

 International Journal on Electrical Engineering and Informatics ‐ Volume 5, Number 3, September 2013

Natural Language Understanding Tools with Low Language Resource in
Building Automatic Indonesian Mind Map Generator

Ayu Purwarianti, Athia Saelan, Irfan Afif, Filman Ferdian, and Alfan Farizki Wicaksono

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Jl. Ganeca No. 10, Indonesia

Abstract: Here, we describe our work in developing Indonesian Mind Map Generator
that employs several Indonesian natural language understanding tools as its main
engine. The Indonesian Mind Map Generator1aims to help the user in easily making a
Mind Map object. The system consists of several Indonesian natural language
understanding tools such as Indonesian POS Tagger, Indonesian Syntactic Parser, and
Indonesian Semantic Analyzer. The methods used for developing each of Indonesian
natural language understanding tools are devised to such an extend that they are enable
to alleviate the low availability of Indonesian language resources. For Indonesian POS
Tagger, we employed HMM and subsequently enhanced the result by using affix tree.
As for the Indonesian Syntactic Parser, we compared the performance of CYK and
Earley parser, which are known as common dynamic algorithms in PCFG. The
Indonesian Semantic Analyzer consists of several components such as lexical semantic
attachment, reference resolution, and Semantic Analyzer itself that transforms the parse
tree result into first order logic representation. In our work, instead of using a rich
resource on semantic information for each vocabulary, we defined several rules for the
lexical semantic attachment based on POS Tags and certain words. Finally, to develop
the Mind Map generator, we used the radial drawing method to visualize the first order
logic representation and we also built a Mind Map editor to allow a user in modifying
the Mind Map result. To evaluate the result, we conducted the experiments for each
component mentioned previously. The POS Tagger accuracy achieved 96.5%, the
Syntactic Parser achieved accuracy of 47.22%, and the Semantic Analyzer achieved
accuracy of 62.5%. The final result of Mind Map object was evaluated by 5
respondents. The results of evaluationshowed that, for the simple sentence, the Mind
Map object can be easily understood.

1. Background
 Nowadays, many education systems employ Mind Map symbols in explaining concepts
that can be understood easily by the students. The idea of Mind Map is to use picture and color
combination, which is compatible with how the brain works[1]. Since Mind Map is a popular
concept, people try to develop Mind Map editors to help the other sin drawing a Mind Map.
One of the drawbacks is that, in these Mind Map editors, user has to draw the object from
scratch, which can demotivate the user to start using the Mind Map editor. To handle such
problems, several researches proposed a Mind Map generator tool to help the user in preparing
the Mind Map object. By using a Mind Map generator tool, one doesn’t have to draw the Mind
Map object from scratch. User can edit the result of Mind Map generator tool and shorten the
effort to draw the Mind Map object.
 Unfortunately, the Mind Map generator tool is only available for English text[2][3]. In
English Mind Map generator, the basic approach is to employ natural language understanding
tool in transforming English text into other representations such as syntactical representation or
semantic representation. There was no research or product on developing Mind Map generator
for Indonesian language. In the recent years, there have been several works on developing

1The application can be accessed at http://mindmap.kataku.org

 Received: June 3rd, 2013. Accepted: September 5th, 2013

256

the Indonesian natural language understanding tools such as Indonesian POS Tagger,
Indonesian Syntactic Parser, and Indonesian semantic analysis. Yet,there is still no research on
developing the Mind Map generator. The available research is to employ the first order logic as
the result of semantic analysis in the question answering system [4]. Moreover, there is another
work that uses the natural language understanding tools in evaluating user input of
understanding simple text [5]. In this paper, we describe our approach in developingan
Indonesian Mind Map generator using the available POS Tagger, Syntactic Parser, and
semantic analysis.

2. Related Works
 Below, we describe two related works on the Mind Map generator for English, namely
M2Gen[2] and Actor-based Mind-Maps Assembler[3].

A. M2Gen[2]
 The concept of M2Gen is to generate the Mind Map object from semantic model taken from
a given text. The English text is transformed into a semantic model or meaning representation
using several natural language understanding tools such as morphological analysis, parsing and
Semantic Analyzer. The complete process is shown in Figure 1. First, the English text is
processed by morphological analysis in order to analyze each word into its lemma and affix
along with its POS tag. The result of morphological analysis is then processed by parsing

Figure 1. The Architecture of M2Gen [2]

Figure 2. Example of Mind Map Resulted by M2Gen [2]

Ayu Purwarianti, et al.

257

component by using CFG and top down chart parsing. Since not all parts of parse tree are used,
then there is a parse tree modification process in the syntax analysis. The result is then used by
semantic analysis to yield the semantic model. The semantic analysis consists of several sub
components such as discourse analysis, word sense disambiguation and text meaning
representation. The discourse analysis aims to solve the pronoun reference in sentences, the
word sense disambiguation aims to select the best sense of a single word, and the text meaning
representation aims to transform the parse tree result into the semantic model. The resulted
semantic model is then converted into Mind Map figure. The example of generated Mind Map
figure is shown in Figure 2.

B. Actor-based Mind-Maps Assembler[3]
 Here, the concept of Mind Map is taken from the subject and object of a sentence, which is
assumed as the actor. The relation between concepts is taken from the sentence predicate.
Thus, the application doesn’t need the semantic model of a sentence, it only needs the
syntactical parse tree such as shown in Figure below.

Figure 3. Architecture of Actor-based Mind-Maps Assembler[3]

 The result of syntactical parsing which is in the preprocessing component shown in Figure
3, is then processed by three processes in order to select the subject, verb and object structure.
The next process is to transform the subject and object into the concept in the Mind Map and
the verb into the relation. The Mind Map result example is shown in Figure 4.

Figure 4. Example of Mind Map as the Result of Actor-based Mind-Maps Assembler[3]

3. Method in Indonesian Mind Map Generator
 Here, we described our method in the Indonesian Mind Map generator. The details of
several methods are available in other publications[5][6].
 We choose to use the meaning representation result as the source for the Mind Map
representation such as employed in M2Gen[2]. The usage of Semantic Analyzer in order to

Natural Language Understanding Tools with Low Language

258

yield the semantic representation is easier and more accurate than the Syntactic Parser since we
already built the Semantic Analyzer. To build the Mind Map object using only Syntactic Parser
result will require many defined rules or a tagged corpus which spends more effort than using
the semantic representation resulted by the Semantic Analyzer.
 The complete architecture of transforming Indonesian text sentence into Mind Map
representation is shown in figure below. Here, the whole processes include POS tagger,
Syntactic Parser, Semantic Analyzer, reference resolution and Mind Map symbol generator.
Each process is processed sequentially. The result of POS tagger is used as the input for
syntactic parser, and so on. The technique used in each component is described in following
section.

Figure 5. The Architecture of Indonesian Mind Map Generator using Semantic Representation

A. Indonesian POS Tagger

Table 1. POS Tag Set in Indonesian POS Tagger [6]
No POS POS Name Example
1 OP Open Parenthesis ({[
2 CP Close Parenthesis)}]
3 GM Slash /
4 ; Semicolon ;
5 : Colon :
6 “ Quotation “ ‘
7 . Sentence Terminator . ! ?
8 , Comma ,
9 - Dash -
10 … Ellipsis …
11 JJ Adjective Kaya, Manis
12 RB Adverb Sementara, Nanti
13 NN Common Noun Mobil
14 NNP Proper Noun Bekasi, Indonesia
15 NNG Genitive Noun Bukunya
16 VBI Intransitive Verb Pergi
17 VBT Transitive Verb Membeli
18 IN Preposition Di, ke, dari
19 MD Modal Bisa
20 CC Coor-Conjunction Dan, atau, tetapi
21 SC Subor-Conjunction Jika, ketika
22 DT Determinier Para, ini, itu
23 UH Interjection Wah, aduh, oi
24 CDO Ordinal numeral Ketiga, keempat
25 CDC Collective numeral Berlima, berempat
26 CDP Primary numeral Satu, sepuluh
27 CDI Irregular numeral Beberapa
28 PRP Personal pronouns Saya, kamu
29 WP WH-pronoun Apa, siapa
30 PRN Number Pronoun Kedua-duanya
31 PRL Locative Pronoun Sini, sana
32 NEG Negation Bukan, tidak
33 SYM Symbols &, %, $
34 RP Particles Pun, kah
35 FW Foreign Words Foreign, computer

Indonesian
sentence

Syntactic
Parser

Parse tree Semantic Analyzer +
Reference Resolution

First Order
Logic

MindMap Symbol
Generator

MindMap
Representation

POS Tagger

Ayu Purwarianti, et al.

259

 POS Tagger is an important tool in understanding an input sentence since the POS tagger
result is a foundation for the next step of Syntactic Parser. Without knowing a word POS, the
syntactical structure of a sentence can’t be defined. The POS tags used in our POS Tagger is
modified from the tag set used in [7][8]. The complete POS Tag set used in this research is
shown in Table below.

An example of POS tagging result of an input sentence “Kartini lahir di Jepara” is as follow:
Kartini/NNP lahir/VBI di/IN Jepara/NNP

 The idea of automatic POS Tagging is how to label POS tag of a word given a list of word
as a sentence. Using a manual POS Tagging will spend a lot of resource and might have a risk
of labeling inconsistency. Basically, there are two main approaches in an automatic POS
Tagging: rule based and statistical based. In a rule based system, the problem here is to define
list of POS Tag for words manually without directly considering the real word context. This is
a difficult task since it needs several linguistics experts to define the list. While in the statistical
based system, the preparation is to make a POS Tag labeled corpus which is easier to build
than the list of POS Tag for words such as needed in the rule based system.
 Here, we employed HMM (Hidden Markov Model) as the statistical algorithm in our
Indonesian POS Tagger. This algorithm is chosen since it is the most employed technique in
building POS Tagger of many languages. HMM method was proved to have better running
time than any other probabilistic methods [9] in a POS Tagger. The basic idea of HMM
method is to select the best list of POS tag for a given sentence. The best list of POS tag means
the list with the highest probability score among all the candidate of POS tag list. The
probability score is based on the Bayes law which has two models of emission probability and
transition probability. The emission probability is the probability of a word given a certain POS
Tag. The transition probability is the probability of a POS Tag given a certain previous POS
Tag.

 P(POS Tag|Words) = P(Words | Pos Tag) P(Pos Tag)………………………… (eq. 1)

 In order to handle the empty probability of P(Words | Pos Tag) or the OOV (Out of
vocabulary) problem, we employed a decision tree of affix (suffix and prefix). An example of
Prefix tree is shown below. The tree is parsed if the P(Words | Pos Tag) is zero which means
that there is no training data for the given word. The tree is parsed from its root. For example,
using the prefix tree below, for words “melukis”, the tree will be parsed on “m” and “e” and
gives result of P(melukis|VBT) = 0.75, P(melukis|VBI) = 0.2 and P(melukis|NN) = 0.05. The
probability score for each suffix is calculated from words in the training corpus having a
certain suffix such as “me-”, “ke-”, etc. This technique is adapted from Schmidt[10][11]. The
tree used in Schmidt is extended to handle the characteristics of affix in Indonesian language.
In Schmidt, the tree only represents the suffix since English doesn’t recognize prefix; here, for
Indonesian language, we designed the tree to be able to represent prefix and suffix.

Figure 6. Example of Prefix Tree used in Indonesian POS Tagger with Length 2 [6]

Natural Language Understanding Tools with Low Language

260

 We also enhance the POS Tag prediction for OOV by using the feature of succeeding POS
Tag. The succeeding POS Tag feature is used to calculate the emission probability for OOV in
the second pass of HMM. Another additional process is to use KBBI Kateglo in filtering the
result of prefix tree. The POS Tag candidates resulted by the prefix tree are only used if they
are listed in the KBBI Kateglo.

B. Syntactic Parser
 A syntactic parser is a component that aims to construct structural relation between words
in sentence [12]. Syntactic parser involves two basic things: (1) syntactical grammar; (2)
parsing algorithm. Syntactical grammar contains syntactical rules that can be divided into
constituent based and dependency based. In our research, we made use the constituent based of
probabilistic context free grammar. The constituent type is chosen since it is easier to construct
the corpus with constituent information than the dependency one. We employed a PCFG
(Probabilistic Context-Free Grammar) to represent Indonesian grammar[12]. The PCFG
notation include terminal, non terminal, grammar rules along with its probability score, and the
start of non terminal. The terminal represents the POS Tag such as shown in Table 1. The non
terminal represents the phrase information such as NP, VP, etc. The grammar rules represent
the transition of top non terminal symbol into an array of terminal or non terminal symbols.
The example grammar rule is S NP VP which means that a non terminal S can be parsed
into NP dan VP phrases.
 As for the parsing algorithm, we compared the probabilistic context-free algorithm of
Earley[13][14] and CYK (Cocke-Younger-Kasami) [12][14]algorithms. These two algorithms
are chosen since they are common used dynamic programming in the PCFG parser.
The idea of CYK algorithm is to check all possible grammar rules, started from grammar rules
for word length of 1, then for word length of 2, and so on, until all words in the sentence are
processed. The algorithm is a bottom up parsing and using dynamic programming. Figure
below shows the chart illustration of CYK parsing algorithm. First, on the word length of 1, the
algorithm will check all possible grammar rules with each single word in the right hand side of
the rule. Here, in the example, the resulted ruleisNNP Kartini.Next, on the word length of 2,
the resulted example rules are NP NNP, VP VBI and ADVP IN NNP.

S
 VP

NP VP ADVP
NNP VBI IN NP, NNP

Kartini lahir di Jepara

Figure 7. Chart Illustration of CYK Algorithm for “Kartini lahir di Jepara”

 The Earley algorithm makes use several operators such as scanner, predictor and completer
for each cursor position on every resulted rules. The algorithm is a top down parsing and using
dynamic programming. The predictor is activated when the parser finds a non terminal symbol,
where the parser will search grammar rules which left hand side is the non terminal symbol.
The scanner is activated when the parser finds a terminal symbol. And the completer is
activated when all parts of a grammar rule are already parsed.

 . Kartini . lahir . di . Jepara .
S . NP VP NP NNP . VP VBI . ADVP IN . NP NP NNP .
NP . NNP S NP . VP VP VP . ADVP NP . NNP ADVP IN NP .
NP . NNP VP . VP ADVP ADVP . IN NP NP . NN VP VPADVP .

NNP . Kartini VP . VBI IN . di NNP . Kartini S NP VP .
NNP . Jepara VBI . lahir IN di . NNP . Jepara

NN . kota VBI lahir . NNP Jepara .
NNP Kartini .

Figure 8. Chart Illustration of Earley Algorithm for “Kartini lahir di Jepara”

Ayu Purwarianti, et al.

261

Both algorithms give result of constituent parse tree such as shown below.

Figure 9. Parse Tree Result of Syntactic Parser for “Kartini lahir di Jepara”

C. Semantic Analyzer and Reference Resolution
 Parse tree resulted from the syntactic parser is processed by lexical semantic attachment
which gave result of the parse tree along with its lexical semantic information. The advantage
of using lexical semantic is to increase the quality of semantic comprehension obtained from
text. Next, the parse tree and its lexical semantic information are processed by reference
resolution component in order to build relation between sentences. Last component is the
Semantic Analyzer itself which target is to transform the parse tree with its lexical semantic
information into one knowledge representation, here we used First Order Logic[15][16]. The
detail description of each component and the knowledge representation are described in
following sections.

Figure 10. Semantic Analyzer + Reference Resolution Module

1). Knowledge Representation
First order logic is employed as the knowledge representation. The first order logic
[15][16]consists of two main terminologies:(1) term that illustrates an object in form of
constant or variable; (2) predicate that illustrates preposition. Each object in the first order
logic consists of term and predicate. For example, the first order logic of agent(E,A)
consists of predicate agent and terms E and A. We also employed the flat semantic
representation from Hobbs, where the representation is modeled as conjunction of
literal[17]. Literal means the predicate that relates term in the first order logic. The
advantage of using flat semantic representation is to eliminate the usage of complex logic
notation in FOL such as nested quantifiers, disjunction, negation, and so on. Another
technique used is the Durme technique for classifying literal into extrinsic and intrinsic
literal [18]. The extrinsic literal relates two variables, while the intrinsic literal relates
variable and its referent. In Figure 11, event is an intrinsic literal, where E is the variable
and lahir is the referent. Agent (E,A)is the extrinsic literal where E and A are the variable.

,ܧሺݐ݊݁ݒ݁ ሻݎ݄݈݅ܽ ת ,ܧሺ ݐ݊݁݃ܽ ሻܣ

Figure 11. Example of Flat Semantic Representation

Parse Tree
Lexical

Semantic
Attachment

Parse Tree +
Lexical

Semantic
Information

Reference
Resolution

Parse Tree
(solved reference

resolution) +
Lexical Semantic

Information

Semantic
Analyzer

First Order
Logic

S

NP VP

VP ADVP NNP

Kartini VBI

lahir

IN NP

NNP

Jepar

di

Natural Language Understanding Tools with Low Language

262

2). Lexical Semantic Attachment
Lexical semantic is an aspect in Semantic Analyzer that concern on relation among
lexeme[12]. It can be used to label a semantic concept to a given word or given phrase in
sentence. The semantic concept for a given word can be taken from a thesaurus, for example,
the semantic concept for English can be taken from WordNet2 that can be used to relate each
lexeme. Even though, now, there is a research on Indonesian WordNet, but we choose not to
use it since the Indonesian WordNet still has lower quality than the English one. Here, we
choose to define several rules based on POS tag, certain words or preposition words. Here
are some rule examples:
1. Word with POS tag as “NN” (Common Noun) or “NNP” (Proper Noun) are recognized

as “object”
2. Certain words such as “tadi”, “kemarin”, are recognized as “moment”
3. Prepositions such as “di”, “ke”, and “dari”, are recognized as “place”

Several instrinsic literals and extrinsic literals are shown in Table below.

Table 2. List of Instrinsic and Extrinsic Literals used in the Indonesian Mind Map Generator
Intrinsic Literal Extrinsic Literal
λx place (x,y) λxλy Location (x,y)

λxλy Source (x,y)
λxλy Direction (x,y)

λx moment (x,y) λxλy Time (x,y)
λx person (x,y) -
λx object (x,y) -
λx event (x,y) λxλy Actor (x,y)

λxλy Patient (x,y)
λx quantity (x,y) λxλy Attribute (x,y)
λx property (x,y)
λx explanation (x,y)
- λxλy Manner (x,y)
- λxλy Complement (x,y)
- λxλy Comparison (x,y)
- λxλy Purpose (x,y)

As an example, sentence “Kartini lahir di Jepara” will give lexical attachment results such as:
 Kartini: λa object (a,Kartini)
 lahir: λbλc event(b,lahir)∧ agent(b,c)
 di: λdλe event(d) ∧ place(d,e)
 Jepara: λa object (a,Jepara)

3). Reference Resolution

Reference Resolution is an aspect of discourse processing to build relation between each
sentence in text, which concerns in referring reference to its referent[12]. In our Indonesian
Mind Map Generator, we only process the pronoun and build the reference resolution to
refer pronoun with its referent. We used Hobbs algorithm[17], where it can work by using
only syntactic structure of sentence. Since in Indonesian language, a pronoun doesn’t
concern the referent gender, then it is easier than the English reference resolution. We
employed recency in the reference resolution. The recency feature tends to choose the most
recent noun entity as the antecedent (referent) of a pronoun. This feature is the easiest and
fastest feature to be implemented.

 The pronoun processed in our reference resolution includes “dia” (she/he), “ia” (she/he),
“beliau” (she/he), “mereka” (they/them) and possessive pronoun recognized by affix “-nya”

2http://wordnet.princeton.edu

Ayu Purwarianti, et al.

263

(her/his). In this reference resolution, the variable pronoun is replaced with its referent and the
predicate “object” of referent is replaced by “person”. For instance, a paragraph “Kartini lahir di
Jepara; Beliau adalah seorang Tokoh Pendidikan” produces this result:

a). Pronoun: λa person (a,Beliau) into λa person (a,Kartini)
b). Referent: λb object (b,Kartini) into λb person (b,Kartini)

4). Semantic Analyzer

Semantic Analyzer in this research adapts syntax-driven semantic analysis technique. This
technique has already developed in Larasati’s research using different components[4].
Syntax-driven semantic analysis is done by attaching semantic rule into its associated
syntactic rule to produce syntactic representation [12]. The final result is then processed by
λ-reduction [12].Table below shows some syntactic rules and their associated semantic rule.

Table 3. Syntactic Rule and Its Associated Semantic Rule [5]

Syntactic Rule (BNF) Semantic Rule
<S> ::= <NP><VP> <VP>.sem(X)(Y) ר<NP>.sem(Y)
<S> ::= <NP><VP><PP> <VP>.sem(X)(Y) ר<NP>.sem(Y) ר<PP>.sem(X)
<S> ::= <*PRP><VP> <VP>.sem(X)(Y) ר<*PRP>.sem(Y)
<NP> ::= <*NN> <*NN>.sem
<NP> ::= <*NN><PP> <NP>.sem(X) ר<PP>.sem(X)
<NP> ::= <*NN><*JJ> <*NN>.sem(X) ר<*JJ>.sem(X)
<VP> ::= <*VBT><NP> <*VBT>.sem(X)(Y)(Z) ר<NP>.sem(Z)
<VP> ::= <*VBI> <*VBI>.sem
<VP> ::= <VP><NP> <VP>.sem(X)(Y) ר<NP>.sem(Y)
<PP> ::= <*IN><NP> <*IN>.sem(X)(Y) ר<NP>.sem(Y)
<ADJP> ::= <*JJ> <*JJ>.sem
<ADVP> ::= <*RB> <*RB>.sem

D. Transforming First Order Logic into Mind Map Symbol
 In order to have the final Mind Map result, the next component should transform the
original of first order logic into the needed representation for the Mind Map visualization. The
example of first order logic result and the needed representation for sentence “Kartini lahir di
Jepara” are shown in Figure 12.

Figure 12. The First Order Logic Result and Its Needed Representation for Mind Map
Visualization

 To have the needed presentation which consists of object and relation, the variable of X, Y
and Z are replaced by its related value of “lahir”, “Kartini” and “Jepara” respectively. To make
relation among sentences, the same objects are joined into one object.

E. Mind Map Visualization Editor
1). Mind Map Object Generator
 Mind Map visualization was done by using several Mind Map rules such as drawing the
main concept in the center of the figure with branches related with the center. We analyzed that
this can be done by using the radial drawing method [19] where the root as the drawing center
is the main concept while the branches are the entities related with the main concept. Figure 13
shows a non-tree graph example of the entities yielded from several Indonesian sentences.

Natural Language Understanding Tools with Low Language

264

Figure 13. The Object Graph for “Kartini lahir di Jepara. Kartini tinggal di Jepara.”

 The radial drawing method is a variation of layering drawing method [19]. The idea is to
transform a tree representation into radial. The illustration is shown in Figure 14. Here, the red
circle represents the main concept of the sentence which is placed at the center of the figure.
The main concept is chosen from the concept with the most relations compared to other
concept. The concepts related directly to the main concept are placed on the second layer, and
so on.

Figure 14. The Radial Drawing Method

 2). Interaction in Mind Map Editor
 The automatic generator usually doesn’t yield accurate result, which means that to have the
application can be used for real sentences, the generated Mind Map should be able to be
modified easily. To cope with these needs, we also build the Mind Map editor. We defined that
several problems that should be handled in the editor include: entity position, entity content,
relation content, object property such as color and size, adding image, curvature of line, and the
structure including the addition or deletion of entity or relation.

4. Experiments
 Here, we will show the experiments for each component employed in the Indonesian Mind
Map generator. Each experiment is described in following section.

A. Indonesian POS tagger using HMM
 The complete experiments on POS Tagger are available on [6]. The training data is about
12000 words and the testing data is about 3000 words. The experimental result for 15% OOV
words is available in Table below. There are three types of affix tree: 1) prefix tree; 2) suffix
tree; 3) prefix and suffix tree. Even though the best result was achieved by using the prefix and
suffix tree, but in several configurations, the prefix tree gave a slight higher accuracy than the
prefix-suffix tree. We concluded that the prefix gives better prediction than the suffix on the
POS tag for Indonesian language. Another conclusion is for the n-gram used in the
configuration. Almost all configuration of bigram gave higher accuracy result than the trigram,
which yielded a conclusion that to predict POS tag for Indonesian language, bigram is more
suitable than trigram. Another conclusion is that using the succeeding POS tag doesn’t give
much improvement, furthermore it gives lower accuracy for some cases, therefore our
conclusion is that the succeeding POS tag doesn’t have important role in defining POS tag for
Indonesian language.

Ayu Purwarianti, et al.

265

Table 4. Experimental Result for Indonesian POS Tagger using
HMM on 15% OOV Testing Data[6]

NO Configuration
Affix Tree Configuration

PREFIX SUFFIX PRE-SUFF

1 Baseline 90.65%
(99.42%/42.34%)

2 Bigram 95.67%
(99.43%/75.00%)

94.32%
(99.39%/66.44%)

95.36%
(99.43%/72.97%)

3 Trigram 95.29%
(99.18%/73.87%)

94.29%
(99.22%/67.12%)

95.01%
(99.22%/71.85%)

4 Bigram+succeeding POS 95.57%
(99.43%/74.32%)

94.56%
(99.35%/68.24%)

95.36%
(99.43%/72.97%)

5 Trigram+succeeding POS 94.94%
(99.02%/72.52%)

94.04%
(99.06%/66.44%)

94.70%
(99.02%/70.95%)

6 Bigram+Lexicon 96.30%
(99.43%/79.05%)

95.01%
(99.43%/70.72%)

96.23%
(99.43%/78.60%)

7 Trigram+Lexicon 95.98%
(99.18%/78.38%)

94.94%
(99.26%/71.17%)

95.95%
(99.26%/77.70%)

8 Bigram+succ+Lexicon 96.36%
(99.43%/79.50%)

95.36%
(99.43%/72.97%)

96.50%
(99.43%/80.41%)

9
Trigram+succ+Lexicon 95.78%

(99.02%/77.93%)
95.08%

(99.06%/73.20%)
95.91%

(99.06%/78.60%)

B. Indonesian Syntactic Parser using CYK and Earley
 The experimental data consists of 100 sentences for training data and 36 sentences for
testing data. The training and testing data were labeled using modified English parser which
results were then checked manually. The data consists of several patterns of single sentence
and compound sentence. The sentences contain patterns of simple sentence (1 clause),
compound sentence and complex sentence (Subject and Object subordinate). The comparisons
between the CYK and Earley algorithm results are shown in Table below. Even though using
the Earley algorithm gave better result than CYK in finding the correct parse tree among the
correct candidate, but in selecting the one best parse tree, CYK gave better result than Earley
algorithm. In general, the syntactic parser of Indonesia still couldn’t give good accuracy since
several reasons such as the corpus size and that there is no enhancement on the basic parsing
algorithm employed here. Another reason is that the complexity of Indonesia grammar where
there are cases where the phrase limit is not clear and there are cases where the sentence
predicate doesn’t exist, unlike English sentence.

Table 5. Experimental Result for Indonesian Syntactic Parser using CYK and Earley

Algorithms on 100 Sentence of Testing Data
 CYK Earley
Correct parse tree is found as one of the correct candidate 47.22% 53.85%
Correct parse tree is selected as the best parse tree found 47.22% 38.89%

C. Semantic Analyzer from CYK Syntactic Parser
 The Semantic Analyzer component uses the result of Indonesian probabilistic parser with
Cocke-Younger-Kasami (CYK) Algorithm. Table below shows the accuracy of each
component in the Semantic Analyzer.

Table 6. Experimental Result for Indonesian Semantic Analyzer of CYK Syntactic Parser[5]
Component Accuracy

Lexical semantic attachment 88.89%
Reference resolution 66.67%
Semantic Analyzer 62.50%

Natural Language Understanding Tools with Low Language

266

 We found that in the experiments, there are several sentence structures that cannot be
handled by system, such as below[5]:

1) Sentence with two nouns after verb or predicate, for example “Ibu/PN
membelikan/VBT adik/NN baju/NN” (Mother bought a dress for sister), where “adik”
(sister) and “baju” (a dress) should be treated as two different phrases but the parser
falsely treated them as one noun phrase similar with “baju/NN adik/NN” (sister dress).

2) Sentence with non-noun subject, such as the usage for gerund.
3) Sentence with non-verb predicate, for example “Orang/NN itu/DET tinggi/ADJ” (That

person is tall), where the predicate only consists of one adjective (“tinggi”), different
with English sentence that always has a verb as the predicate such as “is” instead of
“tall”.

4) Sentence with two verbs in form of simple sentence or compound sentence, for
example “Pemerintah/NN setuju/VBT menaikkan/VBT harga/NN listrik/NN” (The
government is agree to raise the electricity price), where the predicate consists of two
verb (“setuju”/agree and “menaikkan”/raise) and should be treated as different phrase,
different with English sentence where the phrase limit is clear by using the word “to”
between “agree” and “raise”.

D. Mind Map Generator
1) Experiment to Evaluate the FOL-Semantic Network Transformation

The original text consists of 34 sentences, while the modified text consists of 59 sentences.
Here, the complex sentences are modified into simple sentences. Even though the sentences are
modified into simple sentences, still not all texts can be processed since the limited rules and
training data available in the Indonesian POS Tagger, Syntactic Parser and Semantic Analyzer.
For the original text, only 17 sentences that can be processed from 34 sentences, and only 2
sentences were processed correctly, which gives accuracy of around 6%. For the modified text,
there are 47 sentences can be processed from 59 sentences, and 33 text were processed
correctly, which gives accuracy of 56%. Mainly the error is caused by the Syntactic Parser,
while the error caused by the transformation is only 1 sentence from both texts.

2) Experiment to Evaluate Mind Map Drawing Result
 Here, we asked 5 respondents to evaluate the legibility of the resulted Mind Map
visualization. There are two result types: (1) the original automatic one, resulted by the system
and (2) the modified one.
 As the result, there are 48% of respondents said that the original drawing is readable and
easy to understand. As for the modified one, there are 96% respondents said the drawing is
readable and easy to understand. We analyzed that there are some unimportant words from the
original sentence that makes the result is difficult to be understood. Another drawbacks are the
color and the main idea focus.

5. Conclusion
 We have conducted research to investigate the transformation of Indonesian text sentence
into Mind Map representation. The system includes several Indonesian natural language
understanding tools such as Indonesian POS Tagger, Indonesian Syntactic Parser, Indonesian
Semantic Analyzer and Mind Map generator. We transform the input text into its semantic
representation in first order logic by using Indonesian natural language understanding tools.
The techniques used in the natural language understanding tools for Indonesia are adapted with
availability of Indonesian language resources. For Indonesian POS Tagger, a decision tree is
used to handle to empty score of emission probability on the HMM method. This is due to the
small size of the POS Tagged Indonesian corpus employed in this research. For the Indonesian
Syntactic Parser, the idea is to use the Probabilistic CFG and provide the Indonesian syntactic
tagged corpus for the training and testing data. In the Semantic Analyzer, since there is no
available resource on the semantic information of each lexicon, then we define some rules to

Ayu Purwarianti, et al.

267

attach the lexical semantic information to the sentence. The semantic representation is then
transformed automatically into Mind Map object and visualization using several defined rules
and radial drawing method. The experimental results showed that since there are weaknesses in
the Indonesian natural language understanding tools, the best result of Mind Map generator can
only be done for simple and efficient Indonesian sentence. In future works, we will work on the
improvement of each Indonesian natural language understanding tool and additional process of
Mind Map generator to filter the unnecessary words.

References
[1] T. Buzan,“Buku Pintar Mind Map”, Jakarta, PT. Gramedia Pustaka Utama, 2005
[2] M. Abdeen, R. El-Sahan, A. Ismaeil, S. El-Harouny, M.Shalaby, M. C. E. Yagoub,

“Direct Automatic Generation of Mind Maps from Text with M2Gen”, in Proceeding of
IEEE Toronto International Conference Science and Technology for Humanity, pp. 95-99,
Toronto, Canada, 2009

[3] C. Brucks, C. Schommer, “Assembling Actor-based Mind-Maps from Text Streams”,
Master Thesis, University of Luxembourg, Department of Computer Science and
Communication, 2008

[4] S.D. Larasati, R. Manurung, “Towards a Semantic Analysis of Bahasa Indonesia for
Question Answering”. Proceedings of the 10th Conference of the Pacific Association for
Computational Linguistics, Melbourne, Australia, 2007

[5] F. Ferdian, A. Purwarianti, ”Implementation of Semantic Analyzer in Indonesian Text-
Understanding Evaluation System”., in Proceedings of IEEE International Conference on
Computational Intelligence and Cybernetics, Bali, 2012

[6] A.F. Wicaksono, A. Purwarianti, “HMM based Part of Speech Tagger for Bahasa
Indonesia”, Fourth International MALINDO Workshop, Jakarta, 2010

[7] F. Pisceldo, R. Manurung, M.Adriani, “Probabilistic Part-of-Speech Tagging for bahasa
Indonesia”, Third International MALINDO Workshop, colocated event ACL-IJCNLP
2009, Singapore, August 1, 2009

[8] M. Adriani, H. Riza, “Research Report on Local Language Computing: Development of
Indonesian Language Resources and Translation System”, Ref. No:
PANL10n/Admn/RR/001, PAN Localization Project, 2008

[9] N. Nguyen, Y. Guo, “Comparisons of Sequence Labeling Algorithms and Extensions”.
International Conference on Machine Learning, Corvallis, USA, 2007

[10] H. Schmid, “Probabilistic Part-of-Speech Tagging using Decision Tree”, Proceedings of
International Conference on New Methods in Language Processing, Manchester,
September 1994

[11] H. Schmid, “Improvements in Part-of-Speech Tagging with an Application to German”.
Proceedings of the ACL SIGDAT-Workshop, Dublin, Ireland, March 1995

[12] D. Jurafsky, J. H. Martin, “Speech and Language Processing”, 2nd Edition, Prentice Hall,
2009

[13] J. Earley, “An Efficient Context-Free Parsing Algorithm”, Communications of the ACM,
Volume 13, Number 2, 1970

[14] A. Stolcke, “An Efficient Probabilistic Context-Free Parsing Algorithm that Computes
Prefix Probabilities”, Journal of Computational Linguistics, Volume 21, 1995

[15] R.J. Brachman, H.J. Levesque, “Knowledge Representation and Reasoning”,
Elsevier, 2004

[16] M. Bates, “Models of Natural Language Understanding”, BBN Systems and
Technologies, 1993

[17] J. Hobbs, “Ontological Promiscuity”, Associational for Computational Linguistics,
Chicago, USA, 1985

[18] B.V. Durme, et.al, “Towards light semantic processing for question answering”,
Associational for Computational Linguistics, Edmonton, Canada, 2003

Natural Language Understanding Tools with Low Language

268

[19] G. B
Visu

Batista, P. Ea
ualization of G

 Ayu
at In
docto
2008,
Inform
intere
langu
educa

Athia
Progr
softw
intere

Irfan
Progr
gradu
with
andro
progr

Film
Progr
syste
on ar

Alfan
Infor
maste
of Co
focus

ader, R. Tam
Graphs”, Prentic

Purwarianti.
formatics Pro

oral degree fro
, she has beco
matics, Bandu
est is on com
uage processing
ation officer at

a Saelan. She
ram, Bandung

ware developer
est in artificial

n Afif. He wa
ram, Bandung
uated from ITB
his friends. C

oid at Radya
ramming and a

an Ferdian. H
ram, Bandung
m analystat M

rtificial intellig

n Farizki Wic
rmatics Program
er degree at K
omputer Scien
ses on text

massia, I. Toll
ce Hall, 1999

She was gradu
gram, Bandun
om Toyohashi
ome a lecturer
ung Institute
mputational lin
g and Indones
IEEE Indones

 was graduate
Institute of Te
at PT. Akhdan
intelligence.

as graduated
Institute of T

B, he founded a
Currently, he is

Labs Technol
algorithm.

He was graduat
Institute of Te

McKinsey & Co
ent.

caksono. He w
m, Bandung In

KAIST, Korea.
nce, University

mining, info

lis, “Graph D

uated from her
ng Institute of
i University o
r at School of
of Technolog
nguistics, mai
sian text minin
sia.

d from her ba
echnology on 2
ni Reka Solusi

from his bach
Technology (IT
a game develop
s working as s
logy. His rese

ted from his ba
echnology on
ompany, Indon

was graduated
nstitute of Tech
He is now wor
of Indonesia.

rmation retrie

Drawing: Algo

r bachelor and
f Technology.
f Technology,
f Electrical En
gy, Indonesia.
inly on Indon
ng. She is now

achelor degree
2012. She is no
, Indonesia. Sh

helor degree
TB) on 2011.
per, namely W
enior software

earch interest

achelor degree
2012. He is no

nesia. His resea

from his bach
hnology on 20
rking as a lectu
His research i

eval, and top

orithm for the

master degree
. She got her
, Japan. Since
ngineering and

Her research
nesian natural

w active as the

at Informatics
ow working as
he has research

at Informatics
When he was

Whappa Games,
e developer for
is on android

 at Informatics
ow working as
arch interest is

helor degree at
010. He got his
urer at Faculty
interest mainly
pic modeling

e

e
r
e
d
h
l
e

s
s
h

s
s
,
r
d

s
s
s

t
s
y
y
.

Ayu Purwarianti, et al.

269

