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Abstract: At the moment, there are two main methods of solving the compressive sensing 

(CS) reconstruction problem which are the convex optimization and the greedy algorithm. 

Convex optimization has good reconstruction stability but very slow in computation. 

Greedy algorithm, on the other hand, is very fast but less stable. A fast and stable CS 

reconstruction algorithm is necessary for a better provision of CS in practical application. 

In this paper we proposed a CS reconstruction algorithm using L1-norm minimization via 

L2-norm minimization. This method is based on geometrical interpretation of L1-norm 

minimization of the reconstruction problem and the fact that the Euclidean distance 

between L1-norm and L2-norm solution lie closely. In other word, if L2-norm solution is 

found, then direction to the L1-norm solution is on the shortest path connecting them. This 

approach offers a simpler computation. Computer simulation showed that proposed 

algorithm has better stability than the greedy algorithm and faster computation than the 

convex optimization. The proposed algorithm thus provides an alternative solution for CS 

reconstruction problem when a balance between speed and stability is required. 

 

Keywords: compressive sampling, sparse reconstruction, L1-norm, L2-norm, convex 
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1. Introduction 

 In many digital applications, it is common to acquire raw data or raw signal and then 

compress it using various compression techniques to achieve a smaller data size. The serial 

processes of acquisition and compression, however, lead to inefficiency since the unnecessary 

part of signal is acquired and then discarded. The method of compressive sensing or 

compressive sampling (CS) which works on sparse raw signal is now commonly used to avoid 

this inefficiency as the acquisition and compression can be processed in single step [1, 2, 3]. 

 In unifying these processes, CS is implemented using either a pre-configurable hardware or 

software to perform these steps. The result of CS is a compressible form of raw signal with a 

small size which is efficient for data storing or transmission. As sparse signal occurs in wide 

area in our daily life, CS has been applied in various applications such as MRI images [4], 

radar [5], antenna beamforming [6], ground penetrating radar (GPR) [7, 8], image encoding 

[9], source localization [10], network tomography [11], astronomy imaging [12], and so forth. 

 In CS, it is often necessary to reconstruct original signal from the compressed signal, for 

example in MRI image where the original signal need to be recovered to aid the medical 

examination. The step to recover back the original signal from the compressed signal is called 

CS reconstruction. At the moment, there are various CS reconstruction algorithms available 

with two main methods that widely used which are the convex optimization and the greedy 

algorithm. Convex optimization is based on the mathematical analysis of L1-norm 

minimization while greedy algorithm is a heuristic algorithm contains iterative steps, where in 

each step a local optimum is selected with a hope of a global optimum is obtained at the end of 

iteration.  
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 Greedy algorithm has been investigated by many researchers. The result from these 

researches have produced some important greedy algorithms such as the Matching Pursuit 

(MP) [13], Orthogonal Matching Pursuit (OMP) [14, 15], regularized OMP (ROMP) [16], 

Stagewise OMP (StOMP) [17], and Compressive Sampling MP (CoSaMP) [18]. Convex 

optimization on the other hand, is also investigated by many researchers. Practical software has 

been developed to solve CS reconstruction problem such as CVX discipline programming 

(CVX) [19] and L1-Magic [20]. 

 In general, greedy algorithm offers a faster computation time, but does not always 

guarantee a correct solution and it suffers in highly correlated environment [21]. On the other 

hand, convex optimization has better accuracy, but slow in computation [22]. A need for a fast 

and high accuracy algorithm is apparently important for CS usefulness in many practical 

applications. 

 In this paper, we propose a new CS reconstruction algorithm based on minimization of L1-

norm via minimization of L2-norm. This method offers advantages of faster computation as it 

exploit the analytical solution of L2-norm rather than the Newton gradient iteration as in 

convex optimization. As this method does not take the coherency between the columns in 

compression matrix as a consideration, this proposed method is also relatively stable in high 

coherency environment. This algorithm thus combines the advantages of greedy algorithm and 

convex optimization algorithm. 

 The presentation of this paper is arranged as follows. Section 2 provides a brief 

mathematical overview of CS compression, CS reconstruction, the greedy algorithm and 

convex optimization algorithm. Section 3 describes the detail of the proposed algorithm. 

Section 4 gives simulation results on the comparison of the proposed algorithm with the greedy 

algorithm and convex optimization. The capability of the proposed algorithm is also tested 

using real ground penetrating radar (GPR) signal at the end of Section 4. Section 5 concludes 

this paper with several outlooks for further research on CS reconstruction. Table 1 shows the 

list of notations that are used throughout this paper. 

 

Table 1. List of Notations 

Notation The meaning of the notation 

AT A transpose of matrix A 

AH A transpose conjugate of matrix A  

A-1 An inverse of matrix A 

det(A) An operation to calculate determinant of matrix A 

dim(A) An operation to take the dimension of matrix A 

x  An absolute value of a constant  x 

0
x  A zero-order or L0-norm of vector x 

1
x  A first-order or L1-norm of vector x 

2
x  A second-order or L2-norm of vector x 

x̂  an estimate of vector x 

< x , y > Inner or dot product operation of vector x and y 

argmax(x) An operation to get the index of the maximum value in vector x 

AB Union operation of matrix A and matrix B 

 

2. Related Work 

 Before the proposed algorithm is discussed, it is necessary to briefly review the p-order 

norm as a basis of CS reconstruction. It is also necessary to briefly review basic processes in 

CS compression and reconstruction as these processes provide basis on the proposed method. 

The greedy algorithm and convex optimization will be discussed in short in this section. 
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Interested readers can found detail of OMP in the work of Tropp and Gilbert [15], while 

convex optimization is extensively explained in the work of Boyd and Vandenberghe [22]. 

 

A. p-order norm 

 A norm of a vector provides an important quantity in many mathematical analyses. A p-th 

order norm of a vector  N21 xxx x
 
for p   0 is defined as 

  
p P

N

Pp

p
xxx  21x                                                (1)  

 There are three important values of p in CS reconstruction which are 0, 1, and 2. In the case 

of p = 0, which is denoted as zero-order norm (L0-norm), the norm value represents a number 

of non-zero elements. In other word, zero-order norm of x is equal to the sparsity of the signal. 

This norm is used as optimization criteria in CS reconstruction. In the case of p = 1, the norm 

is called first-order norm (L1-norm) which is 
Nxxx  211

x . This norm is used as 

a optimization criteria of a relaxed version of CS reconstruction which is also called as basis 

pursuit (BP). In the case of p = 2, the norm is called second-order norm (L2-norm) which is 

2 22

2

2

12 Nxxx  x  . This norm is known geometrically as Euclidean length of vector x.  

 

B. CS compression and reconstruction 

 Generally speaking, CS consists of two steps which are the compression step and 

reconstruction step. In CS, a discrete signal x of length N can be compressed into signal y of 

length M by multiplying x to a matrix A which is called sensing matrix or compression matrix 

with dimension of M N (M < N), 

 y = Ax                                                                        (2) 

 The process to produce y from x using A as described in Equation (2) is called CS 

compression. The step to recover back x from y and A is called the reconstruction step. 

Although calculating y from A and x is easy, reconstruction x from A and y is difficult as 

Equation (2) for M < N is an underdetermined system of linear equation with an infinite 

possible solution. There are two basic CS requirements to obtain a correct solution out of these 

infinite possible solutions which are: the original signal x has to be sparse in certain basis and 

sensing matrix A has to be restricted isometrics property (RIP) compliance.  

A signal b is called sparse if b consists only a few non-zero values where majority of the others 

are zero. In more general view, a signal b is called sparse in a basis Ψ  if 

 Ψυb   (3) 

 

for a sparse vector υ . 

On the other hand, a sensing matrix A is called RIP compliance if it fulfills  

 222
)1()1( xxAx ss                                                     (4) 

for a small positive value 
s . Equation (4) has a geometrical interpretation that the sensing 

matrix A preserves the Euclidean length of original signal before and after compression. 

Candes and Tao gave a lengthy mathematical explanation on the role of RIP to the CS 

reconstruction [23].  

 After sparsity and RIP requirements are fulfilled, the reconstruction of CS can be solved 

using minimization L0-norm which is [1] 
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  yxAxx  tosubjectmin
0

ˆ                                                   (5)  

 Chen et al. however realized that optimization problem in Equation (5) did not lead to any 

analytical or practical solution [24]. Therefore, they proposed a relaxation from a zero-order 

norm minimization to a first-order norm minimization, which is 

 
yxAxx  tosubjectmin

1
ˆ

                                                
  (6) 

 The formulation in Equation (6) is also called as basis pursuit (BP). Even though Chen et 

al. did not give a mathematical proof that first-order norm produced similar solution to those of 

zero-order norm, Donoho in his investigation showed that there is plenty statistical evidence 

that both solutions are similar [25].  Relaxing L0-norm to L1-norm minimization, however, 

requires higher sparsity in x as indicated by Donoho and Huo [26] and also by Elad and 

Bruckstein [27]. 

 

C. Orthogonal Matching Pursuit 

 OMP is one of the most important greedy algorithms. While many researchers consider that 

OMP was derived from MP [13], it was actually developed rather independently by Chen et al. 

[14] in 1989. The main difference between MP and OMP is on the orthogonalization step 

which is not available in MP. The introduction of OMP for sparse reconstruction was 

pioneered by Tropp and Gilbert [15].  

 For CS reconstruction, greedy algorithm views the sensing matrix A as a collection of 

columns 
ia  which is called basis or atom to form a dictionary matrix NMR A [13, 14, 15]. 

Assuming that  N21 xxx x , the compression process as described in Equation (2) can 

be viewed as linear combination of ai by xi to form y, which is 

 
N21 aaay Nxxx  21

                                            (7) 

 Using this view, OMP algorithm works reversely to find x which is selecting an atom xi in 

each step which has the highest contribution to the compressed vector y. After each atom has 

been selected, OMP calculates the residue vector from compressed vector y and performs the 

orthogonalization step to ensure that the selected atoms do not alter the calculation of the next 

atom selection. A complete OMP algorithm is given in the work of Tropp and Gilbert [15]. 

 

Algorithm 1 : Orthogonal Matching Pursuit 

Input : NMRA , and 
M

Ry , sparsity level k. 

Output : 
M

Rxˆ . 

 

1: r(0)   y  initialize the residual 

2: {})0(    initialize the indices 

3: Anew {}   

4: for i = 1,...,k do  

5:        
jar ,maxarg 1

,,1

)( 

 i

nj

i

   the column of A that is most correlated with r(i-1) 

6:        
i

ii
λΛΛ   )1()(   

7:         )(

)1()(
i

i

new

i

new 
aAA

   

8:        
2

)(

ˆ

)( ˆmaxarg xAyx x

i

new

i    solve the Least Squares for new signal estimate 

9:        )()()( iii
xΦa    new data approximation 

10:         r(i)y - a(i)  new residual 

11: end for  
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12: )(ˆ k
xx    

13: return x̂   

 

D. Convex Optimization 

 Convex optimization has become a standard method to solve optimization problem that 

based on L1-norm minimization. Solving CS reconstruction problem as stated in Equation (6) 

using convex optimization is solved by recasting the minimization problem into a Linear 

Programming (LP). This LP is solved, for example, using the path following primal-dual 

method [19]. Consider the case of CS reconstruction as formulated in Equation (6). We can 

recast this reconstruction problem into an LP which is [20] 

 
i

iumin  subject to 0 ii ux                                        (8) 

 0 ii ux                                       (9) 

 Ax  =  y                                     (10) 

 

 These set of equations can be solved using a standard primal-dual algorithm with Newton 

iteration step is given by [20]. In this research, the implementation of CS reconstruction using 

convex optimization is solved general purpose solver package developed by Stephen Boyd 

which is called as CVX [20]. This package can be run under engineering computation software 

such as Matlab or Octave. The following CVX code is an example to solve Equation (6). 
 

cvx_begin 

      variable x(n) 

      minimize norm(x(n),1) 

      subject to 

            Ax==y 

cvx_end 

 

3. Proposed Method 

 The CS reconstruction as given in Equation (6) can be viewed as optimization problem with 

objective function 
1

)( xx f  and constraint function 0)(  Axyxg . Geometrically, the 

solution of this optimization problem is to find the touching point between the objective curve 

and the constraint curve. As an illustration, we consider a simple original signal consist of two 

samples which is  Txx 21x . The objective function f(x) curve forms a four-sided rhombic 

and the constraint function form a straight line y=Ax as shown in as shown in Figure 1(A). In 

this figure, the solution of minimization problem is obtained when the rhombic touches the 

straight line (point P). In the other word, point P is the solution of L1-norm minimization. The 

minimization of L2-norm, on the other hand, can be formulated as 

 
yxAxx  tosubjectminˆ

2  
(11)        

 The L2-norm in this two samples signal forms a circle as shown in Figure 1(A). The 

solution of L2-norm minimization is a touching point of the circle and straight line (point Q). 

Other than point P(0 , x2), the constraint function g(x) also intersects the coordinate axis at 

point T (x1,0). Both point P and point T have the lowest sparsity on the constraint line g(x) 

which is one. As we observe from Figure 1(A) that the distance from L2-norm solution (Q) is 

shorter to the L1-norm solution (P) than to other point that has the lowest sparsity (T). In the 

other words, 
22

QTQP  .   
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Figure 1. (A) The solution of L1-norm and L2-norm minimization that fulfill constraint Ax = y 

(point P and Q respectively). (B) Projection of point Q to x1 and x2 axis. 

 Based on this observation, we conclude that once the L2-norm solution has been found, and 

then the L1-norm can be found by finding the closest sparse point in constraint line g(x) from 

L2-norm solution. The basis of this observation is generalized in Proposition 1. 

 

Proposition 1. Let P be the L1-norm point solution of Equation (6) and let Q be the L2-norm 

solution of Equation (11). Let also Ti, i = 1, 2, 3, , s,  be intersections of constraint function 

to the axes of coordinate. The distance from P to Q is the smallest compared to the distance 

from Q to any other points Ti. That is 
22 iQTQP   for all i = 1, 2, , s. 

 

The following proposition gives the analytical solution of L2-norm solution. 

 

Proposition 2. Let Q be the L2-norm solution of Equation (11). Then Q can be calculated as: Q 

= (AAT)-1AT y.  

 

The proofs of Proposition 1 and Proposition 2 are given in Appendix.  

 

 After L2-norm has been found, then it is necessary to find the direction from L2-norm 

solution (Q) to L1-norm solution (P). Let us denote the coordinate of point Q as xQ which is 

   yAAAxQ

TT 1
 .                                                 (12) 

 To find direction from Q to P, we first project the point Q to x1 and x2 axis to obtain points 

Q1 and Q2 respectively (Figure 1(B)). If the coordinate of Q is written in vector as xQ=[x1Q, 

x2Q]T, then the point Q1 and Q2 have the coordinate as represented by vectors as [x1Q, 0]T and 

[0, x2Q]T respectively. As 
22

QTQP   we expect that 
2221 OQOQ  , where O denotes the 

coordinate origin. As 
QxOQ 121   and 

QxOQ 222  , we conclude that the direction from Q to 

P is determined by the maximum value of either x1Q or x2Q. In other words, if x1Q > x2Q, then 

the direction from Q to P is by following x1-axis, while if x1Q < x2Q, then the direction from Q 

to P is by following x2-axis.  

 For a general N dimension of signal x and MN dimension of matrix A, the direction from 

Q to P can be represented by choosing M largest value in vector L2-norm solution Q. A 

direction vector can be now represented as vector d with the length of N and has value ones at 

location corresponding to M largest value in xQ while the rest is zeros. Using this direction 

vector, we can modify the sensing matrix A to become Ad which is  

 dAA d
                                                                 (13)   

 The sensing matrix Ad now contains the correct direction to L1-norm solution. The L1-norm 

solution now can be found as 

   yAAAx
T

d

T

ddP

1

                                                         (14) 
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where xp is the coordinate of L1-norm solution. We now can state our proposed algorithm as 

follows. 

Algorithm 2: The L1-norm minimization via L2-norm minimization 

Input: y M
R  and A NM

R , sparsity k 

Output: x̂  N
R  

1: [M, N]   dim(A)  initiate the dimension 

2:    det(AAT)   

3: If  = 0 then stop, return x̂  {}, else 

continue to step 4 

 

4: calculate  xQ   (AAT)-1ATy  L2-norm solution 

5: [U  ] = sort(abs(xQ))  sort L2-norm solution 

6: ds = zeros (N,1)  initiate direction vector 

7: for i=1 to k   

8:    ds( (k))=1  construct vector direction from L2-norm 

solution to L1-norm solution  

9: end for  

10: As = Ads,  

11: xP = (As As
T )-1As

T y  L1-norm solution 

12: x̂ xp  

13: return x̂   

 

 In complex valued signals, we use AH to denote operation of transpose conjugate of A 

instead of a simple transpose of A. In the next section, we will compare the performance of our 

proposed method with the convex optimization (CVX) and greedy algorithm (OMP). 

 

4. Result and Analysis 

 To assess the performance of the proposed algorithm, we run computer simulations with 

various situations such as coherency and noise. We also test the computation speed of the 

algorithm. As the benchmark, we use CVX programming as the representation of convex 

optimization, and OMP as the representation of greedy algorithm. The following simulations 

are performed: reconstruction performance as function of coherency, the performance as 

function of noise power, the computation time as function of signal length. We also performed 

the comparison of these algorithms in the case of GPR signal reconstruction. In our 

experiments, we use root mean square error (RMSE) to measure the closeness between the 

reconstructed signal x̂  and the original one x. Higher RMSE value means worse performance. 

RMSE is calculated as 

  



N

i

ii xx
N

RMSE
1

2
ˆ

1                                                (15) 

 

A. Performance as function of coherency  

 This simulation is about the comparison of the performance of proposed method versus 

OMP and CVX in term of robustness against coherency of the sensing matrix A. Coherency of 

matrix A is defined as the highest value of inner product of columns in A, or mathematically 

this statement can be written as  













 



22

)(:,)(:,

)(:,)(:,
max)(

kj

kj

kj AA

AA
A  

(16) 

Compressive Sensing Reconstruction Algorithm using L1-norm 

43



 

 

 Coherency value has the value of between 1)(0   . High value of coherency of A 

indicates that there are at least two columns in A that closely correlated.  There are some 

applications when the case of high coherency may take place, for example direction of arrival 

estimation, when two objects lay closely each other. OMP is well known to be weak in this 

high coherency environment.  

 In this simulation, we use two compression ratios which are 2:1 (high compression ratio) 

and 6:5 (low compression ratio). Compression ratio is defined as the ratio between the lengths 

of original signal (N) to the length of compressed signal (M). The values in matrix A are 

randomly generated using Gaussian random distribution (an i.i.d Gaussian distribution). We 

use a simple method to control the coherency value in A which is by modifying column k using 

column l (k ≠ l) using linear substitution as follows. 

 klk aaa )1(                                                    (17) 

 We call the parameter µ ( 10   ) in Equation (17) as coherency control parameter. 

Increasing the value of µ corresponds to the higher coherency in A since k-th column becomes 

more similar to the l-th column. We ran the simulation 100 times for each value of µ, and the 

RMSE is taken as average of the RMSE value of each simulation. The results which 

corresponds low and high compression ratio are depicted in Figure 2(A) and Figure 2(B) 

respectively. In these figures, we increase the value of µ gradually from 0.1 to 0.9. The vertical 

axis corresponds to the RMSE value. In low compression ratio (Figure 2(A)), all methods have 

a relatively good performance at low value of µ especially below 0.3. As the value of µ 

increases, the OMP performance decreases rapidly as indicated by high RMSE value. CVX, on 

the other hand, has a good stable performance as we expect with the RMSE at about 0.14 

throughout all the value of µ.  
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Figure 2. The RMSE of OMP, CVX and Proposed Method as a function of µ for (a) low 

compression ratio (6:5) and (b) high compression ratio (2:1). 

 

The proposed method has the best performance at low µ value, and its performance starts to 

worsen at the value of µ greater than 0.7. 

 Similar trend is also observed in high compression scheme (Figure 2(B)). However, CVX 

and OMP scheme have a relatively high RMSE at low value of µ which is about 0.45. The 

proposed method, in this case, again shows a best performance at µ less than 0.4. At µ greater 

than 0.4 our proposed method start declining and at µ greater than 0.8, the proposed algorithm 

performs worse than CVX. CVX maintained a relative constant RMSE value at about 0.45 

throughout all values of µ. OMP, on the other hand, has RMSE value which increases as the 

value of µ increases. 

 

Coherency control parameter (µ) Coherency control parameter (µ) 
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B. Performance as function of SNR 

 This simulation is aimed to assess how the proposed method performs in noisy 

environment. To obtain this information, we perform simulations with similar setup to those in 

Sec. 4.1. Two compression ratios (low and high compression with M=6 N=12 and M=10 

N=12 respectively) are used as in previous simulation. The elements in matrix A are generated 

randomly using i.i.d. Gaussian distribution. The signal x with sparsity of two is generated. 

After that, the compressed signal y is added with additive white Gaussian noise (AWGN) with 

SNR from 0 to 20 dB with increment of 2 dB. For each simulation, RMSE is calculated and the 

simulation is repeated 1000 times and averaging the RMSEs. 
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Figure 3. Performance in noisy environment. (A) low compression ratio 

 (B) high compression ratio 

 

 The average RMSE as function of SNR are plotted in Figure 3(A) and (B). We observe that 

in both cases that CVX has a better performance, while the proposed method and OMP has 

about a similar performance. At this low compression scenario, the performance of proposed 

method is slightly better than OMP in low SNR values, while OMP has slightly better 

performance in high SNR values (Figure 3(A)). CVX has a clear advantage in low compression 

ratio as compared to proposed method and OMP. In the case of high compression ratio (Figure 

3(B)), the three schemes have about similar performance. Proposed method has best 

performance at low SNR, with OMP and CVX follow closely. At high SNR values, CVX 

performs best and followed by proposed method and OMP. 

 

C. The computation time as function of signal length 

 In Sec. 4.2, we observe that CVX has better performance noisy environment. In this 

simulation, we will show that the CVX performance has to be paid in a slow reconstruction 

time. Theoretically, assuming that matrix A has dimension of M   N and signal sparsity k, the 

complexity of OMP algorithm is O(kMN) [15]. The complexity of convex optimization as 

reported by Nemirovski is O(MN2) for calculating Newton’s gradient, and O(N3) to solve the 

assembled equations. As M << N in the case of CS reconstruction, then complexity in convex 

optimization is dominated by O(N3) [28]. From this theoretical view, we expect that the 

proposed method and OMP will outperform CVX in term of reconstruction time. In this 

simulation, we performed a computational time simulation as function of the length of original 

signal x. The compression ratio is 2:1 for all simulation. The result is depicted in Figure 4. 
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Figure 4. Reconstruction time curve of OMP, CVX, and proposed method  

as function of signal length. 

The relative reconstruction time for each algorithm is relative to the computer being used 

(Pentium Core 2 Duo 1.6 GHz, 3 GB of RAM). We used Monte Carlo simulation with 1000 

repetition in each simulation. The result as shown in Figure 4 clearly indicated that CVX has 

the slowest computation time. It is more than 200 times slower than those of OMP and the 

proposed method. OMP itself shows a slightly better speed than the proposed method. 

 

D. The Reconstruction of GPR signal 

 In this simulation, we compared the reconstruction capability of the three schemes using 

actual ground penetrating radar (GPR) signal. This signal was obtained from laboratory 

measurements of an object (a gun) buried at the depth of about 30 cm. GPR imaging was 

obtained by collecting downward surface scanning at certain discrete positions on the ground 

surface. These discrete positions are also called the scanning grids.  A-scan signal is GPR 

signal that was obtained at a certain grid point while B-scan GPR signal was obtained using a 

set of parallel A-scan signals at certain direction. In this simulation, we used A-scan signal 

which consists of 624 samples. Figure 5(A) shows a time domain of a particular A-scan signal 

under in this experiment, while Figure 5(B) shows the frequency domain of this signal. From 

Figure 5(B), we observe that A-scan signal is a sparse signal in frequency domain with the 

most of its energy lies within one-sixth of its low frequency band. In other word, we expect a 

compression ratio limit will 6:1 for a good reconstruction result. We apply CS on this A-scan 

signal using i.i.d. Gaussian random sensing matrix with the compression ratio of 4:1 which is a 

bit smaller than the limit 6:1. The compression ratio 4:1 is higher than those 6:5 and 2:1 as in 

Sec. 4.1 and 4.2 to show that the proposed method still have good reconstruction result in this 

challenging scenario. The reconstruction results for proposed method, CVX and OMP are 

shown in Figure 6(A), (B), and (C) respectively. 
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Figure 5. An example of A-scan from the GPR experiment. (A) in time domain. (B) In 

frequency domain. 
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 As we observe in Figure 6, the proposed method and OMP has a good reconstruction result 

where these schemes follow the original signal in entire time frame. CVX, on the other hand, 

has also a good capability in constructing the trend of the signal but the amplitude estimate is 

not close to the original signal.  
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Figure 6. The reconstruction of GPR A-scan signal. (A) Using proposed method. (B) Using 

CVX. (C) Using OMP. 

 

5. Conclusion 

 In this paper we propose a new CS reconstruction algorithm based on L1-norm 

minimization via L2-norm minimization. This algorithm is based on geometrical interpretation 

of L2-norm solution is closed to the L1-norm solution. The proposed method basically consists 

of three steps which are: calculating the L2-norm solution, finding the direction from L2-norm 

solution to L1-norm solution, and calculating L1-norm solution. The proposed method has a 

faster computation time as compared to CVX method which is based on heavy Newton 

iteration. Computer simulation result showed that computation time of the proposed method is 

more than 200 times faster than those of CVX. The proposed method also does not work on 

column based, thus it is more robust to the sensing matrix coherency as compared to OMP 

algorithm. Given these advantages of proposed methods, in term of robustness against noisy, 

CVX still performs better than the proposed method as Newton iteration is more robust in 

noisy environment. The proposed method is also slightly slower than OMP due to the sorting 

step in proposed method which is not available in OMP. In the future, it is still necessary to 

improve the proposed method so that its speed can be even better.  
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Appendix 

Proof of Proposition 1. For this proof, we use Figure 1(B) as reference. Let the T1, T2, … TS be 

any other intersections of the constraint curve to the axis of coordinate and let O be the center 

of the coordinate. Since P is the L1-norm solution of Equation (6), then 
22 iOTOP   for all i 

= 1, 2, …, S. The sign <  is strictly without equal sign (=) since the L1-norm solution is unique. 

We also note that, since P and Q lie on Ax = y, and since point Q is the point on Ax = y that 

has the shortest distance from O, it is also true that 
22

OPOQ  . From these results we 

conclude that 
222 iOTOPOQ   for all i = 1, 2,…, S. Now 2

2

2

22
OQOPQP   and 

2

2

2

22
OQOTQT ii  . As

22 iOTOP  , we conclude that
22 iQTQP  .  

 

Proof of Proposition 2. We combine the objective and constraint function from Equation (11) 

using Lagrange multiplier, which is 

 )()(),(
2

2
AxyλxxAxyλxλx  TTTf                                                        (A.1) 

Differentiate ),( λxf ) with respect to x and set it equal to 0, we obtain 

 022
),(





λAxAλx

x

λx TTf
                                                                             (A.2) 

Pre-multiply (A.2) with A and remembering that Ax = y, we obtain 

   022  λAAyλAAAx
TT                                                                                      (A.3) 

Solving for λ , we obtain  

 yAAλ 2)( 1 T                                                                                                               (A.4) 

Finally, we substitute (A.4) to (A.2), and solve it for x, we get 

 yAAAx
1)(  TT                                                                                                            (A.5) 
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