optimality may, in many applications, be preferable to an agent that
has a guarantee of eventual optimality but a sluggish early learning rate. Therefore the speed of
convergence to near-optimality is more practical to be measured. The speed of convergences to
the near optimality with high dimension environment is often big issues in RL. One effort that
can be applied to accelerate RL is to find a new algorithm that reduces the state space by
carefully eliminating some unimportant states while learning. If not careful enough then the
potentially important state might also be eliminated, and the learning process will fail.
 Several methods have been proposed to speed up RL. One of them is incorporate the prior
knowledge into RL. Mataric[8] used implicit domain knowledge to design the
reinforcement/reward function in situated domains based on utilizing heterogeneous reward
functions and goal specific progress estimator. Laud and DeJong [9] formulated an explanation
of the potential of reward shaping to accelerate reinforcement learning with a reward-based
analysis. Konidaris and Barto[10]introduced the use of learned shaping rewards in RL tasks,
where an agent uses prior experience on a sequence of tasks to learn a portable predictor that
estimates intermediate rewards, resulting in accelerated learning in later tasks that are related
but distinct. Matignon, Laurent et al. [11]accelerate goal-directed RL by modifying the reward
function using a binary reward function (for discrete state space) and continuous reward
function (for continuous state space) and implementing Gaussian goal biased function as the
initial values of Q(s). Ma, Xu et al. [12] applied a state-chain sequential feedback Q-learning
algorithm for path planning of autonomous mobile robots in unknown static environments,
where the state chain is built during the searching process.
 Another approach in accelerating the RL is by applying transfer learning in RL. The core
idea of transfer is that experience gained in learning to perform one task can help improve
learning performance in a related, but different, task[13]. Drummond [14] used transfer

Initialize ܳሺݏ, ܽሻ arbitrarily and ݁ሺݏ, ܽሻ ൌ 0, for all ݏ, ܽ
Repeat (for each episode):
 Initialize ݏ, ܽ
 Repeat (for each step of episode):
 Take action ܽ, observer ݎ, ′ݏ
 Choose ܽ′ from ݏ′ using policy derived from Q (e.g., ߳-greedy)
כܽ ՚ ݃ݎܽ max௕ ܳሺݏ′, ܾሻ(ifܽ′ ties for the max, then ܽכ ՚ ܽ′)
ߜ ՚ ݎ ൅ ,′ݏሺܳߛ ሻכܽ െ ܳሺݏ, ܽሻ
 ݁ሺݏ, ܽሻ ՚ ݁ሺݏ, ܽሻ ൅ 1
 For all ݏ, ܽ:
 ܳሺݏ, ܽሻ ՚ ܳሺݏ, ܽሻ ൅ ,ݏሺ݁ߜߙ ܽሻ
 If ܽ′ ൌ ,ݏthen ݁ሺ ,כܽ ܽሻ ՚ ,ݏሺ݁ߣߛ ܽሻ
 , else ݁ሺݏ, ܽሻ ՚ 0
′ݏ ՚ ;ݏ ܽ′ ՚ ܽ
 until ݏ is terminal

Online State Elimination in Accelerated reinforcement Learning

669

learning from the related tasks, which generate a partitioning of the state space which is then
used to index and compose functions stored in a case base to form a close approximation to the
solution of the new task. Taylor and Stone [15]introduced behavior transfer, a novel approach
to speeding up traditional RL. Celiberto, Matsuura et al. [2]applied transfer learning from one
agent to another agent by means of the heuristic function speeds up the convergence of the
algorithm. Case-based is used to transfer the learning, and it makes TL-HAQL algorithm.
Peters and Schaal[16]reduced the problem of learning with immediate rewards to a reward-
weighted regression problem with an adaptive, integrated reward transformation for faster
convergence. Takano, Takase et al. [17] accelerated the learning process by implementing the
effective transfer learning method, which merges a selected source policy to the target policy
without negative transfers. Norouzzadeh, Busoniu et al. [18]used two transfer criteria in
measuring agent’s performance (by the distance between its current solution and the optimal
one and by the empirical return obtained) to decide when to transfer learning from an easier
task to a more difficult one so that the total learning time is reduces.
 More recent proposal in accelerating RL is to include heuristics in RL algorithms. Gao and
Toni [19] incorporate heuristic, represented by arguments in value-based argumentation into
RL by using Heuristically Accelerated RL techniques in RoboCup Soccer Keepaway-
Takeaway game. Celiberto, Matsuura et al. 2010 [2] applied transfer learning from one agent to
another agent by means of the heuristic function speeds up the convergence of the algorithm.
Case Based (CB) is used to transfer the learning, and it makes RL algorithm faster. Terashima,
Takano et al. [20]used the prior information on the problem utilizing options as prior
information. In order to increase the learning speed even with wrong options, methods for
option correction by forgetting the policy and extending initiation sets. Bianchi et al. [21]
presented a novel class of algorithms, called Heuristically-Accelerated Multi-agent
Reinforcement Learning (HAMRL), which allows the use of heuristics to speed up well-known
multi-agent reinforcement learning algorithms. Such HAMRL algorithms are characterized by
a heuristic function, which suggests the selection of particular actions over others.
 Other approaches were also proposed. Senda, Mano et al.[22]reduced state space by
modelling the state space by 3D space coordinates where then the space model is simplified by
converting 3D coordinates to 2D coordinates under a certain terms. Grounds and Kudenko[23]
investigated the use of parallelization in RL, with the goal of learning optimal policies for
single-agent RL problems more quickly by using parallel hardware. Braga and
Araújo[24]influenced zone algorithm, an improvement over the topological RL agent (TRLA)
strategy, that allows reducing the number of requested interactions, which is based on the
topological-preserving characteristic of the mapping between states (or state–action pairs) and
value estimates. Kartoun, Stern et al. [25] allowed several learning agents to acquire
knowledge from each other. Acquiring knowledge learnt by an agent via collaboration with
another agent. Price and Boutilier 2003[26]proposed an implicit imitation that can accelerate
reinforcement learning dramatically in certain cases, roughly by observing a mentor, a
reinforcement learning agent can extract information about its own capabilities in, and the
relative value of, unvisited parts of the state space. Potapov and Ali [27] tuned the learning
steps, discount and exploration degree parameters to influence the convergence rate.
McGovern, Sutton et al. [28]used built in policies or macro-actions as a form of domain
knowledge that can improve the speed and scaling of reinforcement learning algorithms.
 The algorithm proposed in this paper is aimed to improve the RL learning performance by
accelerating the speed of the learning convergence without involving heuristics or any learning
domain prior knowledge. Since the learning convergence is determined by the size of the state
space, where the larger the state space the slower learning might become, reducing the state
space can lead to faster learning. Instead of heuristics or any learning domain prior knowledge,
this proposed method identifies some potential consistent local minima states to be considered
as insignificant states and is considered to be eliminated from the state space. This method
reduces the state space, decreasing the computation order and hence accelerating the
convergence speed.

Safreni Candra Sari, et al.

670

4. Online State Elimination to Accelerate Reinforcement Learning
 The complexity of an algorithm is often expressed using big O notation. Big O notation is
useful when analyzing algorithms for efficiency. In RL, if a good task representation or
suitable initialization is chosen, the worst-case complexity of reaching a goal state has a tight
bound of ܱሺ݊ଷሻ action executions for Q-learning and ܱሺ݊ଶሻ action executions for value-
iteration [29], where n stands for number of states in the state space. If the agent has initial
knowledge of the topology of the state space or the state space has additional properties, the
ܱሺ݊ଷሻ bound can be decreased further. In our case, where prior knowledge is not available,
initial knowledge is not incorporated in the new algorithm.
 Since the worst case complexity depends totally on number of states, it’s very clear that n
has very dominant factor in determining the convergence speed, where reducing n will lead to
decreasing the computation needed to reach learning convergence. When robot learns to master
a new skill, it learns to determine which states considered important to support its performance.
Robot learns to classify which states are significant, and which states are less significant. By
updating its Q (s,a) values every iteration, agent update its policies by choosing the highest Q
value as its decision factor, which means it starts to ignore smaller Q value (which indicates
less significant states). This condition forces the agent to rarely visit these less significant states
until agent succeeded in maximizing its rewards.
 Almost all RL algorithms are based on estimating value functions--functions of states (or of
state-action pairs) that estimate how good it is for the agent to be in a given state (or how good
it is to perform a given action in a given state). The notion of "how good" here is defined in
terms of future rewards that can be expected, or, to be precise, in terms of expected return. Of
course the rewards the agent can expect to receive in the future depend on what actions it will
take. Accordingly, value functions are defined with respect to particular policies. The value of
the state space in this case represents the significance factor of the state. High value state
represents the high probability that agent will decide in determining its optimum policyכߨ.A
high value state means significant states that have to be maintained in the state space because it
provides solution to the agent. On the other hand the states that have less value become less
interesting for the agents. The probability to visit these states is towards 0 in 100% exploitation
cases. When the insignificant factor of these states can be measured, the states which have high
insignificancy can be considered to be eliminated from the state space leaving it reduced.
 In order to determine the insignificance of a state, in this paper a new tuple ߡ is proposed.
Definition 1: The insignificance functionߡ: ܵ ื Թis a function that returns a value indicates the
insignificance rate of a state ݏ א ܵ. This insignificance function represents an insignificance
rate of a state that derived from value V(s), where the lowest value V of the neighborhood state
is considered to be potentially insignificant. This function indicates which state ݏ א ܵ is
insignificant enough that it can be ignored and should be eliminated from the state space, since
they don’t provide solutions to the agent.

Definition 2: If the domainܺ is a metric space then f is said to have
a local (or relative) maximum point at the point כݔ if there exists some ε >0 such that ݂ሺכݔሻ ൒
݂ሺݔሻ for all x in ܺ within distance ε of כݔ. Similarly, the function has a local minimum
point at כݔ if ݂ሺכݔሻ ൒ ݂ሺݔሻ for all x in X within distance ε of כݔ.

Definition 3: A state is called a local minimum state at ݇௧௛ iteration or ݏ௠௜௡

௞ when its V value is
proven to be a local minimum of all V(s) function in ݇௧௛ iteration for all ݏ א ܵ.
Since the first learning iteration every state in state space has initial insignificance value
ሻݏሺߡ ൌ 0 for all ݏ א ܵ, as the initial value of the V(s). When agent update its state-action value
by harvesting rewards R(s) every time it visits a state, insignificance factor ߡሺݏሻ is also updated
by the following return:

Online State Elimination in Accelerated reinforcement Learning

671

ሻݏ௞ାଵሺߡ ൌ ൜ ሻݏ௞ሺߡ ൅ ௠௜௡ݏ ݏ݅ݏ݂݅ߤ
௞

ሻݏ௞ሺߡ ൌ ݁ݏ݅ݓݎ݄݁ݐ݋ 0
 (15)

where ߡ௞ାଵሺݏሻ represents the insignificance valueߡ of a states in the ሺ݇ ൅ 1ሻ௧௛ iteration, ߡ௞ሺݏሻ
the insignificance value of state s in ݇௧௛ iteration, and ߤ is the insignificance step which
represents the increasing potential of a insignificant state. The insignificance of state s is
updated every iteration but it will be reset back to 0 when in the next iteration s is no longer a
local minimum (ݏ ് ௠௜௡ݏ

௞ .).

Definition 4: A sub state space ܵ௠௜௡

௞ ؿ ܵ is a state space at kth iteration, which consists of all
ݏ א ܵand ߡ௞ሺݏሻ ൒ Ι. When ߡ௞ሺݏሻ of a states larger than a threshold value ߇, the state will be
added to a sub state space ܵ௠௜௡

௞ ؿ ܵ , which is then considered to be eliminated from the state
space.

ܵ௞ାଵ ึ ܵ௞ܵځ௠௜௡
௞ (16)

 In every iteration kth, agent reduce its Q table to only the new state space ܵ௞ାଵ, and original
action space ܣ. However learning at early stages is essentially random exploration (Bianchi,
2013). Deciding which states is more significant than others in this stage gives very small
contributions since every states has it own significance potential. It’s very important however
to expand Ι to an exponential function that vary to iteration number k as given in the following
equation

Ιሺݐሻ ൌ Ι଴݁୦/୩ (17)

where Ι଴ is a initial value of Ι and h is a real number. This function gives Ιሺݐሻ ൌ Ι଴, when k
goes to infinity. This has to be done since in early stage/exploration stage since it’s very
important to let agent see all possibilities that it can profit from V(s). The complete algorithm
in pseudo code is given in Figure 3.

Initialize ܳሺݏ, ܽሻ arbritarily
Define number of episodes k
Define elimination start episode p
௦ߡ ൌ 0 (for all ݏ א ܵሻ
t=0
Repeat (for each episodek):
 Initialize ݏ
Repeat (for each step of episode):
 Choose ܽ from ݏ using policy derived from ܳ (e.g., ߳-greedy)
 Take action ܽ, observer ݏ ,ݎ′
 ܳሺݏ, ܽሻ ՚ ܳሺݏ, ܽሻ ൅ ݎൣߙ ൅ ߛ max௔′ ܳሺݏ′, ܽ′ሻ െ ܳሺݏ, ܽሻ൧
ݏ ՚ ;′ݏ
until ݏ is terminal
if k>p
 Vሺݏሻ ൌ max௔ ܳሺݏ, ܽሻ
 k=k+1
 Repeat (for all ݏ א ܵሻ
 if V ሺݏሻ is local minimum
 Ι ึ Ι݁௛/௞
௦ߡ ൌ ௦ߡ ൅ ߤ

 ifߡ௦ ൒ Ι

Safreni Candra Sari, et al.

672

 ఐܵ ึ ఐܵ ׫ ሼݏሽ
 else
௦ߡ ൌ 0
 ఐܵ ึ ఐܵ
 Endif
 Endif
 ܵ ึ ܵ\ ఐܵ
 until ݏ is terminal
Endif

Figure 3. OSE-ARL Algorithm

5. Mapping Grid world Robot Navigation into Reinforcement Learning
 One of the dominant topics in current robotics research is that of autonomous navigation. In
the robot navigation problem, the robot need to find an optimal navigable path in a given
environment, with certain constraints imposed on the robot, such as a time limit or limited
availability of resources. Optimal path here refers to a path between the two points: the source
and destination, which has the least path cost, or in other words the most profitable one among
all the existing paths.
 The environment is a discrete grid-world with randomly located obstacles. There are three
robot agents on the grid-world, starting from an arbitrary initial position. The agent, which is
nothing but a simple mobile robot, can occupy a single empty tile at a time and is faced with
the task of navigating through the map in an autonomous manner. There can only be one agent
on one tile at a time. The agent is capable of sensing its immediate environment and moving in
5 directions (action) one tile at a time respectively North, South, West, East and stay put, that
makes the action space ܣ ൌ ሼܰ, ܵ, ܹ, ,ܧ ܵܲሽ available for the agent. The grid-world
environment is given in Figure 4.

Figure 4. A robot agent on the 10x10 grid world can move to 5 directions resp. North, South,
West, East, and stay put, learn to find shortest path to its destination and avoiding obstacles.

The state set ܵin this environment is defined as:
 ܵ ൌ ቄ൫݌௔௚௘௡௧൯; ݌௔௚௘௡௧ א ሼሺ1 1ሻ, ሺ1 2ሻ, . . . , ሺ10 10ሻሽቅ (18)

where pagentis the agent position.
The task of the robot agent is to find sequence of actions that have to be performed to achieve
the goal state (destination). The reward function R(s, a, s’) for all agents are given as follows

Online State Elimination in Accelerated reinforcement Learning

673

ܴሺݏ, a, ሻ′ݏ ൌ ൝
,՜ݎ s א ܵ՜

,ାݎ s א ܵା

,ିݎ s א ܵି
 (19)

where ݎ՜ , ݎା, and ିݎ, is resp. the reward when agent takes action to move to one of the 5
directions, when agent achieved the goal state, and when agent bumped the wall or the
obstacle.
 Every learning episode starts from the same initial position where agent is always in the
same grid. The agent performs the learning task until the episode is ended. There are 2
situations that end the episode: when the agent arrived at the destination state, and when
maximum trial had been achieved. For action selection the following ߝ-greedy scheme (eq. 8)
is used.

6. Experiments and Empirical Result
 In the grid world robot navigation problem, an RL agent tried to maximize its returns by
finding sequence of optimum policies. The RL agent occupy distinct cells of 10x10 grid
(Figure 4) - which the cell’s vector coordinate is defined as state, and can take one of 5 actions
on each turn: move North (N), South (S), West (W), East.

Figure 5. Initial position of robot agents on grid world.

 At the beginning of an episode, the agent is positioned in the configuration depicted in Fig
5, while 9 obstacles are placed surrounding the destination or goal state. When the agent takes
an action it will take it to the next state. For example when agent is in state (1,1), and take
action N, then in the next iteration the state of the agent is (1,2), while taking action S will put
the agent on the same state. The system is deterministic, therefore the transition function
is ܶ ׷ ܵ ൈ ܣ ൈ ܵ ՜ ሾ0, 1ሿ. Finally when agent arrived at the destination, or has taken 500
iterations step, the episode is ended, and agent started new episode from the same initial
position.
 The learning parameters of the agent are setup as follows: learning rate α =0.3, discount
factor γ=0.95, eligibility trace decay factor λ=0.5, and initial exploration probability 0.5=ߝ,
decaying with the trials count, the ሺݎ՜, ,ାݎ ሻିݎ ൌ ሺെ1, 10, െ2ሻ.In the episodic learning the
number of trials which indicates how many episodes to allow learning to run at most is set to
be 100. The maximum iterations to allow a trial to run at most is set to be 500. The algorithms
were implemented in Matlab and executed in desktop, with 4GB of RAM in a Windows 7 OS
platform.

Safreni Candra Sari, et al.

674

(a)

(b)

(c)

Online State Elimination in Accelerated reinforcement Learning

675

(d)

Figure 6. The learning performance of Q (λ versus OSE-ARL-Q (λ) ((a) and (b)) and SARSA
(λ) versus OSE-ARL-SARSA (λ) ((c) and (d)) on 10x10 grid area for robot navigation task.

The plot shows the average of the learning convergence over 400 independent runs, where each
run consists of runs with 100 trials

 For each experiment, a learning session consisted of 400 runs of 100 trials/episodes each. A
trial finished whenever agent had arrived at the goal state or when 500 moves/iteration were
completed. Each result is presented as a learning curve derived from the average steps to
complete trial, which is the number of moves to achieve goal state. The experiment was
conducted as follows. Qሺλሻ, SARSAሺλሻ, OSE-ARL-Qሺλሻ and OSE-ARL-SARSAሺλሻ are
applied respectively to the robot navigation problem with 400 numbers of runs each. The
performance of each algorithm is plotted and benchmarked. In figure 6 the Qሺλሻ is compared
to 3 kinds of OSE-ARL-Qሺλሻ, where OSE-ARL-Qp(λ) represents the performance of OSE-
ARL-Q(λ) eliminated from episode ߩ א ܼ. In figure 7 the SARSAሺλሻ is also compared to 3
kinds of OSE-ARL-SARSAሺλሻ.
 Figure 6 shows the learning curves of the agent averaged over 400 learning sessions. The
horizontal axis represents the numbers of episodes or trials that was done in the experiment,
while the vertical axis shows how many steps or iterations needed to complete the task. Figure
6(a) shows the learning performance curve of the Qሺλሻ, and OSE-ARLQሺλሻ starting at 1st, 3rd,
and 5th episodes. Even though the curve of Qሺλሻ had reached its convergence after 60th trial,
the OSE-ARLQሺλሻ was noticeably better from early episodes due to the use of online state
elimination method. OSE-ARLQ1ሺλሻ and OSE-ARLQ3ሺλሻ reached respectively its
convergence already at 55th trial and 41st trial for OSE-ARLQ5ሺλሻ. Similarly in Figure 6(b)
OSE-ARLQ7ሺλሻ, OSE-ARLQ9ሺλሻ and OSE-ARLQ11ሺλሻ reached its convergence at 43rd trial.
Figure 6(c) presents the learning curves of the SARSAሺλሻ, and OSE-ARLSARSAሺλሻ starting
at 1st, 3rd, and 5th episodes. The results show that the SARSAሺλሻ reached its convergence after
60th trial, while OSE-ARLSARSA1ሺλሻ and OSE-ARLSARSA3ሺλሻ reached 53rd, and OSE-
ARLSARSA5ሺλሻ after 41 trials. Lastly, Figure 6(d) presents the learning curves of the
SARSAሺλሻ, and OSE-ARLSARSAሺλሻ starting at 7st, 9rd, and 11th episodes. The results show
that the OSE-ARLSARSA7ሺλሻ, OSE-ARLSARSA9ሺλሻ and OSE-ARLSARSA11ሺλሻ achieve its
convergence after 42 trials. These results show that by eliminating insignificant states from
early learning episodes will speed up the convergence to 1.46 times faster time. The
performance analysis of the algorithm is given in table 1.
 Table 1 shows the performance analysis of average (over the 400 learning runs) of the robot
agent. From 400 runs, OSE-ARL-Qp(λ) for p=9 and p=11 run 100% successfully, while at p=1
fail in learning happens 64 times out of 400, 8 times for p=3, 5 times for p=5, 4 times for p=7.
It can be seen that OSE accelerate the learning speed up to 1.46 faster even though there still is
failure in learning prose’s when the state elimination is executed from early stages. The failure

Safreni Candra Sari, et al.

676

happened because some important states were also eliminated, because in early stages, these
important states still have low state value. This failure did not happen when agent had chance
to explore the states in early episodes, which can be seen on the table that when elimination is
started from 9th trial and up, the learning process is 100% successful.

Table1. Performance Analysis Q(λ)versus OSE-ARL-Q(λ) and SARSA(λ)
versus OSE-ARL-SARSA(λ)

RL Algorithm p Successful
run (Sr)

Successful
percentage

(Sp)

Conver
ge after

Accelerati
on factor

Performance
Index (PI) Sr/PI

Q(λ) 400 100% 60 trials 1,00 2852 14,03

OSE-ARL-
Qp(λ)

1 336 84% 55 trials 1,09 2673,2 12,57

3 392 98% 55 trials 1,09 2676,5 14,65

5 395 98,75% 41 trials 1,46 2507,6 15,75

7 396 99% 43 trials 1,40 2536,5 15,61

9 400 100% 43 trials 1,40 2571,1 15,56

11 400 100% 43 trials 1,40 2590,6 15,44

SARSA(λ) - 400 100% 60 trials 1,00 2791 14,33

OSE-ARL-
SARSAp(λ)

1 325 81,25% 53 trials 1,13 2635,8 12,33

3 392 98% 53 trials 1,13 2667,8 14,69

5 391 97,75 41 trials 1,46 2543,1 15,37

7 399 99,75 42 trials 1,43 2523,8 15,81

9 400 100 42 trials 1,43 2570,1 15,56

11 400 100 42 trials 1,43 2589,5 15,45

 Performance Index of each algorithm is done by measuring the error value of the learning
curve,

ܫܲ ൌ ∑ ௜ݕ െ ௖ݕ
௝
௜ୀ0 (20)

where i is trial, j is number of trials, ݕ௜ is the average steps to complete trials at trial i, and ݕ௖ is
the convergence value of the y. Finally the learning performance is measured by calculating the
ratio of the successful runs (Sr) and Performance Index (PI). To outperform Q(λ), OSE-ARL-
Q5(ߣ) gives the best Performance ratio, while OSE-ARL-SARSA7(λ) gives the best
performance ratio in outperforming SARSA(λ). The online state elimination executed in Q(λ)
and SARSA(λ) had performed faster convergence speed due to decreasing number of states in
the state space.

7. Conclusion and Further Research
 RL is the solution of multi robot learning problem, since the robot environment is mostly
dynamic and stochastic. However the increasing number state and action space leads to
problem in RL since it requires larger memory and computation time which can cause
degrading in the learning performance to very poor and even lead to failure in learning.
 Since the learning convergence is determined by the size of the state space where the larger
the state space the slower learning might become, reducing the state space by eliminating the
insignificant states can lead to faster learning. Applying online state elimination in grid world
multi-robot navigation had shown significant acceleration factor in multi-agent RL to 1.46
faster convergence speed.

Online State Elimination in Accelerated reinforcement Learning

677

 When internal knowledge such as reward shaping, transfer learning, parameter tuning, and
even heuristics is no longer applicable to RL problems, online state elimination becomes a
promising solution to accelerate RL. The successful learning rate is higher than 98%, due to
probability of state importance value. Increasing state importance parameter will increase
successful learning rate to 100%.
 This algorithm is not only applicable for primitive robot soccer task, but also for other
robotic soccer task challenges with large scale state space. This method has also clearly given
us a starting point on several promising extension to the existing work and highlighted
important new questions. This research has not only resulted in advances in imitation learning,
but also has opened up a whole new way of exploring this field that posses an abundant source
of ready-to-explore problems for future research.

8. References
[1] Kober, J., J.A. Bagnell, and J. Peters, Reinforcement learning in robotics: A survey. The

International Journal of Robotics Research, 2013. 32(11): p. 1238-1274.
[2] Celiberto, L.A., et al. Using transfer learning to speed-up reinforcement learning: a

cased-based approach. in Robotics Symposium and Intelligent Robotic Meeting (LARS),
2010 Latin American. 2010. IEEE.

[3] Sutton, R.S. and A.G. Barto, Reinforcement Learning: An Introduction1998: MIT Press.
[4] Kaelbling, L.P., M.L. Littman, and A.W. Moore, Reinforcement learning: a survey. J.

Artif. Int. Res., 1996. 4(1): p. 237-285.
[5] Stone, P., R.S. Sutton, and G. Kuhlmann, Reinforcement learning for RoboCup-soccer

keepaway. Adaptive Behavior, 2005. 13: p. 2005.
[6] Schuitema, E., Reinforcement Learning on Autonomous Humanoid Robots, 2012.
[7] Watkins, C.J.C.H. and P. Dayan, Q-Learning. Machine Learning, 1992. 8(3-4): p. 279--

292.
[8] Mataric, M.J. Reward Functions for Accelerated Learning. in ICML. 1994.
[9] Laud, A. and G. DeJong. The influence of reward on the speed of reinforcement learning:

An analysis of shaping. in ICML. 2003.
[10] Konidaris, G. and A. Barto. Autonomous shaping: Knowledge transfer in reinforcement

learning in Proceedings of the 23rd international conference on Machine learning. 2006.
ACM.

[11] Matignon, L., G.J. Laurent, and N. Le Fort-Piat, Reward function and initial values:
better choices for accelerated goal-directed reinforcement learning, in Artificial Neural
Networks–ICANN 20062006, Springer. p. 840-849.

[12] Ma, X., et al., State-chain sequential feedback reinforcement learning for path planning
of autonomous mobile robots. Journal of Zhejiang University Science C, 2013. 14(3): p.
167-178.

[13] Taylor, M.E. and P. Stone, Transfer learning for reinforcement learning domains: A
survey. The Journal of Machine Learning Research, 2009. 10: p. 1633-1685.

[14] Drummond, C., Accelerating Reinforcement Learning by Composing Solutions of
Automatically Identified Subtasks. Journal of Artificial Intelligence Research (JAIR),
2002. 16: p. 59-104.

[15] Taylor, M.E. and P. Stone. Speeding up reinforcement learning with behavior transfer. in
AAAI 2004 Fall Symposium on Real-life Reinforcement Learning. 2004.

[16] Peters, J. and S. Schaal, Reinforcement learning by reward-weighted regression for
operational space control, in Proceedings of the 24th international conference on
Machine learning2007, ACM: Corvalis, Oregon. p. 745-750.

[17] Takano, T., et al., TRANSFER LEARNING BASED ON FORBIDDEN RULE SET IN
ACTOR-CRITIC METHOD. INTERNATIONAL JOURNAL OF INNOVATIVE
COMPUTING INFORMATION AND CONTROL, 2011. 7(5 B): p. 2907-2917.

[18] Norouzzadeh, S., L. Busoniu, and R. Babuska. Efficient Knowledge Transfer in Shaping
Reinforcement Learning. in Proceedings of the 18th IFAC World Congress. 2011.

Safreni Candra Sari, et al.

678

[19] Gao
Keep
Mod

[20] Tera
Inco

[21] Bian
Cyb

[22] Send
redu

[23] Grou
appr
Agen

[24] Brag
learn

[25] Kart
Robo
App

[26] Pric
J. ar

[27] Pota
acce

[28] McG
reinf

[29] Koe
Lear
Mell

agent lear

, Y. and F. To
paway-Takeaw
dgil, and N. Or
ashima, K., H.
omplete Prior I
nchi, R.A.C.,
ernetics, IEEE
da, K., S. Man
uction. in SICE
unds, M. and
roximation, in
nt Learning200
ga, A.P.d.S. an
ning. Neurocom
toun, U., et al.
ot Learning F
lications (RA 2
e, B. and C. Bo

rtif. intell. res.(j
apov, A. and
eleration of lea
Govern, A., R
forcement lear

enig, S. and
rning Applied
lon University

Safren
underg
Univer
study i
at the
July 20
Univer
robotic

rning system.

Kuspr
his u
Bandu
Unive
curren
Institu
real tim

oni, Argumenta
way, in Theory
ren, Editors. 20
 Takano, and

Information. JA
et al., Heurist

E Transactions
no, and S. Fuj

E 2003 Annual
D. Kudenko
Adaptive Age

08, Springer. p
nd A.F.R. Araú
mputing, 2006
. Collaborative
Framework. in
2005), Cambrid
outilier, Accele
jair), 2003. 19

M. Ali, Co
arning. Physica
R.S. Sutton, an
rning. in Grace
R.G. Simmon
to Finding Sh
.

ni Candra Sar
graduate and
rsiteit Delft th
in electrical en
Institut Tekno
010. Safreni w
rsity (UNJANI
c soccer system

riyanto was bo
ndergraduate

ung in 1974.
ersité des Scien
ntly a Full Pr
ut Teknologi B
me computing

ation Accelera
and Applicatio

014, Springer B
J. Murata, Acc

ACIII, 2013. 17
tically-Acceler
on, 2013. PP(9
jii. A reinforce
Conference. 20
, Parallel rein

ents and Multi-
p. 60-74.
újo, Influence z
6. 70(1–3): p. 2
e Q (λ) Reinfo
n IASTED In
dge, U.S.A. 20
erating reinfor
: p. 569-629.
nvergence of

al Review E, 20
nd A.H. Fagg
e Hopper celeb
ns, Complexity
hortest Paths i

ri was born in M
master study

he Netherlands
ngineering majo
ologi Bandung
worked as a fac
I) in Bandung
m, learning in r

orn in Yogyak
degree at E
He received

nces et Techniq
rofessor at th

Bandung, Indon
systems, comp

ated Reinforcem
ons of Formal

Berlin Heidelbe
celeration of R
7(5): p. 721-73
rated Multiage
99): p. 1-1.
ement learning
003. IEEE.
nforcement lea
-Agent System

zones: A strate
21-34.
orcement Learn
ternational Co
05. ACTA Pre

rcement learnin

f reinforcemen
003. 67(2): p. 0
. Roles of ma

bration of wom
ty Analysis of
in Determinist

Medan on Janu
y in electric
in 1999. She

oring Digital M
Indonesia and

culty member a
, her research
robotics, reinfo

karta Indonesia
lectrical engin

his Master
ques de Montp

he Department
nesia. His curre
puter architectu

ment Learning
Argumentatio

erg. p. 79-94.
Reinforcement
30.
ent Reinforcem

g accelerated

arning with l
s III. Adaptati

egy to enhance

ning Algorithm
onference on

ess.
ng through imp

nt learning al
026706.
acro-actions in
en in computin
f Real-Time

tic Domains, 1

uary 14, 1975,
cal engineerin

followed her
Media and Gam
d had complete
at the General
interests are r

forcement learn

a, 2 January 19
neering, Insti
and Doctoral

pellier (USTL)
t of Electrical
ent research in
ure, and roboti

g for RoboCup
on, E. Black, S

Learning with

ment Learning.

by state space

linear function
ion and Multi-

 reinforcement

m-A Promising
Robotics and

plicit imitation.

lgorithms and

n accelerating
ng. 1997.
Reinforcement

1992, Carnegie

completed her
ng, Technishe
second master

me Technology
ed her study in

Achmad Yani
robotic system,
ning, and multi

950, completed
tut Teknologi

degree from
) France. He is
l Engineering,

nterests include
cs.

p
.

h

.

e

n
-

t

g
d

.

d

g

t
e

r
e
r
y
n
i
,
i

d
i

m
s
,
e

Online State Elimination in Accelerated reinforcement Learning

679

Ary S
He rec
ITB, a
Linz.
graphi
on inte

Widy
engine
Finish
his do
interes
has w
public

Setijadi Prihat
ceived his Bac
and doctorate d
His research in
ics, human-com
elligent system

awardana Ad
eering degree
hed master deg
octoral degree w
sts are embedd

written more th
cation.

tmanto was bo
chelor and Ma
degree in inform
nterests includ
mputer interfa

m and its applic

diprawita, lect
at Electrical

gree at Informa
with honour at
ded system, ro
han 20 paper

orn in Bandung
aster degree in
matics from Jo

de dualism of c
ace, brain-comp
cations.

turer at STEI-
Engineering

atics Engineeri
t Electrical En

obotics and int
s published in

g, Indonesia on
Electrical Eng

ohannes Kepler
computer visio
puter interface

ITB. Received
ITB with hon

ing ITB in 200
ngineering ITB
telligent agent
n international

n August 1972
gineering from
r University of

on & computer
e, game theory

d his electrical
nour in 1997

00. He finished
. His Research
autonomy. He
l and national

.
m
f
r
y

l
.

d
h
e
l

Safreni Candra Sari, et al.

680

