
 
   International Journal on Electrical Engineering and Informatics ‐ Volume 5, Number 3, September 2013 

 

Natural Language Understanding Tools with Low Language Resource in 
Building Automatic Indonesian Mind Map Generator 

 
Ayu Purwarianti, Athia Saelan, Irfan Afif, Filman Ferdian, and Alfan Farizki Wicaksono 

 
School of Electrical Engineering and Informatics 

Bandung Institute of Technology, Jl. Ganeca No. 10, Indonesia 
 

Abstract: Here, we describe our work  in developing Indonesian Mind Map Generator 
that employs several Indonesian natural language understanding tools as its main 
engine. The Indonesian Mind Map Generator1aims to  help the user  in easily making a 
Mind Map object. The system consists of several Indonesian natural language 
understanding tools such as Indonesian POS Tagger, Indonesian Syntactic Parser, and 
Indonesian Semantic Analyzer. The  methods used for developing each of Indonesian 
natural language understanding tools  are devised to such an extend that they are enable 
to alleviate the low availability  of Indonesian language resources. For Indonesian POS 
Tagger, we employed HMM and subsequently enhanced the result by using affix tree. 
As for the Indonesian Syntactic Parser, we compared the performance of CYK and 
Earley parser, which are known as common dynamic algorithms in PCFG. The 
Indonesian Semantic Analyzer consists of several components such as lexical semantic 
attachment, reference resolution, and Semantic Analyzer itself that transforms the parse 
tree result into first order logic representation. In our work, instead of using a rich 
resource on semantic information for each vocabulary, we defined several rules  for the 
lexical semantic attachment based on POS Tags and certain words. Finally, to develop  
the Mind Map generator, we used the radial drawing method to visualize the first order 
logic representation and we also built a Mind Map editor to  allow a user in modifying 
the Mind Map result. To evaluate the result, we conducted the experiments for each 
component  mentioned previously. The POS Tagger accuracy achieved 96.5%, the 
Syntactic Parser achieved accuracy of 47.22%, and the Semantic Analyzer achieved 
accuracy of 62.5%. The final result of Mind Map object was evaluated by 5 
respondents. The results of evaluationshowed that, for the simple sentence, the Mind 
Map object can be easily understood.  

 
1. Background 
 Nowadays, many education systems  employ Mind Map symbols in explaining concepts 
that can be understood easily by the students. The idea of Mind Map is  to use picture and color 
combination, which is compatible with how the brain works[1]. Since Mind Map is a popular 
concept, people try to  develop Mind Map editors to help the other sin drawing a Mind Map. 
One of the drawbacks is that, in these Mind Map editors, user has to draw the object from 
scratch, which can  demotivate the user to start using the Mind Map editor. To handle such 
problems, several researches proposed a Mind Map generator tool to help the user in preparing 
the Mind Map object. By using a Mind Map generator tool, one doesn’t have to draw the Mind 
Map object from scratch. User can edit the result of Mind Map generator tool and shorten the 
effort to draw the Mind Map object.  
 Unfortunately, the Mind Map generator tool is only available for English text[2][3]. In 
English Mind Map generator, the basic approach is to employ natural language understanding 
tool in transforming English text into other representations such as syntactical representation or 
semantic representation. There was no research or product on  developing Mind Map generator 
for Indonesian language.  In  the  recent years, there have been several  works on developing 

                                                           
1The application can be accessed at http://mindmap.kataku.org 
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the Indonesian   natural  language  understanding tools such as Indonesian POS Tagger, 
Indonesian Syntactic Parser, and Indonesian semantic analysis. Yet,there is still no research on  
developing the Mind Map generator. The available research is to employ the first order logic as 
the result of semantic analysis in the question answering system [4]. Moreover, there is another 
work that uses the natural language understanding tools in evaluating user input of 
understanding simple text [5].  In this paper, we  describe our approach in developingan 
Indonesian Mind Map generator using the available POS Tagger, Syntactic Parser, and 
semantic analysis.     
 
2. Related Works 
 Below, we describe two related works on the Mind Map generator for English, namely 
M2Gen[2] and Actor-based Mind-Maps Assembler[3]. 
 
A. M2Gen[2] 
 The concept of M2Gen is to generate the Mind Map object from semantic model taken from 
a given text. The English text is transformed into a semantic model or meaning representation 
using several natural language understanding tools such as morphological analysis, parsing and 
Semantic Analyzer. The complete process is shown in Figure 1. First, the English text is 
processed by morphological analysis in order to analyze each word into its lemma and affix 
along  with  its  POS tag. The  result  of  morphological  analysis  is  then  processed by parsing  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1. The Architecture of M2Gen [2] 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2. Example of Mind Map Resulted by M2Gen [2] 
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component by using CFG and top down chart parsing. Since not all parts of parse tree are used, 
then there is a parse tree modification process in the syntax analysis. The result is then used by 
semantic analysis to yield the semantic model. The semantic analysis consists of several sub 
components such as discourse analysis, word sense disambiguation and text meaning 
representation. The discourse analysis aims to solve the pronoun reference in sentences, the 
word sense disambiguation aims to select the best sense of a single word, and the text meaning 
representation aims to transform the parse tree result into the semantic model.  The resulted 
semantic model is then converted into Mind Map figure. The example of generated Mind Map 
figure is shown in Figure 2. 

 
B. Actor-based Mind-Maps Assembler[3] 
 Here, the concept of Mind Map is taken from the subject and object of a sentence, which is 
assumed as the actor. The relation between concepts is taken from the sentence predicate. 
Thus, the application doesn’t need the semantic model of a sentence, it only needs the 
syntactical parse tree such as shown in Figure below.  
 

 
Figure 3. Architecture of Actor-based Mind-Maps Assembler[3] 

 
 The result of syntactical parsing which is in the preprocessing component shown in Figure 
3, is then processed by three processes in order to select the subject, verb and object structure. 
The next process is to transform the subject and object into the concept in the Mind Map and 
the verb into the relation. The Mind Map result example is shown in Figure 4.  
 

 
Figure 4. Example of Mind Map as the Result of Actor-based Mind-Maps Assembler[3] 

 
3. Method in Indonesian Mind Map Generator 
 Here, we described our method in the Indonesian Mind Map generator. The details of 
several methods are available in other publications[5][6]. 
 We choose to use the meaning representation result as the source for the Mind Map 
representation such as employed in M2Gen[2]. The usage of Semantic Analyzer in order to 
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yield the semantic representation is easier and more accurate than the Syntactic Parser since we 
already built the Semantic Analyzer. To build the Mind Map object using only Syntactic Parser 
result will require many defined rules or a tagged corpus which spends more effort than using 
the semantic representation resulted by the Semantic Analyzer.  
 The complete architecture of transforming Indonesian text sentence into Mind Map 
representation is shown in figure below. Here, the whole processes include POS tagger, 
Syntactic Parser, Semantic Analyzer, reference resolution and Mind Map symbol generator. 
Each process is processed sequentially. The result of POS tagger is used as the input for 
syntactic parser, and so on. The technique used in each component is described in following 
section. 
 
 
 
 
 
 
 
Figure 5. The Architecture of Indonesian Mind Map Generator using Semantic Representation 
 
A. Indonesian POS Tagger 
  

Table 1. POS Tag Set in Indonesian POS Tagger [6] 
No POS POS Name Example 
1 OP Open Parenthesis ({[ 
2 CP Close Parenthesis )}] 
3 GM Slash / 
4 ; Semicolon ; 
5 : Colon : 
6 “ Quotation “ ‘ 
7 . Sentence Terminator . ! ? 
8 , Comma , 
9 - Dash - 
10 … Ellipsis … 
11 JJ Adjective Kaya, Manis 
12 RB Adverb Sementara, Nanti 
13 NN Common Noun Mobil 
14 NNP Proper Noun Bekasi, Indonesia 
15 NNG Genitive Noun Bukunya 
16 VBI Intransitive Verb Pergi 
17 VBT Transitive Verb Membeli 
18 IN Preposition Di, ke, dari 
19 MD Modal Bisa 
20 CC Coor-Conjunction Dan, atau, tetapi 
21 SC Subor-Conjunction Jika, ketika 
22 DT Determinier Para, ini, itu 
23 UH Interjection Wah, aduh, oi 
24 CDO Ordinal numeral Ketiga, keempat 
25 CDC Collective numeral Berlima, berempat 
26 CDP Primary numeral Satu, sepuluh 
27 CDI Irregular numeral Beberapa 
28 PRP Personal pronouns Saya, kamu 
29 WP WH-pronoun Apa, siapa 
30 PRN Number Pronoun Kedua-duanya 
31 PRL Locative Pronoun Sini, sana 
32 NEG Negation Bukan, tidak 
33 SYM Symbols &, %, $ 
34 RP Particles Pun, kah 
35 FW Foreign Words Foreign, computer 
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 POS Tagger is an important tool in understanding an input sentence since the POS tagger 
result is a foundation for the next step of Syntactic Parser. Without knowing a word POS, the 
syntactical structure of a sentence can’t be defined. The POS tags used in our POS Tagger is 
modified from the tag set used in [7][8]. The complete POS Tag set used in this research is 
shown in Table below. 
 

An example of POS tagging result of an input sentence “Kartini lahir di Jepara” is as follow: 
Kartini/NNP lahir/VBI di/IN Jepara/NNP 

  
 The idea of automatic POS Tagging is how to label POS tag of a word given a list of word 
as a sentence. Using a manual POS Tagging will spend a lot of resource and might have a risk 
of labeling inconsistency. Basically, there are two main approaches in an automatic POS 
Tagging: rule based and statistical based. In a rule based system, the problem here is to define 
list of POS Tag for words manually without directly considering the real word context. This is 
a difficult task since it needs several linguistics experts to define the list. While in the statistical 
based system, the preparation is to make a POS Tag labeled corpus which is easier to build 
than the list of POS Tag for words such as needed in the rule based system.  
 Here, we employed HMM (Hidden Markov Model) as the statistical algorithm in our 
Indonesian POS Tagger. This algorithm is chosen since it is the most employed technique in 
building POS Tagger of many languages. HMM method was proved to have better running 
time than any other probabilistic methods [9] in a POS Tagger.  The basic idea of HMM 
method is to select the best list of POS tag for a given sentence. The best list of POS tag means 
the list with the highest probability score among all the candidate of POS tag list. The 
probability score is based on the Bayes law which has two models of emission probability and 
transition probability. The emission probability is the probability of a word given a certain POS 
Tag. The transition probability is the probability of a POS Tag given a certain previous POS 
Tag.  
 
 P(POS Tag|Words) = P(Words | Pos Tag) P(Pos Tag)………………………… (eq. 1) 
 
 In order to handle the empty probability of P(Words | Pos Tag) or the OOV (Out of 
vocabulary) problem, we employed a decision tree of affix (suffix and prefix). An example of 
Prefix tree is shown below. The tree is parsed if the P(Words | Pos Tag) is zero which means 
that there is no training data for the given word. The tree is parsed from its root. For example, 
using the prefix tree below, for words “melukis”, the tree will be parsed on “m” and “e” and 
gives result of P(melukis|VBT) = 0.75, P(melukis|VBI) = 0.2 and P(melukis|NN) = 0.05. The 
probability score for each suffix is calculated from words in the training corpus having a 
certain suffix such as “me-”, “ke-”, etc. This technique is adapted from Schmidt[10][11]. The 
tree used in Schmidt is extended to handle the characteristics of affix in Indonesian language. 
In Schmidt, the tree only represents the suffix since English doesn’t recognize prefix; here, for 
Indonesian language, we designed the tree to be able to represent prefix and suffix.  

 
Figure 6. Example of Prefix Tree used in Indonesian POS Tagger with Length 2 [6] 
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 We also enhance the POS Tag prediction for OOV by using the feature of succeeding POS 
Tag. The succeeding POS Tag feature is used to calculate the emission probability for OOV in 
the second pass of HMM. Another additional process is to use KBBI Kateglo in filtering the 
result of prefix tree. The POS Tag candidates resulted by the prefix tree are only used if they 
are listed in the KBBI Kateglo.  
 
B. Syntactic Parser 
 A syntactic parser is a component that aims to construct structural relation between words 
in sentence [12]. Syntactic parser involves two basic things: (1) syntactical grammar; (2) 
parsing algorithm. Syntactical grammar contains syntactical rules that can be divided into 
constituent based and dependency based. In our research, we made use the constituent based of 
probabilistic context free grammar. The constituent type is chosen since it is easier to construct 
the corpus with constituent information than the dependency one. We employed a PCFG 
(Probabilistic Context-Free Grammar) to represent Indonesian grammar[12]. The PCFG 
notation include terminal, non terminal, grammar rules along with its probability score, and the 
start of non terminal. The terminal represents the POS Tag such as shown in Table 1. The non 
terminal represents the phrase information such as NP, VP, etc. The grammar rules represent 
the transition of top non terminal symbol into an array of terminal or non terminal symbols. 
The example grammar rule is S  NP VP which means that a non terminal S can be parsed 
into NP dan VP phrases.   
 As for the parsing algorithm, we compared the probabilistic context-free algorithm of 
Earley[13][14] and CYK (Cocke-Younger-Kasami) [12][14]algorithms. These two algorithms 
are chosen since they are common used dynamic programming in the PCFG parser.  
The idea of CYK algorithm is to check all possible grammar rules, started from grammar rules 
for word length of 1, then for word length of 2, and so on, until all words in the sentence are 
processed. The algorithm is a bottom up parsing and using dynamic programming. Figure 
below shows the chart illustration of CYK parsing algorithm. First, on the word length of 1, the 
algorithm will check all possible grammar rules with each single word in the right hand side of 
the rule. Here, in the example, the resulted ruleisNNP Kartini.Next, on the word length of 2, 
the resulted example rules are NP NNP, VP VBI and ADVP  IN NNP.  
 

S    
 VP   

NP VP ADVP  
NNP VBI IN NP, NNP 

Kartini lahir di Jepara 
 

Figure 7. Chart Illustration of CYK Algorithm for “Kartini lahir di Jepara” 
 

 The Earley algorithm makes use several operators such as scanner, predictor and completer 
for each cursor position on every resulted rules. The algorithm is a top down parsing and using 
dynamic programming. The predictor is activated when the parser finds a non terminal symbol, 
where the parser will search grammar rules which left hand side is the non terminal symbol. 
The scanner is activated when the parser finds a terminal symbol. And the completer is 
activated when all parts of a grammar rule are already parsed. 
 

                .            Kartini             .              lahir                 .                di                   .            Jepara              . 
S  . NP VP NP NNP . VP VBI . ADVP IN . NP NP NNP . 
NP   . NNP S NP . VP VP VP . ADVP NP  . NNP ADVP  IN NP . 
NP  .  NNP VP  . VP ADVP ADVP  . IN NP NP  . NN VP VPADVP . 

NNP  . Kartini VP  . VBI IN  . di NNP  . Kartini S  NP VP . 
NNP  . Jepara VBI  . lahir IN di . NNP  . Jepara  

NN  . kota VBI lahir .  NNP Jepara .  
NNP Kartini .     

Figure 8. Chart Illustration of Earley Algorithm for “Kartini lahir di Jepara” 
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Both algorithms give result of constituent parse tree such as shown below.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Parse Tree Result of Syntactic Parser for “Kartini lahir di Jepara” 
 
C. Semantic Analyzer and Reference Resolution 
 Parse tree resulted from the syntactic parser is processed by lexical semantic attachment 
which gave result of the parse tree along with its lexical semantic information. The advantage 
of using lexical semantic is to increase the quality of semantic comprehension obtained from 
text. Next, the parse tree and its lexical semantic information are processed by reference 
resolution component in order to build relation between sentences. Last component is the 
Semantic Analyzer itself which target is to transform the parse tree with its lexical semantic 
information into one knowledge representation, here we used First Order Logic[15][16]. The 
detail description of each component and the knowledge representation are described in 
following sections. 

Figure 10. Semantic Analyzer + Reference Resolution Module 
 

1). Knowledge Representation 
First order logic is employed as the knowledge representation. The first order logic 
[15][16]consists of two main terminologies:(1) term that illustrates an object in form of 
constant or variable; (2) predicate that illustrates preposition. Each object in the first order 
logic consists of term and predicate. For example, the first order logic of agent(E,A) 
consists of predicate agent and terms E and A. We also employed the flat semantic 
representation from Hobbs, where the representation is modeled as conjunction of 
literal[17]. Literal means the predicate that relates term in the first order logic. The 
advantage of using flat semantic representation is to eliminate the usage of complex logic 
notation in FOL such as nested quantifiers, disjunction, negation, and so on. Another 
technique used is the Durme technique for classifying literal into extrinsic and intrinsic 
literal [18]. The extrinsic literal relates two variables, while the intrinsic literal relates 
variable and its referent. In Figure 11, event is an intrinsic literal, where E is the variable 
and lahir is the referent. Agent (E,A)is the extrinsic literal where E and A are the variable.  

 
 

,ܧሺݐ݊݁ݒ݁ ሻݎ݄݈݅ܽ ת ,ܧሺ ݐ݊݁݃ܽ  ሻܣ
 

Figure 11. Example of Flat Semantic Representation 
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2). Lexical Semantic Attachment 
Lexical semantic is an aspect in Semantic Analyzer that concern on relation among 
lexeme[12]. It can be used to label a semantic concept to a given word or given phrase in 
sentence. The semantic concept for a given word can be taken from a thesaurus, for example, 
the semantic concept for English can be taken from WordNet2 that can be used to relate each 
lexeme. Even though, now, there is a research on Indonesian WordNet, but we choose not to 
use it since the Indonesian WordNet still has lower quality than the English one. Here, we 
choose to define several rules based on POS tag, certain words or preposition words. Here 
are some rule examples: 
1.  Word with POS tag as “NN” (Common Noun) or “NNP” (Proper Noun) are recognized 

as “object” 
2.  Certain words  such as “tadi”, “kemarin”, are recognized as “moment” 
3.  Prepositions such as “di”, “ke”, and “dari”, are recognized as “place” 

 
Several instrinsic literals and extrinsic literals are shown in Table below.  
 

Table 2. List of Instrinsic and Extrinsic Literals used in the Indonesian Mind Map Generator 
Intrinsic Literal Extrinsic Literal 
λx place (x,y) λxλy Location (x,y) 

λxλy Source (x,y) 
λxλy Direction (x,y) 

λx moment (x,y) λxλy Time (x,y) 
λx person (x,y) - 
λx object (x,y) - 
λx event (x,y) λxλy Actor (x,y) 

λxλy Patient (x,y) 
λx quantity (x,y) λxλy Attribute (x,y) 
λx property (x,y) 
λx explanation (x,y) 
- λxλy Manner (x,y) 
- λxλy Complement (x,y) 
- λxλy Comparison (x,y) 
- λxλy Purpose (x,y) 

 
As an example, sentence “Kartini lahir di Jepara” will give lexical attachment results such as: 
 Kartini:  λa object (a,Kartini) 
 lahir: λbλc event(b,lahir)∧ agent(b,c) 
 di: λdλe event(d) ∧ place(d,e) 
 Jepara: λa object (a,Jepara) 

 
3). Reference Resolution 

Reference Resolution is an aspect of discourse processing to build relation between each 
sentence in text, which concerns in referring reference to its referent[12]. In our Indonesian 
Mind Map Generator, we only process the pronoun and build the reference resolution to 
refer pronoun with its referent. We used Hobbs algorithm[17], where it can work by using 
only syntactic structure of sentence. Since in Indonesian language, a pronoun doesn’t 
concern the referent gender, then it is easier than the English reference resolution. We 
employed recency in the reference resolution. The recency feature tends to choose the most 
recent noun entity as the antecedent (referent) of a pronoun. This feature is the easiest and 
fastest feature to be implemented. 

  
 The pronoun processed in our reference resolution includes “dia” (she/he), “ia” (she/he), 
“beliau” (she/he), “mereka” (they/them) and possessive pronoun recognized by affix “-nya” 

                                                           
2http://wordnet.princeton.edu 
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(her/his). In this reference resolution, the variable pronoun is replaced with its referent and the 
predicate “object” of referent is replaced by “person”. For instance, a paragraph “Kartini lahir di 
Jepara; Beliau adalah seorang Tokoh Pendidikan” produces this result: 
 
a). Pronoun: λa person (a,Beliau) into λa person (a,Kartini) 
b). Referent: λb object (b,Kartini) into λb person (b,Kartini) 
 
4). Semantic Analyzer 

Semantic Analyzer in this research adapts syntax-driven semantic analysis technique. This 
technique has already developed in Larasati’s research using different components[4]. 
Syntax-driven semantic analysis is done by attaching semantic rule into its associated 
syntactic rule to produce syntactic representation [12]. The final result is then processed by 
λ-reduction [12].Table below shows some syntactic rules and their associated semantic rule. 

 
Table 3. Syntactic Rule and Its Associated Semantic Rule [5] 

Syntactic Rule (BNF) Semantic Rule 
<S> ::= <NP><VP> <VP>.sem(X)(Y) ר<NP>.sem(Y) 
<S> ::= <NP><VP><PP> <VP>.sem(X)(Y) ר<NP>.sem(Y) ר<PP>.sem(X) 
<S> ::= <*PRP><VP> <VP>.sem(X)(Y) ר<*PRP>.sem(Y) 
<NP> ::= <*NN> <*NN>.sem 
<NP> ::= <*NN><PP> <NP>.sem(X) ר<PP>.sem(X) 
<NP> ::= <*NN><*JJ> <*NN>.sem(X) ר<*JJ>.sem(X) 
<VP> ::= <*VBT><NP> <*VBT>.sem(X)(Y)(Z) ר<NP>.sem(Z) 
<VP> ::= <*VBI> <*VBI>.sem 
<VP> ::= <VP><NP> <VP>.sem(X)(Y) ר<NP>.sem(Y) 
<PP> ::= <*IN><NP> <*IN>.sem(X)(Y) ר<NP>.sem(Y) 
<ADJP> ::= <*JJ> <*JJ>.sem 
<ADVP> ::= <*RB> <*RB>.sem 

 
D. Transforming First Order Logic into Mind Map Symbol  
 In order to have the final Mind Map result, the next component should transform the 
original of first order logic into the needed representation for the Mind Map visualization. The 
example of first order logic result and the needed representation for sentence “Kartini lahir di 
Jepara” are shown in Figure 12.  

 
 

 
 

Figure 12. The First Order Logic Result and Its Needed Representation for Mind Map 
Visualization 

 
 To have the needed presentation which consists of object and relation, the variable of X, Y 
and Z are replaced by its related value of “lahir”, “Kartini” and “Jepara” respectively. To make 
relation among sentences, the same objects are joined into one object.  
 
E. Mind Map Visualization Editor 
1). Mind Map Object Generator 
 Mind Map visualization was done by using several Mind Map rules such as drawing the 
main concept in the center of the figure with branches related with the center. We analyzed that 
this can be done by using the radial drawing method [19] where the root as the drawing center 
is the main concept while the branches are the entities related with the main concept. Figure 13 
shows a non-tree graph example of the entities yielded from several Indonesian sentences. 
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Figure 13. The Object Graph for “Kartini lahir di Jepara. Kartini tinggal di Jepara.” 

 
 The radial drawing method is a variation of layering drawing method [19]. The idea is to 
transform a tree representation into radial. The illustration is shown in Figure 14. Here, the red 
circle represents the main concept of the sentence which is placed at the center of the figure. 
The main concept is chosen from the concept with the most relations compared to other 
concept. The concepts related directly to the main concept are placed on the second layer, and 
so on. 
 
 
 
 
 
 
 

Figure 14. The Radial Drawing Method 
 
 2). Interaction in Mind Map Editor 
 The automatic generator usually doesn’t yield accurate result, which means that to have the 
application can be used for real sentences, the generated Mind Map should be able to be 
modified easily. To cope with these needs, we also build the Mind Map editor. We defined that 
several problems that should be handled in the editor include: entity position, entity content, 
relation content, object property such as color and size, adding image, curvature of line, and the 
structure including the addition or deletion of entity or relation.   
 
4.  Experiments 
 Here, we will show the experiments for each component employed in the Indonesian Mind 
Map generator. Each experiment is described in following section. 
 
A. Indonesian POS tagger using HMM 
 The complete experiments on POS Tagger are available on [6]. The training data is about 
12000 words and the testing data is about 3000 words. The experimental result for 15% OOV 
words is available in Table below. There are three types of affix tree: 1) prefix tree; 2) suffix 
tree; 3) prefix and suffix tree. Even though the best result was achieved by using the prefix and 
suffix tree, but in several configurations, the prefix tree gave a slight higher accuracy than the 
prefix-suffix tree. We concluded that the prefix gives better prediction than the suffix on the 
POS tag for Indonesian language. Another conclusion is for the n-gram used in the 
configuration. Almost all configuration of bigram gave higher accuracy result than the trigram, 
which yielded a conclusion that to predict POS tag for Indonesian language, bigram is more 
suitable than trigram. Another conclusion is that using the succeeding POS tag doesn’t give 
much improvement, furthermore it gives lower accuracy for some cases, therefore our 
conclusion is that the succeeding POS tag doesn’t have important role in defining POS tag for 
Indonesian language. 
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Table 4. Experimental Result for Indonesian POS Tagger using  
HMM on 15% OOV Testing Data[6] 

NO Configuration 
Affix Tree Configuration 

PREFIX SUFFIX PRE-SUFF 

1 Baseline 90.65% 
(99.42%/42.34%) 

2 Bigram 95.67% 
(99.43%/75.00%) 

94.32% 
(99.39%/66.44%) 

95.36% 
(99.43%/72.97%) 

3 Trigram 95.29% 
(99.18%/73.87%) 

94.29% 
(99.22%/67.12%) 

95.01% 
(99.22%/71.85%) 

4 Bigram+succeeding POS 95.57% 
(99.43%/74.32%) 

94.56% 
(99.35%/68.24%) 

95.36% 
(99.43%/72.97%) 

5 Trigram+succeeding POS 94.94% 
(99.02%/72.52%) 

94.04% 
(99.06%/66.44%) 

94.70% 
(99.02%/70.95%) 

6 Bigram+Lexicon 96.30% 
(99.43%/79.05%) 

95.01% 
(99.43%/70.72%) 

96.23% 
(99.43%/78.60%) 

7 Trigram+Lexicon 95.98% 
(99.18%/78.38%) 

94.94% 
(99.26%/71.17%) 

95.95% 
(99.26%/77.70%) 

8 Bigram+succ+Lexicon 96.36% 
(99.43%/79.50%) 

95.36% 
(99.43%/72.97%) 

96.50% 
(99.43%/80.41%) 

9 
Trigram+succ+Lexicon 95.78% 

(99.02%/77.93%) 
95.08% 

(99.06%/73.20%) 
95.91% 

(99.06%/78.60%) 

 
B. Indonesian Syntactic Parser using CYK and Earley 
 The experimental data consists of 100 sentences for training data and 36 sentences for 
testing data. The training and testing data were labeled using modified English parser which 
results were then checked manually. The data consists of several patterns of single sentence 
and compound sentence. The sentences contain patterns of simple sentence (1 clause), 
compound sentence and complex sentence (Subject and Object subordinate). The comparisons 
between the CYK and Earley algorithm results are shown in Table below. Even though using 
the Earley algorithm gave better result than CYK in finding the correct parse tree among the 
correct candidate, but in selecting the one best parse tree, CYK gave better result than Earley 
algorithm. In general, the syntactic parser of Indonesia still couldn’t give good accuracy since 
several reasons such as the corpus size and that there is no enhancement on the basic parsing 
algorithm employed here. Another reason is that the complexity of Indonesia grammar where 
there are cases where the phrase limit is not clear and there are cases where the sentence 
predicate doesn’t exist, unlike English sentence. 

 
Table 5. Experimental Result for Indonesian Syntactic Parser using CYK and Earley 

Algorithms on 100 Sentence of Testing Data 
 CYK Earley 
Correct parse tree is found as one of the correct candidate 47.22% 53.85% 
Correct parse tree is selected as the best parse tree found 47.22% 38.89% 

 
C. Semantic Analyzer from CYK Syntactic Parser 
 The Semantic Analyzer component uses the result of Indonesian probabilistic parser with 
Cocke-Younger-Kasami (CYK) Algorithm. Table below shows the accuracy of each 
component in the Semantic Analyzer. 
 

Table 6. Experimental Result for Indonesian Semantic Analyzer of CYK Syntactic Parser[5] 
Component Accuracy 

Lexical semantic attachment 88.89% 
Reference resolution 66.67% 
Semantic Analyzer 62.50% 
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 We found that in the experiments, there are several sentence structures that cannot be 
handled by system, such as below[5]: 

1) Sentence with two nouns after verb or predicate, for example “Ibu/PN 
membelikan/VBT adik/NN baju/NN” (Mother bought a dress for sister), where “adik” 
(sister) and “baju” (a dress) should be treated as two different phrases but the parser 
falsely treated them as one noun phrase similar with “baju/NN adik/NN” (sister dress). 

2) Sentence with non-noun subject, such as the usage for gerund. 
3) Sentence with non-verb predicate, for example “Orang/NN itu/DET tinggi/ADJ” (That 

person is tall), where the predicate only consists of one adjective (“tinggi”), different 
with English sentence that always has a verb as the predicate such as “is” instead of 
“tall”.  

4) Sentence with two verbs in form of simple sentence or compound sentence, for 
example “Pemerintah/NN setuju/VBT menaikkan/VBT harga/NN listrik/NN” (The 
government is agree to raise the electricity price), where the predicate consists of two 
verb (“setuju”/agree and “menaikkan”/raise) and should be treated as different phrase, 
different with English sentence where the phrase limit is clear by using the word “to” 
between “agree” and “raise”. 

 
D. Mind Map Generator 
1) Experiment to Evaluate the FOL-Semantic Network Transformation 

The original text consists of 34 sentences, while the modified text consists of 59 sentences. 
Here, the complex sentences are modified into simple sentences. Even though the sentences are 
modified into simple sentences, still not all texts can be processed since the limited rules and 
training data available in the Indonesian POS Tagger, Syntactic Parser and Semantic Analyzer. 
For the original text, only 17 sentences that can be processed from 34 sentences, and only 2 
sentences were processed correctly, which gives accuracy of around 6%. For the modified text, 
there are 47 sentences can be processed from 59 sentences, and 33 text were processed 
correctly, which gives accuracy of 56%. Mainly the error is caused by the Syntactic Parser, 
while the error caused by the transformation is only 1 sentence from both texts. 
 
2) Experiment to Evaluate Mind Map Drawing Result 
 Here, we asked 5 respondents to evaluate the legibility of the resulted Mind Map 
visualization. There are two result types: (1) the original automatic one, resulted by the system 
and (2) the modified one. 
 As the result, there are 48% of respondents said that the original drawing is readable and 
easy to understand. As for the modified one, there are 96% respondents said the drawing is 
readable and easy to understand. We analyzed that there are some unimportant words from the 
original sentence that makes the result is difficult to be understood. Another drawbacks are the 
color and the main idea focus.  
 
5.  Conclusion 
 We have conducted research to investigate the transformation of Indonesian text sentence 
into Mind Map representation. The system includes several Indonesian natural language 
understanding tools such as Indonesian POS Tagger, Indonesian Syntactic Parser, Indonesian 
Semantic Analyzer and Mind Map generator. We transform the input text into its semantic 
representation in first order logic by using Indonesian natural language understanding tools. 
The techniques used in the natural language understanding tools for Indonesia are adapted with 
availability of Indonesian language resources. For Indonesian POS Tagger, a decision tree is 
used to handle to empty score of emission probability on the HMM method. This is due to the 
small size of the POS Tagged Indonesian corpus employed in this research. For the Indonesian 
Syntactic Parser, the idea is to use the Probabilistic CFG and provide the Indonesian syntactic 
tagged corpus for the training and testing data. In the Semantic Analyzer, since there is no 
available resource on the semantic information of each lexicon, then we define some rules to 
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attach the lexical semantic information to the sentence. The semantic representation is then 
transformed automatically into Mind Map object and visualization using several defined rules 
and radial drawing method. The experimental results showed that since there are weaknesses in 
the Indonesian natural language understanding tools, the best result of Mind Map generator can 
only be done for simple and efficient Indonesian sentence. In future works, we will work on the 
improvement of each Indonesian natural language understanding tool and additional process of 
Mind Map generator to filter the unnecessary words. 
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