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Abstract: Most successes in accelerating RL incorporated internal knowledge or human 
intervention into the learning system such as reward shaping, transfer learning, 
parameter tuning, and even heuristics. These approaches could be no longer solutions to 
RL acceleration when internal knowledge is not available. Since the learning 
convergence is determined by the size of the state space where the larger the state space 
the slower learning might become, reducing the state space by eliminating the 
insignificant ones can lead to faster learning. In this paper a novel algorithm called 
Online State Elimination in Accelerated Reinforcement Learning (OSE-ARL) is 
introduced. This algorithm accelerates the RL learning performance by distinguishing 
insignificant states from the significant one and then eliminating them from the state 
space in early learning episodes. Applying OSE-ARL in grid world robot navigation 
shows 1.46 times faster in achieving learning convergence. This algorithm is generally 
applicable for other robotic task challenges or general robotics learning with large scale 
state space. 
 
Keywords: Reinforcement Learning, robot learning, Reinforcement Learning, 
Accelerated Reinforcement Learning, Soccer robotics. 
 

1. Introduction 
 Robot learning is a research field at the intersection of machine learning and robotics. It 
studies techniques allowing a robot to acquire novel skills or adapt to its environment through 
learning algorithms. A remarkable variety of problems in robotics may be naturally phrased as 
problems of Reinforcement Learning[1]. Reinforcement learning enables a robot to 
autonomously discover an optimal behavior through trial-and-error interactions with its 
environment. RL is a well-known technique for the solution of problems where agents need to 
act with success in an unknown environment, learning through trial and error 
[2].Unfortunately, convergence of any RL algorithm requires extensive exploration of the 
state-action space, which can be very time consuming. Therefore acceleration of learning 
processes is one of important issues in reinforcement learning[3, 4].  
 Most successes in accelerating RL incorporated internal knowledge or human intervention 
into the learning system, such as reward shaping, transfer learning, parameter tuning, and even 
heuristics. These approaches could be no longer solutions to RL acceleration where internal 
knowledge is not available. This paper proposed a novel approach in improving the RL 
learning performance called by accelerating the speed of the learning convergence without 
involving heuristics or any internal knowledge.  
 Since the learning convergence is determined by the size of the state space where the larger 
the state space the slower learning might become, reducing the state space by eliminating the 
insignificant states can lead to faster learning. In this research a novel method called Online 
State Elimination in Accelerated Reinforcement Learning (OSE-ARL) is introduced. This 
algorithm distinguishes insignificant states from the significant one from early learning 
episode, which reducing the state space during the learning process.  
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 The remainder of this paper is organized as follows. Section II briefly reviews RL 
approaches and describes the Qሺߣሻand SARSAሺߣሻalgorithm, while Section III presents a  
 review of some existing approaches to speed up RL. Next, Section IV shows how the 
learning speed can be improved by eliminating some insignificant states from the state space 
during the learning process. Then, section V details the mapping grid world robot navigation 
into RL and the experiments performed in the domain, and analyses the results obtained. 
Finally, section VI presents conclusions and future directions. 
 
2. Reinforcement Learning 
 Reinforcement Learning [3] is a theoretically-grounded machine learning method designed 
to allow an autonomous agent to maximize its long-term reward via repeated experimentation 
in, and interaction with, its environment. Under certain conditions, Reinforcement Learning is 
guaranteed to enable the agent to converge to an optimal control policy, and has been 
empirically demonstrated to do so in a series of relatively simple test bed domains[5].The 
common approach in RL is to model the process of learning a task as a Markov Decision 
Process (MDP). The MDP is defined as the 4-tuple ܵۃ, ,ܣ ,ݎܲ  ܣ whereܵ is a set of states and ,ۄܴ
is a set of actions. The state transition probability density function ܲݎ: ܵ ൈ ܣ ൈ ܵ ՜ ሾ0,1ሿ 
defines the probability density over ܵ for the next stateݏ௧ାଵ א ܵ after executing action ܽ௧ א  ܣ
in state ݏ௧ א ܵ. The reward function ܴ: ܵ ൈ ܣ ൈ ܵ ՜ Թ defines the reward of a state transition 
as ݎ௧ାଵ ൌ ܴሺݏ௧, ܽ௧, :ߨ ௧ାଵሻ. A control policy (or simply policy)ݏ ܵ ൈ ܣ ՜ ሾ0,1ሿ defines the 
action selection probability density for all actions in all states. An MDP has the Markov 
property, which means that transitions only depend on the current state-action pair and on 
neither past state-action pairs nor on information excluded fromݏ. This implies that ݏ must 
contain all relevant state information on the agents and the environment. 
 
The agent’s goal is to maximize, at each time-step k, the expected discounted return ܴ: 
 

ܴ௧ ൌ ∑൛ܧ ௧ା௝ାଵݎ௝ߛ
∞
௝ୀ଴ ൟ (1) 

 
where ߛ א ሾ0,1ሻ is the discount factor, and the expectation is taken over the probabilistic state 
transitions. The quantity ܴ௧ compactly represents the reward accumulated by the agent in the 
long run. The discount factorߛ can be regarded as encoding increasing uncertainty about 
rewards that will be received in the future, or as a means to bind the sum that otherwise might 
grow infinitely. 
 
The value function ܸగሺݏሻgives the expected return of the following policy ߨ from state ݏ: 
 
 ܸగሺݏሻ ൌ ௧ݏ|గሼܴ௧ܧ ൌ ሽݏ ൌ ∑గ൛ܧ ௧ା௝ାଵݎ௝ߛ

∞
௝ୀ଴ หݏ௧ ൌ  ൟ (2)ݏ

 
where ܧగሼ·ሽ denotes the expected value given that the agent follows policy ߨ. The task of the 
agent is, therefore, to maximize its long-term performance, while only receiving feedback 
about its immediate, one-step performance. One way it can achieve this is by computing an 
optimal action-value function. The action-value function or Q-function ܳሺݏ, ܽሻ gives the 
estimated return of choosing action ܽ in state ݏ and following the control policy afterwards: 
 

ܳగሺݏ, ܽሻ ൌ ௧ݏ|గሼܴ௧ܧ ൌ ,ݏ ܽ௧ ൌ ܽሽ ൌ ∑గ൛ܧ ௧ା௝ାଵݎ௝ߛ
∞
௝ୀ଴ หݏ௧ ൌ ,ݏ ܽ௧ ൌ ܽൟ (3) 

 
 A policy that is better than or equal to all other policies with respect to ܴ for all ݏ א ܵ  is an 
optimal policy, denoted כߨ. All optimal policies share the same optimal value function ܸכሺݏሻ  
and optimal action-value functionܳכሺݏ, ܽሻ. 
 Temporal Difference (TD) learning methods have the goal to estimate ܸగሺݏሻ or ܳగሺݏ, ܽሻ. 
TD methods estimate the (action-) value function at time step ݇, ܳ௞ሺݏ, ܽሻ, by bootstrapping 
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from an initial estimate, using information from single state transitions. Because TD methods 
learn from single observed state transitions, they do not need a model. They work on-line, for 
both episodic tasks and infinite horizon tasks. The following recursive reformulation of 
ܳగሺݏ, ܽሻ (reformulationܸగሺݏሻis analogous) shows the relation between ܳగሺݏ௞, ܽ௞ሻ and 
ܳగሺݏ௞ାଵ, ܽ௞ାଵሻ, 
 

ܳగሺݏ, ܽሻ ൌ ௧ାଵݎగሼܧ ൅ ܳగሺݏ௧ାଵ, ܽ௧ାଵሻ|ݏ௧ ൌ ,ݏ ܽ௧ ൌ ܽሽ                                (4) 
 

This formulation can be used to derive the TD error ்ߜ஽,௧ାଵof the transition, which gives the 
difference between the current estimate ܳ௧

గሺݏ௧, ܽ௧ሻ and the estimatebased on ݎ௧ାଵ and 
ܳ௧

గሺݏ௧ାଵ, ܽ௧ାଵሻ: 
 

஽,௧ାଵ்ߜ ൌ ௧ܳߛ௧ାଵݎ
గሺݏ௧ାଵ, ܽ௧ାଵሻ െ ܳ௧

గሺݏ௧, ܽ௧ሻ (5) 
 

The TD error is used to update the estimate of ܳ௧
గሺݏ௧, ܽ௧ሻ. For discrete state-action spacesܳcan 

be updated as follows: 
 

ܳ௧ାଵ
గ ሺݏ௧, ܽ௧ሻ ൌ ܳ௧

గሺݏ௧, ܽ௧ሻ ൅  ஽,௧ାଵ                                              (6)்ߜߙ
 

in which ߙ א ሺ0,1ሿ is the learning rate or step size. 
 In TD control, the policy is directly derived from ܳሺݏ, ܽሻ. An important policy is the greedy 
policy, which selects ܽ௧,௚௥௘௘ௗ௬, the action with the highest estimated return: 
 

ܽ௧,௚௥௘௘ௗ௬ ൌ ݃ݎܽ max௔′ ܳగሺݏ௧, ܽ′ሻ (7) 
 

while greedy actions exploit the knowledge gained and currently stored in ܳሺݏ, ܽሻ, new 
knowledge can be gained from selecting exploratory, non-greedy actions. A widely used action 
selection policy that includes exploratory actions is the ߳-greedy policy ߨఢି௚௥௘௘ௗ௬ሺݏ௧, ܽ௧ሻwhich 
is defined such that a random action is selected with probability ߳(uniformly sampled from ܣ) 
and ܽ௧,௚௥௘௘ௗ௬otherwise: 
 

,௧ݏఢି௚௥௘௘ௗ௬ሺߨ ܽ௧ሻ ൌ ቐ
1 െ ߳ ൅ ఢ

|஺ሺ௦ሻ|
,                ݂݅ܽ௧ ൌ ܽ௧,௚௥௘௘ௗ௬

ఢ
|஺ሺ௦ሻ|

,                    ݂݅ܽ௧ ് ܽ௧,௚௥௘௘ௗ௬
                        (8) 

 
with ߳ א ሾ0,1ሿthe exploration rate and |ܣሺݏሻ|the number of actions in ܣ within state ݏ. For a 
goodtrade-off between exploration and exploitation, the value for ߳is typically chosenfrom the 
range [0.01,0.20] [6]. 
 Popular on-line TD control algorithms are Q-learning and SARSA. SARSA is an on-policy 
algorithm, estimating the value function for the policy being followed. Q-learning is an on-
policy algorithm under which ܳሺݏ, ܽሻ converges to the optimal value function ܳכሺݏ, ܽሻ 
belonging to the optimal policy כߨ, independently of the policy actually followed during 
learning. The TD-errors for these algorithms are computed as follows: 
 

஽ೄಲೃೄಲ,௧ାଵ்ߜ ൌ ௧ାଵݎ ൅ ,௧ାଵݏ௧ሺܳߛ ܽ௧ାଵሻ െ ܳ௧ሺݏ௧, ܽ௧ሻ                                (9) 
஽ೂ,௧ାଵ்ߜ ൌ ߛ௧ାଵݎ ൅ max௔′ ܳ௞ ሺݏ௧ାଵ, ܽ௧ାଵሻ െ ܳ௧ሺݏ௧, ܽ௧ሻ                            (10) 
 

 To speed up convergence, SARSA and Q-learning can be combined with eligibility 
traces[3], thereby forming SARSA(ߣ) and Q(ߣ), respectively. With eligibility traces, the TD 
error is not only used to update ܳ௧ሺݏ, ܽሻ for ݏ ൌ ,௧ݏ ܽ ൌ ܽ௧, but also for state-action pairs that 
were visited earlier in the episode. In this process, more recently visited ሺݏ, ܽሻ-pairs receive a 
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stronger update than pairs visited longer ago. For discrete state-action spaces, ܳሺݏ, ܽሻ is 
updated, ݏ׊ א ܽ׊  ,ܵ א  :as follows ,ܣ

ܳ௧ାଵ
గ ሺݏ, ܽሻ ൌ ܳ௧

గሺݏ, ܽሻ ൅ ,ݏ஽,௧ାଵ݁௧ାଵሺ்ߜߙ ܽሻ (11) 
with 

݁௧ାଵሺݏ, ܽሻ ൌ ൜݁ߣߛ௧ሺݏ, ܽሻ ൅ ݏ݂݅             ,1 ൌ ܽ ௧ andݏ ൌ ܽ௧
,ݏ௞ሺ݁ߣߛ ܽሻ   otherwise                         (12) 

 
where ݁௧ሺݏ, ܽሻ contains the eligibility of a state-action pair at time step ݐ with ݁଴ሺݏ, ܽሻ ൌ 1, and 
λ the (eligibility) trace discounting factor. For Q(ߣ), the eligibility of preceding states is only 
valid as long as the greedy policy is followed. 
 
 Thus, for Q(ߣ), ݁is also reset after an exploratory action. Choosing a value for ߣ can be 
done in the same way as for using a characteristic time scale for the eligibility of the agent's 
actions.  
 

 
Figure 1. Tabular SARSA(λ). 

 
 SARSA is an on-policy TD control method, which the first step is to learn an action-value 
function rather than a state-value function. In particular, for an on-policy method we must 
estimate ܳగሺݏ, ܽሻfor the current behavior policy ߨ and for all states ݏand actions ܽ. When we 
consider transitions from state-action pair to state-action pair, and learn the value of state-
action pairs, formally these cases are identical: they are both Markov chains with a reward 
process. The theorems assuring the convergence of state values under TD(0) also apply to the 
corresponding algorithm for action values:  
 

ܳሺݏ௧, ܽ௧ሻ ՚ ܳሺݏ௧, ܽ௧ሻ ൅ ௧ାଵݎሾߙ ൅ ,௧ାଵݏሺܳߛ ܽ௧ାଵሻ െ ܳሺݏ௧, ܽ௧ሻሿ                    (13) 
 

 This update is done after every transition from a non terminal state ݏ௧. If ݏ௧ାଵis terminal, 
then ܳሺݏ௧ାଵ, ܽ௧ାଵሻis defined as zero. This rule uses every element of the quintuple of 
events,ሺݏ௧, ܽ௧, ,௧ାଵݎ ,௧ାଵݏ ܽ௧ାଵሻ, that make up a transition from one state-action pair to the next. 
This quintuple gives rise to the name SARSA for the algorithm. The general form of the 
complete eligibility trace version of SARSA or SARSA(λ) is given in Figure 1.  
 One of the most important breakthroughs in reinforcement learning was the development of 
an off-policy TD control algorithm known as Q-learning [7]. Its simplest form, 1-step Q-
learning is defined by  
 

ܳሺݏ௧, ܽ௧ሻ ՚ ܳሺݏ௧, ܽ௧ሻ ൅ ௧ାଵݎሾߙ ൅ ߛ max௔ ܳሺݏ௧ାଵ, ܽሻ െ ܳሺݏ௧, ܽ௧ሻሿ              (14) 
 

Initialize ܳሺݏ, ܽሻ arbitrarily and ݁ሺݏ, ܽሻ ൌ 0, for all ݏ, ܽ 
Repeat (for each episode): 
   Initialize ݏ, ܽ 
   Repeat (for each step of episode): 
 Take action ܽ, observer ݎ,  ′ݏ
 Choose ܽ′ from ݏ′ using policy derived from Q (e.g., ߳-greedy) 
ߜ  ՚ ݎ ൅ ,′ݏሺܳߛ ܽ′ሻ െ ܳሺݏ, ܽሻ 
 ݁ሺݏ, ܽሻ ՚ ݁ሺݏ, ܽሻ ൅ 1 
 For all ݏ, ܽ: 
 ܳሺݏ, ܽሻ ՚ ܳሺݏ, ܽሻ ൅ ,ݏሺ݁ߜߙ ܽሻ 
 ݁ሺݏ, ܽሻ ՚ ݁ሺݏ, ܽሻ ൅ 1 
′ݏ  ՚ ;ݏ ܽ′ ՚ ܽ 
 until ݏ is terminal 
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 In this case, the learned action-value function, ܳ, directly approximates ܳכ, the optimal 
action-value function, independent of the policy being followed. This dramatically simplifies 
the analysis of the algorithm and enabled early convergence proofs. The policy still has an 
effect in that it determines which state-action pairs are visited and updated. However, all that is 
required for correct convergence is that all pairs continue to be updated. The complete 
algorithm in pseudo code is given in figure 2. 
 

 
Figure 2. Tabular version of Watkins's Q(λ) algorithm. 

 
3. Approach on Accelerated Reinforcement Learning 
 The quality of the learning itself is measured based on eventual convergence to optimal, 
speed of convergence to optimality and regret [4]. Although many algorithms come with a 
provable guarantee of asymptotic convergence to optimal behavior [7], an agent that quickly 
reaches a plateau at 99% of optimality may, in many applications, be preferable to an agent that 
has a guarantee of eventual optimality but a sluggish early learning rate. Therefore the speed of 
convergence to near-optimality is more practical to be measured. The speed of convergences to 
the near optimality with high dimension environment is often big issues in RL. One effort that 
can be applied to accelerate RL is to find a new algorithm that reduces the state space by 
carefully eliminating some unimportant states while learning. If not careful enough then the 
potentially important state might also be eliminated, and the learning process will fail. 
 Several methods have been proposed to speed up RL. One of them is incorporate the prior 
knowledge into RL. Mataric[8] used implicit domain knowledge to design the 
reinforcement/reward function in situated domains based on utilizing heterogeneous reward 
functions and goal specific progress estimator. Laud and DeJong [9] formulated an explanation 
of the potential of reward shaping to accelerate reinforcement learning with a reward-based 
analysis. Konidaris and Barto[10]introduced the use of learned shaping rewards in RL tasks, 
where an agent uses prior experience on a sequence of tasks to learn a portable predictor that 
estimates intermediate rewards, resulting in accelerated learning in later tasks that are related 
but distinct. Matignon, Laurent et al. [11]accelerate goal-directed RL by modifying the reward 
function using a binary reward function (for discrete state space) and continuous reward 
function (for continuous state space) and implementing Gaussian goal biased function as the 
initial values of Q(s). Ma, Xu et al. [12] applied a state-chain sequential feedback Q-learning 
algorithm for path planning of autonomous mobile robots in unknown static environments, 
where the state chain is built during the searching process. 
 Another approach in accelerating the RL is by applying transfer learning in RL. The core 
idea of transfer is that experience gained in learning to perform one task can help improve 
learning performance in a related, but different, task[13]. Drummond [14] used transfer 

Initialize ܳሺݏ, ܽሻ arbitrarily and ݁ሺݏ, ܽሻ ൌ 0, for all ݏ, ܽ 
Repeat (for each episode): 
   Initialize ݏ, ܽ 
   Repeat (for each step of episode): 
 Take action ܽ, observer ݎ,  ′ݏ
 Choose ܽ′ from ݏ′ using policy derived from Q (e.g., ߳-greedy) 
כܽ  ՚ ݃ݎܽ max௕ ܳሺݏ′, ܾሻ(ifܽ′ ties for the max, then ܽכ ՚ ܽ′) 
ߜ  ՚ ݎ ൅ ,′ݏሺܳߛ ሻכܽ െ ܳሺݏ, ܽሻ 
 ݁ሺݏ, ܽሻ ՚ ݁ሺݏ, ܽሻ ൅ 1 
 For all ݏ, ܽ: 
 ܳሺݏ, ܽሻ ՚ ܳሺݏ, ܽሻ ൅ ,ݏሺ݁ߜߙ ܽሻ 
 If ܽ′ ൌ ,ݏthen ݁ሺ ,כܽ ܽሻ ՚ ,ݏሺ݁ߣߛ ܽሻ 
        , else ݁ሺݏ, ܽሻ ՚ 0  
′ݏ  ՚ ;ݏ ܽ′ ՚ ܽ 
 until ݏ is terminal 
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learning from the related tasks, which generate a partitioning of the state space which is then 
used to index and compose functions stored in a case base to form a close approximation to the 
solution of the new task. Taylor and Stone [15]introduced behavior transfer, a novel approach 
to speeding up traditional RL. Celiberto, Matsuura et al. [2]applied transfer learning from one 
agent to another agent by means of the heuristic function speeds up the convergence of the 
algorithm. Case-based is used to transfer the learning, and it makes TL-HAQL algorithm. 
Peters and Schaal[16]reduced the problem of learning with immediate rewards to a reward-
weighted regression problem with an adaptive, integrated reward transformation for faster 
convergence. Takano, Takase et al. [17] accelerated the learning process by implementing the 
effective transfer learning method, which merges a selected source policy to the target policy 
without negative transfers. Norouzzadeh, Busoniu et al. [18]used two transfer criteria in 
measuring agent’s performance (by the distance between its current solution and the optimal 
one and by the empirical return obtained) to decide when to transfer learning from an easier 
task to a more difficult one so that the total learning time is reduces. 
 More recent proposal in accelerating RL is to include heuristics in RL algorithms. Gao and 
Toni [19] incorporate heuristic, represented by arguments in value-based argumentation into 
RL by using Heuristically Accelerated RL techniques in RoboCup Soccer Keepaway-
Takeaway game. Celiberto, Matsuura et al. 2010 [2] applied transfer learning from one agent to 
another agent by means of the heuristic function speeds up the convergence of the algorithm. 
Case Based (CB) is used to transfer the learning, and it makes RL algorithm faster. Terashima, 
Takano et al. [20]used the prior information on the problem utilizing options as prior 
information. In order to increase the learning speed even with wrong options, methods for 
option correction by forgetting the policy and extending initiation sets. Bianchi et al. [21] 
presented a novel class of algorithms, called Heuristically-Accelerated Multi-agent 
Reinforcement Learning (HAMRL), which allows the use of heuristics to speed up well-known 
multi-agent reinforcement learning algorithms. Such HAMRL algorithms are characterized by 
a heuristic function, which suggests the selection of particular actions over others. 
 Other approaches were also proposed. Senda, Mano et al.[22]reduced state space by 
modelling the state space by 3D space coordinates where then the space model is simplified by 
converting 3D coordinates to 2D coordinates under a certain terms. Grounds and Kudenko[23] 
investigated the use of parallelization in RL, with the goal of learning optimal policies for 
single-agent RL problems more quickly by using parallel hardware. Braga and 
Araújo[24]influenced zone algorithm, an improvement over the topological RL agent (TRLA) 
strategy, that allows reducing the number of requested interactions, which is based on the 
topological-preserving characteristic of the mapping between states (or state–action pairs) and 
value estimates. Kartoun, Stern et al. [25] allowed several learning agents to acquire 
knowledge from each other. Acquiring knowledge learnt by an agent via collaboration with 
another agent. Price and Boutilier 2003[26]proposed an implicit imitation that can accelerate 
reinforcement learning dramatically in certain cases, roughly by observing a mentor, a 
reinforcement learning agent can extract information about its own capabilities in, and the 
relative value of, unvisited parts of the state space. Potapov and Ali [27] tuned the learning 
steps, discount and exploration degree parameters to influence the convergence rate. 
McGovern, Sutton et al. [28]used built in policies or macro-actions as a form of domain 
knowledge that can improve the speed and scaling of reinforcement learning algorithms. 
 The algorithm proposed in this paper is aimed to improve the RL learning performance by 
accelerating the speed of the learning convergence without involving heuristics or any learning 
domain prior knowledge. Since the learning convergence is determined by the size of the state 
space, where the larger the state space the slower learning might become, reducing the state 
space can lead to faster learning. Instead of heuristics or any learning domain prior knowledge, 
this proposed method identifies some potential consistent local minima states to be considered 
as insignificant states and is considered to be eliminated from the state space. This method 
reduces the state space, decreasing the computation order and hence accelerating the 
convergence speed.  
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4. Online State Elimination to Accelerate Reinforcement Learning 
 The complexity of an algorithm is often expressed using big O notation. Big O notation is 
useful when analyzing algorithms for efficiency. In RL, if a good task representation or 
suitable initialization is chosen, the worst-case complexity of reaching a goal state has a tight 
bound of ܱሺ݊ଷሻ action executions for Q-learning and ܱሺ݊ଶሻ  action executions for value-
iteration [29], where n stands for number of states in the state space. If the agent has initial 
knowledge of the topology of the state space or the state space has additional properties, the 
ܱሺ݊ଷሻ bound can be decreased further. In our case, where prior knowledge is not available, 
initial knowledge is not incorporated in the new algorithm. 
 Since the worst case complexity depends totally on number of states, it’s very clear that n 
has very dominant factor in determining the convergence speed, where reducing n will lead to 
decreasing the computation needed to reach learning convergence. When robot learns to master 
a new skill, it learns to determine which states considered important to support its performance. 
Robot learns to classify which states are significant, and which states are less significant. By 
updating its Q (s,a) values every iteration, agent update its policies by choosing the highest Q 
value as its decision factor, which means it starts to ignore smaller Q value (which indicates 
less significant states). This condition forces the agent to rarely visit these less significant states 
until agent succeeded in maximizing its rewards. 
 Almost all RL algorithms are based on estimating value functions--functions of states (or of 
state-action pairs) that estimate how good it is for the agent to be in a given state (or how good 
it is to perform a given action in a given state). The notion of "how good" here is defined in 
terms of future rewards that can be expected, or, to be precise, in terms of expected return. Of 
course the rewards the agent can expect to receive in the future depend on what actions it will 
take. Accordingly, value functions are defined with respect to particular policies. The value of 
the state space in this case represents the significance factor of the state. High value state 
represents the high probability that agent will decide in determining its optimum policyכߨ.A 
high value state means significant states that have to be maintained in the state space because it 
provides solution to the agent. On the other hand the states that have less value become less 
interesting for the agents. The probability to visit these states is towards 0 in 100% exploitation 
cases. When the insignificant factor of these states can be measured, the states which have high 
insignificancy can be considered to be eliminated from the state space leaving it reduced. 
 In order to determine the insignificance of a state, in this paper a new tuple ߡ is proposed. 
Definition 1: The insignificance functionߡ: ܵ ื Թis a function that returns a value indicates the 
insignificance rate of a state ݏ א ܵ. This insignificance function represents an insignificance 
rate of a state that derived from value V(s), where the lowest value V of the neighborhood state 
is considered to be potentially insignificant. This function indicates which state ݏ א ܵ is 
insignificant enough that it can be ignored and should be eliminated from the state space, since 
they don’t provide solutions to the agent. 
 
Definition 2: If the domainܺ is a metric space then f is said to have 
a local (or relative) maximum point at the point כݔ if there exists some ε >0 such that ݂ሺכݔሻ ൒
݂ሺݔሻ for all x in ܺ within distance ε of כݔ. Similarly, the function has a local minimum 
point at כݔ if ݂ሺכݔሻ ൒ ݂ሺݔሻ for all x in X within distance ε of כݔ.  
 
Definition 3: A state is called a local minimum state at ݇௧௛  iteration or ݏ௠௜௡

௞  when its V value is 
proven to be a local minimum of all V(s) function in ݇௧௛  iteration for all ݏ א ܵ.  
Since the first learning iteration every state in state space has initial insignificance value 
ሻݏሺߡ ൌ 0 for all ݏ א ܵ, as the initial value of the V(s). When agent update its state-action value 
by harvesting rewards R(s) every time it visits a state, insignificance factor ߡሺݏሻ is also updated 
by the following return: 
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ሻݏ௞ାଵሺߡ ൌ ൜ ሻݏ௞ሺߡ ൅ ௠௜௡ݏ ݏ݅ݏ݂݅ߤ
௞

ሻݏ௞ሺߡ ൌ ݁ݏ݅ݓݎ݄݁ݐ݋          0
                                             (15) 

 
where ߡ௞ାଵሺݏሻ represents the insignificance valueߡ of a states in the ሺ݇ ൅ 1ሻ௧௛  iteration, ߡ௞ሺݏሻ 
the insignificance value of state s in ݇௧௛  iteration, and ߤ is the insignificance step which 
represents the increasing potential of a insignificant state. The insignificance of state s is 
updated every iteration but it will be reset back to 0 when in the next iteration s is no longer a 
local minimum (ݏ ് ௠௜௡ݏ 

௞ .). 
 
Definition 4: A sub state space  ܵ௠௜௡

௞ ؿ ܵ  is a state space at kth iteration, which consists of all  
ݏ א ܵand ߡ௞ሺݏሻ ൒ Ι. When ߡ௞ሺݏሻ of a states larger than a threshold value ߇, the state will be 
added to a sub state space ܵ௠௜௡

௞ ؿ ܵ , which is then considered to be eliminated from the state 
space. 
 

ܵ௞ାଵ ึ ܵ௞ܵځ௠௜௡
௞                                                         (16) 

 
 In every iteration kth, agent reduce its Q table to only the new state space ܵ௞ାଵ, and original 
action space ܣ. However learning at early stages is essentially random exploration (Bianchi, 
2013). Deciding which states is more significant than others in this stage gives very small 
contributions since every states has it own significance potential. It’s very important however 
to expand Ι to an exponential function that vary to iteration number k as given in the following 
equation 
 

Ιሺݐሻ ൌ Ι଴݁୦/୩                                                           (17) 
 

where Ι଴ is a initial value of Ι and h is a real number. This function gives Ιሺݐሻ ൌ Ι଴, when k 
goes to infinity.  This has to be done since in early stage/exploration stage since it’s very 
important to let agent see all possibilities that it can profit from V(s). The complete algorithm 
in pseudo code is given in Figure 3. 
 
Initialize ܳሺݏ, ܽሻ arbritarily 
Define number of episodes k 
Define elimination start episode p 
௦ߡ ൌ 0 (for all ݏ א ܵሻ 
t=0 
Repeat (for each episodek): 
       Initialize ݏ 
Repeat (for each step of episode): 
 Choose ܽ from ݏ using policy derived from ܳ (e.g., ߳-greedy) 
 Take action ܽ, observer ݏ ,ݎ′ 
 ܳሺݏ, ܽሻ ՚ ܳሺݏ, ܽሻ ൅ ݎൣߙ ൅ ߛ max௔′ ܳሺݏ′, ܽ′ሻ െ ܳሺݏ, ܽሻ൧ 
ݏ  ՚  ;′ݏ
until ݏ is terminal 
if  k>p 
 Vሺݏሻ ൌ max௔ ܳሺݏ, ܽሻ 
 k=k+1 
 Repeat (for all ݏ א ܵሻ 
 if  V ሺݏሻ is local minimum 
 Ι ึ Ι݁௛/௞ 
௦ߡ  ൌ ௦ߡ ൅  ߤ
 
 ifߡ௦ ൒ Ι 

Safreni Candra Sari, et al.

672



 

 ఐܵ ึ ఐܵ ׫ ሼݏሽ 
  else 
௦ߡ                ൌ 0 
 ఐܵ ึ ఐܵ 
  Endif 
 Endif 
 ܵ ึ ܵ\ ఐܵ 
 until ݏ is terminal 
Endif 

Figure 3. OSE-ARL Algorithm 
 
5. Mapping Grid world Robot Navigation into Reinforcement Learning 
 One of the dominant topics in current robotics research is that of autonomous navigation. In 
the robot navigation problem, the robot need to find an optimal navigable path in a given 
environment, with certain constraints imposed on the robot, such as a time limit or limited 
availability of resources. Optimal path here refers to a path between the two points:  the source 
and destination, which has the least path cost, or in other words the most profitable one among 
all the existing paths. 
 The environment is a discrete grid-world with randomly located obstacles. There are three 
robot agents on the grid-world, starting from an arbitrary initial position. The agent, which is 
nothing but a simple mobile robot, can occupy a single empty tile at a time and is faced with 
the task of navigating through the map in an autonomous manner. There can only be one agent 
on one tile at a time. The agent is capable of sensing its immediate environment and moving in 
5 directions (action) one tile at a time respectively North, South, West, East and stay put, that 
makes the action space ܣ ൌ ሼܰ, ܵ, ܹ, ,ܧ ܵܲሽ available for the agent. The grid-world 
environment is given in Figure 4. 
 

 
Figure 4. A robot agent on the 10x10 grid world can move to 5 directions resp. North, South, 
West, East, and stay put, learn to find shortest path to its destination and avoiding obstacles. 

 
The state set ܵin this environment is defined as: 
 ܵ ൌ ቄ൫݌௔௚௘௡௧൯; ݌௔௚௘௡௧ א ሼሺ1 1ሻ, ሺ1 2ሻ, . . . , ሺ10 10ሻሽቅ                            (18) 
 
where pagentis the agent position.  
The task of the robot agent is to find sequence of actions that have to be performed to achieve 
the goal state (destination). The reward function R(s, a, s’) for all agents are given as follows 
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ܴሺݏ, a, ሻ′ݏ ൌ ൝
,՜ݎ s א ܵ՜

,ାݎ s א ܵା

,ିݎ s א ܵି
                                                (19) 

 
where ݎ՜ , ݎା, and ିݎ, is resp. the reward when agent takes action to move to one of the 5 
directions, when agent achieved the goal state, and when agent bumped the wall or the 
obstacle.  
 Every learning episode starts from the same initial position where agent is always in the 
same grid. The agent performs the learning task until the episode is ended. There are 2 
situations that end the episode: when the agent arrived at the destination state, and when 
maximum trial had been achieved. For action selection the following ߝ-greedy scheme (eq. 8) 
is used. 
 
6. Experiments and Empirical Result 
 In the grid world robot navigation problem, an RL agent tried to maximize its returns by 
finding sequence of optimum policies. The RL agent occupy distinct cells of 10x10 grid 
(Figure 4) - which the cell’s vector coordinate is defined as state, and can take one of 5 actions 
on each turn: move North (N), South (S), West (W), East. 
 

 
Figure 5. Initial position of robot agents on grid world. 

 
 At the beginning of an episode, the agent is positioned in the configuration depicted in Fig 
5, while 9 obstacles are placed surrounding the destination or goal state. When the agent takes 
an action it will take it to the next state. For example when agent is in state (1,1), and take 
action N, then in the next iteration the state of the agent is (1,2), while taking action S will put 
the agent on the same state. The system is deterministic, therefore the transition function 
is ܶ ׷  ܵ ൈ ܣ ൈ ܵ ՜  ሾ0, 1ሿ. Finally when agent arrived at the destination, or has taken 500 
iterations step, the episode is ended, and agent started new episode from the same initial 
position. 
 The learning parameters of the agent are setup as follows: learning rate α =0.3, discount 
factor γ=0.95, eligibility trace decay factor λ=0.5, and initial exploration probability 0.5=ߝ, 
decaying with the trials count, the ሺݎ՜, ,ାݎ ሻିݎ ൌ ሺെ1, 10, െ2ሻ.In the episodic learning the 
number of trials which indicates how many episodes to allow learning to run at most is set to 
be 100. The maximum iterations to allow a trial to run at most is set to be 500. The algorithms 
were implemented in Matlab and executed in desktop, with 4GB of RAM in a Windows 7 OS 
platform. 
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(d) 

Figure 6. The learning performance of Q (λ versus OSE-ARL-Q (λ) ((a) and (b)) and SARSA 
(λ) versus OSE-ARL-SARSA (λ) ((c) and (d)) on 10x10 grid area for robot navigation task. 

The plot shows the average of the learning convergence over 400 independent runs, where each 
run consists of runs with 100 trials 

 
 For each experiment, a learning session consisted of 400 runs of 100 trials/episodes each. A 
trial finished whenever agent had arrived at the goal state or when 500 moves/iteration were 
completed. Each result is presented as a learning curve derived from the average steps to 
complete trial, which is the number of moves to achieve goal state. The experiment was 
conducted as follows. Qሺλሻ, SARSAሺλሻ, OSE-ARL-Qሺλሻ and OSE-ARL-SARSAሺλሻ are 
applied respectively to the robot navigation problem with 400 numbers of runs each. The 
performance of each algorithm is plotted and benchmarked. In figure 6 the Qሺλሻ is compared 
to 3 kinds of OSE-ARL-Qሺλሻ, where OSE-ARL-Qp(λ) represents the performance of OSE-
ARL-Q(λ) eliminated from episode ߩ א ܼ. In figure 7 the SARSAሺλሻ is also compared to 3 
kinds of OSE-ARL-SARSAሺλሻ.  
 Figure 6 shows the learning curves of the agent averaged over 400 learning sessions. The 
horizontal axis represents the numbers of episodes or trials that was done in the experiment, 
while the vertical axis shows how many steps or iterations needed to complete the task. Figure 
6(a) shows the learning performance curve of the Qሺλሻ, and OSE-ARLQሺλሻ starting at 1st, 3rd, 
and 5th episodes. Even though the curve of Qሺλሻ had reached its convergence after 60th trial, 
the OSE-ARLQሺλሻ was noticeably better from early episodes due to the use of online state 
elimination method. OSE-ARLQ1ሺλሻ and OSE-ARLQ3ሺλሻ reached respectively its 
convergence already at 55th trial and 41st trial for OSE-ARLQ5ሺλሻ.  Similarly in Figure 6(b) 
OSE-ARLQ7ሺλሻ, OSE-ARLQ9ሺλሻ and OSE-ARLQ11ሺλሻ reached its convergence at 43rd trial. 
Figure 6(c) presents the learning curves of the SARSAሺλሻ, and OSE-ARLSARSAሺλሻ starting 
at 1st, 3rd, and 5th episodes. The results show that the SARSAሺλሻ reached its convergence after 
60th trial, while OSE-ARLSARSA1ሺλሻ and OSE-ARLSARSA3ሺλሻ reached 53rd, and OSE-
ARLSARSA5ሺλሻ after 41 trials. Lastly, Figure 6(d) presents the learning curves of the 
SARSAሺλሻ, and OSE-ARLSARSAሺλሻ starting at 7st, 9rd, and 11th episodes. The results show 
that the OSE-ARLSARSA7ሺλሻ, OSE-ARLSARSA9ሺλሻ and OSE-ARLSARSA11ሺλሻ achieve its 
convergence after 42 trials. These results show that by eliminating insignificant states from 
early learning episodes will speed up the convergence to 1.46 times faster time. The 
performance analysis of the algorithm is given in table 1. 
 Table 1 shows the performance analysis of average (over the 400 learning runs) of the robot 
agent.  From 400 runs, OSE-ARL-Qp(λ) for p=9 and p=11 run 100% successfully, while at p=1 
fail in learning happens 64 times out of 400, 8 times for p=3, 5 times for p=5, 4  times for p=7. 
It can be seen that OSE accelerate the learning speed up to 1.46 faster even though there still is 
failure in learning prose’s when the state elimination is executed from early stages. The failure 
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happened because some important states were also eliminated, because in early stages, these 
important states still have low state value. This failure did not happen when agent had chance 
to explore the states in early episodes, which can be seen on the table that when elimination is 
started from 9th trial and up, the learning process is 100% successful. 
 

Table1. Performance Analysis Q(λ)versus OSE-ARL-Q(λ) and SARSA(λ)  
versus OSE-ARL-SARSA(λ) 

RL Algorithm p Successful 
run (Sr) 

Successful 
percentage 

(Sp) 

Conver
ge after 

Accelerati
on factor 

Performance 
Index (PI) Sr/PI 

Q(λ)  400 100% 60 trials 1,00 2852 14,03 

OSE-ARL-
Qp(λ) 

1 336 84% 55 trials 1,09 2673,2 12,57 

3 392 98% 55 trials 1,09 2676,5 14,65 

5 395 98,75% 41 trials 1,46 2507,6 15,75 

7 396 99% 43 trials 1,40 2536,5 15,61 

9 400 100% 43 trials 1,40 2571,1 15,56 

11 400 100% 43 trials 1,40 2590,6 15,44 

SARSA(λ) - 400 100% 60 trials 1,00 2791 14,33 

OSE-ARL-
SARSAp(λ) 

1 325 81,25% 53 trials 1,13 2635,8 12,33 

3 392 98% 53 trials 1,13 2667,8 14,69 

5 391 97,75 41 trials 1,46 2543,1 15,37 

7 399 99,75 42 trials 1,43 2523,8 15,81 

9 400 100 42 trials 1,43 2570,1 15,56 

11 400 100 42 trials 1,43 2589,5 15,45 

 
 Performance Index of each algorithm is done by measuring the error value of the learning 
curve,  
 

ܫܲ ൌ ∑ ௜ݕ െ ௖ݕ
௝
௜ୀ0                                                                     (20) 

 
where i is trial, j is number of trials, ݕ௜ is the average steps to complete trials at trial i, and ݕ௖  is 
the convergence value of the y. Finally the learning performance is measured by calculating the 
ratio of the successful runs (Sr) and Performance Index (PI). To outperform Q(λ), OSE-ARL-
Q5(ߣ) gives the best Performance ratio, while OSE-ARL-SARSA7(λ) gives the best 
performance ratio in outperforming SARSA(λ). The online state elimination executed in Q(λ) 
and SARSA(λ) had performed faster convergence speed due to decreasing number of states in 
the state space. 
 
7. Conclusion and Further Research 
 RL is the solution of multi robot learning problem, since the robot environment is mostly 
dynamic and stochastic. However the increasing number state and action space leads to 
problem in RL since it requires larger memory and computation time which can cause 
degrading in the learning performance to very poor and even lead to failure in learning.  
 Since the learning convergence is determined by the size of the state space where the larger 
the state space the slower learning might become, reducing the state space by eliminating the 
insignificant states can lead to faster learning. Applying online state elimination in grid world 
multi-robot navigation had shown significant acceleration factor in multi-agent RL to 1.46 
faster convergence speed.  
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 When internal knowledge such as reward shaping, transfer learning, parameter tuning, and 
even heuristics is no longer applicable to RL problems, online state elimination becomes a 
promising solution to accelerate RL. The successful learning rate is higher than 98%, due to 
probability of state importance value. Increasing state importance parameter will increase 
successful learning rate to 100%. 
 This algorithm is not only applicable for primitive robot soccer task, but also for other 
robotic soccer task challenges with large scale state space. This method has also clearly given 
us a starting point on several promising extension to the existing work and highlighted 
important new questions. This research has not only resulted in advances in imitation learning, 
but also has opened up a whole new way of exploring this field that posses an abundant source 
of ready-to-explore problems for future research. 
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