
International Journal on Electrical Engineering and Informatics - Volume 1, �umber 1, 2009

Generic Data Model Patterns using Fully Communication Oriented
Information Modelling (FCO-IM)

Fazat Nur Azizah1, Guido P. Bakema2, Benhard Sitohang1, Oerip S. Santoso1

1School of Electrical Engineering and Informatics, Bandung Institute of Technology
Jln. Ganesha no. 10, Bandung, Indonesia

fazat@stei.itb.ac.id
benhard@stei.itb.ac.id

oerip@stei.itb.ac.id

2Faculty of Engineering, Institute of Information Technology, Media and Communication,
HA� University of Applied Sciences

Ruitenberglaan 26, 6802 CE, Arnhem, The �etherlands
2guido.bakema@han.nl

Abstract: In the specific area of data Modelling, data model patterns have been introduced

and used to help creating high-quality conceptual data models. Generic data model patterns, in
particular, are expected to be more useful in helping to solve more data Modelling problems in
comparison to domain-specific patterns. A collection of generic patterns using Fully
Communication Oriented Information Modelling (FCO-IM) as the Modelling approach is
described in this paper. They can generally be divided into two categories: (1) Patterns that are
based on the identification of an object, consist of 6 patterns; (2) Patterns that are based on the
relation between two objects, consist of 7 patterns. The generic patterns are needed to be
documented in full details and then to be shared in wider audience to have comments and
improvements.

Keywords: pattern, data model pattern, FCO-IM

1. Introduction

Patterns have been used in many areas of software engineering to help design processes in
creating high-quality solutions in shorter amount of time. Design patterns (see [14]), for
instance, are used to help designers creating object-oriented programs. In the specific area of
data Modelling, data model patterns (see [15], [16]) have been introduced and used to help
creating high-quality conceptual data models for an enterprise.

The use of patterns to guide design processes is originally an idea of Christopher Alexander,
a physical architect known for his writings on patterns in urban planning and building
architecture, who defines a pattern as “a three-part rule which expresses a relation between a
certain context, a problem, and a solution” [1]. Based on this definition, a pattern can be
defined as an instruction or a description of a solution to a recurring problem within its goals
and constraints which takes place in a certain context [2], [6]. In the case of data model
patterns, the problems are specific problems in data Modelling with data models as the
solutions.

Most of current works on data model patterns are domain-specific patterns i.e. patterns that
are usable for particular area of application, mainly enterprise domain (see [4], [12], [13], [15],
[16], [19]). These works use Entity-Relationship Modelling (ERM) [8], [18] or Object-
Oriented Modelling (OOM) [10] as the Modelling approach.

Since the patterns are domain-bounded, their applications are limited to the specified area.
Even in the respective domain, troubles may be encountered when only small portions of the
patterns can be used or too many changes should be carried out. A lot of data Modelling cases
do not fall neatly to any parts of the patterns. It would be more useful if data model patterns are
defined in more generic ways, so that they can be used to solve more problems. This leads to
several works on generic or domain-independent patterns (see [11], [17]). Nevertheless, these
works still use terms and constructs that are closely related to the domain-specific patterns.

The aim of our research is to investigate the concepts of data model patterns using Fully
Communication Oriented Information Modelling (FCO-IM) as the conceptual data Modelling
method. FCO-IM is a fact-oriented data Modelling (FOM) method which views a universe of
discourse (UoD) as a collection of facts [5], [7]. The use of fact-oriented way of thinking,
especially in FCO-IM, is expected to bring new insights in the discussions of data model
patterns [6].

The goal of this paper is to describe a collection of generic data model patterns with FCO-
IM as the Modelling approach. The problems defined for the patterns come from common
structures of data that may be encountered by data modelers during Modelling processes. This
paper presents how these problems are handled in FCO-IM. For specific terms used in FCO-IM
please refer to [5] or [7].

2. The data modelling problems

From time to time, data modelers encounter structures of data that come repeatedly from
one case of data Modelling to another. No matter what the semantics that are defined above the
structures, they are always solved in particular fashions. Experienced data modelers usually can
recognize the structures immediately when they see them and they have developed a tacit
knowledge in their heads on how to handle the structures in data models.

Accordingly, in our view, generic data model patterns should be derived from the definition
of such structures. It should not use specific terms/vocabularies that may lead to specific
interpretations of the structures. Using FCO-IM as the Modelling approach, we are going to
describe the problems using FCO-IM terms and constructs, including Object Type (OT), Fact
Type (FT), Label Type (LT), population, and Uniqueness Constraint (UC) [5], [7].

The first group of problems that we identified are problems related to the structures of a
single object. They are specifically related to how an object is identified. Identification of an
object is important in data Modelling because every object must be recognized uniquely in
order to maintain the single definition of data. The problems are:

• Single Identification: How to model an object that is identified uniquely by only one
particular way of identification.

• Generalized Identification: How to model two or more objects that are required to be
recorded for the same type of facts, and thus, those objects should be treated as a single
object.

• Synonymy: How to model an object that is identified using two or more different ways of
identification.

• Homonymy: How to model one name (or other way of identification) that can be used to
define two or more objects.

• Recursive Identification: How to model an object which is identified partly by itself.
• Set Identification: How to model the identification of a set of objects of the same type.

The second group of problems that we are identified are defined as the relations of two

objects in a UoD. The problems are:
• Attribute: How to model the attribute (property) of an object. The attribute is most

probably an object of different type.
• Assembly-Part: How to model an object that becomes a part of other object, or the other

way around, how to define an object that assembles other object. Both objects are of
different types.

• Is-a (Specialization): Some objects have different characteristics in comparison to other
objects of their type, implying a kind of specialized type of the object.

• Matrix: How to model an object which is mapped (with specific kinds of relations) to
several other objects of different type and vice versa.

• Graph: How to model the relation between two objects of the same type. An object can
be related to one or more objects.

• Successor-Predecessor (Sequence): How to model an object (predecessor) that comes
after another object of the same type (successor) in a sequential manner. Specific
characteristic: an object may only be followed by one other object. Sequence can be
considered as a special type of graph problem.

• Parent-Child (Tree): How to model an object that has parent-child relationship with
other object(s) of the same type, possibly not only one level of parent-child relationship,
but also several levels of parent-child hierarchy, forming a tree structure. Specific
characteristic: a child may only have at most one parent. Parent-Child can be considered
as a special type of graph problem.

3. The Generic patterns
Each of the problems described in chapter IV is the basis of the generic data model patterns.

According to Alexander’s concept, a full description of a pattern should contain several
elements, such as name, problem, context, solution, etc. [2]. The following descriptions of
patterns are emphasized on problems, solutions, and some examples, but they are expressed in
an open way to emphasize the discussion of the problems and their solutions and to avoid too
many details.

A. Patterns Based on the Identification of an Object
The patterns discussed in this section are based on the problems of identification of an

object.

1) Single Identification Pattern
Most objects are identified uniquely using only one particular way of identification. The

identification can be either single value or composite values (the unique combinations of
several values).

The main characteristic of the solution (and its variants) in FCO-IM is the presence of a UC
that covers all roles that constitute an OT altogether and strictly applies n rule (see [7] for
explanation on n rule).

Typical examples include: a student is identified by a student number; an employee of a
company is identified by employee number, a person is identified by the combination of first
name and surname, etc. Fig. 1 presents examples of applications of the patterns for object types
identified by a single value and by composite values.

1

33206301

F1 : "There is a student
<1>."

O1 : 'student <1>'

1

1:

Student

1

33206301

1

33206301

1
F1 : "There is a student

<1>."
O1 : 'student <1>'

11

1: 33206301

Student

student_nostudent_no

5

John

6

Smith

F3 : "There is a person <5> <6>."
O2 : 'person <5> <6>'

2

1:

Person

5

John

6

Smith

5

John

5 6

Smith

6
F3 : "There is a person <5> <6>."
O2 : 'person <5> <6>'

22

1: John Smith

Person

first_namefirst_name surnamesurname

Fig. 1. Examples of applications of Single Identification Pattern’s solution for object type
identified by a single value (a) and by composite values (b)

(a) (b)

2) Generalized Identification Pattern
Sometimes two or more different objects are recorded for the same kind of facts and thus, it

is needed to define a new object that unites the previous objects. The solution of such problem
is by using the so called generalization construct. Generalization is a way to unite two or more
different OT’s into a new OT that contains all those OT’s [7]. The main characteristics of the
new OT are the presence of roles with each role played by the different OT’s and several UC’s
that cover only parts (not all) of the roles of the new OT.

As an example, in a company, there is an OT called ‘Project’ (identified by a project
number denoted by LT ‘project_no’) and there is another OT called ‘Assignment’ (identified
by the name of the departement that carries it out, denoted by OT Department, and a sequence
number, denoted by LT ‘sequence_no’). There is an FT ‘Budget’ that must be recorded for
both Project and Assignment. Thus, a new OT called Task is defined, which is the
generalization of ‘Project’ and ‘Assignment’. Fig. 2 shows how this example is modeled in
FCO-IM.

7

P1010
-

11

-
HRD,001

O2 : '<7>'
O6 : '<11>'

1:
2:

Task
1

2

7

P1010
-

11

-
HRD,001

7

P1010
-

7 11

-
HRD,001

11
O2 : '<7>'
O6 : '<11>'

1:
2:

P1010
-

-
HRD,001

Task
1

2
1

2

1

P1010

F1 : "There is a project
<1>."

O3 : 'project <1>'
1:

Project

4

O3

1

P1010

1

P1010

1
F1 : "There is a project

<1>."
O3 : 'project <1>'

1: P1010

Project

2

HRD

3

001

F2 : "There is an assignment <2>.<3>."
O7 : 'assignment <2>.<3>'

1:

Assignment
3

O7

2

HRD

3

001

2

HRD

2 3

001

3
F2 : "There is an assignment <2>.<3>."
O7 : 'assignment <2>.<3>'

1: HRD 001

Assignment
33

44

project_noproject_no
4

HRD
O1 : '<4>'

1:

Department

5

O1

4

HRD

4

HRD

4
O1 : '<4>'

1: HRD

Department

55 sequence_nosequence_no

dept_namedept_name

Fig. 2. An example of application of Generalized Identification Pattern’s solution for Project-
Assignment case

3) Synonymy Pattern
Synonymy is the phenomenon that an object is identified in more than one way [7]. The

starting point of this problem is different with the generalized identification problem, since this
problem is about a single OT with more than one way of identifications, while the generalized
problem is about two or more OT’s to be made a single OT. Nevertheless, the solution of
synonymy problem in FCO-IM is also by using generalization construct. Thus, the main
characteristics of the solution are basically the same as the solution for generalized
identification problem.

Typical examples of synonymy problem include: an employee in a company is identified
using either social security number or an employee number; a student in a university is
identified using either a registration number or a student number or even with an employee
number (if the student is also a teacher/an employee in the same university). Fig. 3 depicts an
example of the application of Synonymy Pattern.

1

33206301

2

0610004

F1 : "Student <1> is the same as
student <2>."

O1 : 'student <1> alias <2>'
1:

Student
1

2

1

33206301

2

0610004

1

33206301

1 2

0610004

2
F1 : "Student <1> is the same as

student <2>."
O1 : 'student <1> alias <2>'

1: 33206301 0610004

Student
1

2
1

2

student_nostudent_no registration_noregistration_no

Fig. 3. An example of application of Synonymy Pattern’s solution for Student case

4) Homonymy Pattern
Homonymy is the phenomenon that one name indicates two or more different objects [7].

This problem differs from the two previous problems since it concerns a particular name (or
other ways of identification) that may be used as the identification for more than one OT’s. The
solution in FCO-IM, however, is also using generalization construct.

A typical example is the Modelling of bus routes and flights in a travelling company [7].
For example: there is an OT ‘Bus Route’ with one of the population ‘AX11’ which is also a
population of OT ‘Flight’. An OT called Itinerary’ is defined which is the generalization of OT
‘Bus Route’ and ‘Flight’. Fig. 4 depicts this example.

3

AX11
ZH7

-
-

4

-
-

CD13
AX11

F3 : "<3> is an itinerary."
F4 : "<4> is an itinerary."
O3 : '<3>'
O5 : '<4>'

3
4

1:
2:
3:
4:

Itinerary

3

AX11
ZH7

-
-

4

-
-

CD13
AX11

3

AX11
ZH7

-
-

3 4

-
-

CD13
AX11

4
F3 : "<3> is an itinerary."
F4 : "<4> is an itinerary."
O3 : '<3>'
O5 : '<4>'

3
4

3
4

1:
2:
3:
4:

AX11
ZH7

-
-

-
-

CD13
AX11

Itinerary

1

ZH7
AX11

F1 : "<1> is a flight."
O1 : '<1>'

1

1:
2:

Flight

1

ZH7
AX11

1

ZH7
AX11

1
F1 : "<1> is a flight."
O1 : '<1>'

11

1:
2:

ZH7
AX11

Flight

2

CD13
AX11

F2 : "<2> is a bus route."
O2 : '<2>'

2

1:
2:

Bus Route

2

CD13
AX11

2

CD13
AX11

2
F2 : "<2> is a bus route."
O2 : '<2>'

22

1:
2:

CD13
AX11

Bus Route

flight_numberflight_number bus_route_codebus_route_code

O1 O2

Fig. 4. An example of application of Homonymy Pattern’s solution in Bus Route and Flight
case

5) Recursive Identification Pattern
Some OT’s are identified partly by itself. This is called a recursive OT. An object of this

type can be identified uniquely based on their positions within a structure that consists of
objects of the same OT.

The solution of this problem in FCO-IM is by using a special construct of generalization
that is typical for recursive problems. The main characteristic of a recursive OT is the presence
of at least one role that is played by the OT itself.

Typical examples of application of this pattern include: the numbering of chapter and
section in a book [7], the identification of files/folders in a computer file system, family tree

(where names of family members are not unique and therefore, a particular person can only be
identified uniquely by its path to the root of the tree), etc.

Fig. 5 presents an example of hierarchy of files, folder, and drives of a typical computer file
system. As it can be seen in the example, there are two files with the name File-1.txt. They are
different objects and are recognized by their position in the file system hierarchy. Fig. 6 shows
how it is represented with recursive identification pattern. As it can be seen in Fig. 6, role 1 of
OT ‘File/Folder’ is played by OT ‘File/Folder’ itself.

Fig. 5. An example of typical hierarchy in a computer file system

4
OP

C
-
-
-
C

1
OP

-
-,A,C

(-,A,C),A1,-
-,A,C

-

3
OP

A
A1
-
-
B

2
OP

-
-

File-1,txt
File-1,txt

-

File/Folder

F1 : "There is a file <1>/<2>."
F2 : "There is a folder <4>://<3>."
O1 : '<1>/<3>'
O2 : '<4>://<3>'

1:
2:
3:
4:
5:

2
1

4
OP

C
-
-
-
C

1
OP

-
-,A,C

(-,A,C),A1,-
-,A,C

-

3
OP

A
A1
-
-
B

2
OP

-
-

File-1,txt
File-1,txt

-

4
OP

C
-
-
-
C

4
OP

1
OP

-
-,A,C

(-,A,C),A1,-
-,A,C

-

1
OP

3
OP

A
A1
-
-
B

3
OP

2
OP

-
-

File-1,txt
File-1,txt

-

2
OP

File/Folder

folder_namefolder_name

6

File-1

7

txt
O4 : '<6>.<7>'

4

1:

File5aming

6

File-1

7

txt

6

File-1

6 7

txt

7
O4 : '<6>.<7>'

44

1: File-1 txt

File5aming

5

C
O3 : '<5>'

3

1:

Drive

5

C

5

C

5
O3 : '<5>'

33

1: C

Drive

drive_namedrive_name

file_namefile_name extensionextension

O1, O2:F1
O2 :O1

O4

O3

F1 : "There is a file <1>/<2>."
F2 : "There is a folder <4>://<3>."
O1 : '<1>/<3>'
O2 : '<4>://<3>'

1:
2:
3:
4:
5:

C
-
-
-
C

-
-,A,C

(-,A,C),A1,-
-,A,C

-

A
A1
-
-
B

-
-

File-1,txt
File-1,txt

-

2
1
2
1

Fig. 6. An example of application of Recursive Identification Pattern in Files and Folder case

6) Set Identification Pattern
In some cases, several objects (of the same type) are grouped together in a set. The set is

identified by the objects belong to it. As an example, as discussed in [8], a team of game
players consists of an arbitrary number of players. So, there is a team called the team of Steve
and Colin, and there is another team called the team of Macy, Marty, and John. Such
identification of a team requires a specific way of Modelling which introduce a specific form
of OT in FCO-IM called the set type. Fig. 7 provides an example of the use of a set type in an
FCO-IM diagram. In this example, the OT TEAM is a set type. Box (role) 2 indicates that it is

C

A

B

A1

File-1.doc

File-1.txt

File-1.txt

File-1.doc

played by OT PERSON. The UC 2 on top role 2 indicates that within a set, a PERSON can
appear only once. The UC 3 (which covers the braces ‘{}’) indicates that each set uniquely
defines a TEAM.

1

1

NAME

PERSON

Ft ‘<1> participants in tonights contest
01: ‘<1>
Steve
Colin
Mary
John
Ted
Andy

3
2
2

TEAM

P2 ‘the team consisting of
<PERSON> [<PERSON>_] and <PERSON>]
Is involved in tonight contest’

02 ‘the team consisting of
<PERSON> [<PERSON>_] and <PERSON>]
{Steve, Colin}

 {Mary Mary, John}
 {Ted, Mary, Andy}
 {Mary}
{Steve, Coly, John, Ted}

3 4

GAME SCHEDULE02 02

F4 ‘<3> plays againt <4>.’

{Steve, Colin} {Mary, Mary, John}
{Ted, Mary, Andy} {Colin, Steve}
{Mary} {Steve, Andy, John, Ted}

Fig. 7. An example of set type (TEAM) [8]

B. Patterns Based on the Relation between Two Objects
The patterns discussed in this section are based on the problems of the relations between

two or more objects, either objects of the same type or of different types. Each of the objects
can be identified uniquely using one of the patterns discussed in the previous section.

Although the relations defined are only on two objects, the relations can always be expanded
into three or more objects. Nominalization concept (see [5], [7]) allows such expansion.
Unfortunately, this will not be discussed in detail in this paper.

1) Attribute Pattern
Almost every object in the world has attributes/properties attached to it. For example: a

person has name, address, and birthday as the properties, etc. Each of the attribute is actually
also an object (can be of different or same OT) or only a certain value that describes a certain
attribute.

The typical solution of an FCO-IM model for this problem is an FT with two roles; one of
them is played by an OT which represents the object that possesses attribute and the other role
is played by either an OT or an LT which represents an object or certain values that become the
attribute of the former OT. To ensure that the attribute is dignified to the first OT, a UC is
placed on top of the role that is played by the first OT.

Fig. 8 depicts an example of an FT ‘Gender of Person’ that defines the attribute gender of
OT ‘Person’. The attribute itself is played by OT ‘Gender’. Note that the application of a TC at
OT ‘Person’ side of this FT is optional.

1

123456789
987654321

F1 : "There is a person with
id <1>."

O1 : 'person <1>'
O8 : '<1>'

1

1:
2:

Person

1

123456789
987654321

1

123456789
987654321

1
F1 : "There is a person with

id <1>."
O1 : 'person <1>'
O8 : '<1>'

11

1:
2:

123456789
987654321

Person

person_idperson_id

21

male
female

O6 : '<21>'

13

1:
2:

Gender

21

male
female

21

male
female

21
O6 : '<21>'

1313

1:
2:

male
female

Gender

19

123456789
987654321

20

male
female

F7 : "<19> has gender <20>."

14

1:
2:

Gender of Person

19

123456789
987654321

20

male
female

19

123456789
987654321

19
5 O1 20

male
female

20 O6

F7 : "<19> has gender <20>."

1414

1:
2:

123456789
987654321

male
female

Gender of Person
5

gender_typegender_type

Fig. 8. An example of application of Property Pattern

2) Assembly-Part Pattern
In a lot of cases, a thing can be part of other things, or the other way around, a thing can

have parts of other things. For example: a car product may be assembled of certain spareparts,
a food product may be made of several ingredients, a building consists of several rooms, etc.
Such relations are typical assembly-part problem. The special characteristic of this problem is
that each of parts can become a part of only one assembly at a time.

A typical solution of this problem in FCO-IM is an FT with two roles; each played an OT
(the OT’s can be the same or different OT’s). One OT plays the ‘assembly’; the other plays the
‘part’. A UC must be placed on top of the role that is played by OT that plays the ‘part’. This
ensures that each ‘part’ will only be used in one ‘assembly’.

A typical example of this problem is the relation of product and spare part in a
manufacturing company. This example is depicted in Fig. 9. OT ‘Product’ is assembled from
OT ‘Sparepart’.

1

AX123
AX123
FG345

2

PHC-123434
YU9992

OU-2912873

F1 : "<1> is assembled from <2>."

4

1:
2:
3:

Parts of Product

1

AX123
AX123
FG345

2

PHC-123434
YU9992

OU-2912873

1

AX123
AX123
FG345

1 2

PHC-123434
YU9992

OU-2912873

2
F1 : "<1> is assembled from <2>."

44

1:
2:
3:

AX123
AX123
FG345

PHC-123434
YU9992

OU-2912873

Parts of Product

3

AX123
FG345

F4 : "There is a product
<3>."

O1 : 'product <3>'

2

1:
2:

Product

3

AX123
FG345

3

AX123
FG345

3
F4 : "There is a product

<3>."
O1 : 'product <3>'

22

1:
2:

AX123
FG345

Product

product_snproduct_sn

4

PHC-123434
YU9992

OU-2912873

F2 : "There is a sparepart
<4>."

O2 : 'sparepart <4>'

3

1:
2:
3:

Sparepart

4

PHC-123434
YU9992

OU-2912873

4

PHC-123434
YU9992

OU-2912873

4
F2 : "There is a sparepart

<4>."
O2 : 'sparepart <4>'

33

1:
2:
3:

PHC-123434
YU9992

OU-2912873

Sparepart

sparepart_snsparepart_sn

O11 O21

Fig. 9. An example of application of Assembly-Part Pattern (Product-Sparepart case)

3) Is-A (Specialization) Pattern
In a lot of cases, a role of an FT can be populated only by a special well-defined subset of

the population of an OT that plays it. This requires a new OT which holds the population of the
subset. Is-a (specialization) problem shows up in a lot of data Modelling cases. A lot of
taxonomy or classification problems can be modeled using this pattern.

In FCO-IM, this kind of relationship between the two OT’s is modeled using specialization
construct [7]. The OT that holds all possible population in question is called the supertype;
whereas the OT that holds only the subset of the population is called the subtype.

An example of specialization problem is depicted in Fig. 10 in which the OT ‘Person’ is the
supertype and the OT ‘Woman’ is the subtype. The subtype ‘Woman’ appears because of the
presence of fact(s) that records something only for ‘Woman’, for instance ‘Number of
Childbirths’.

1

123456789
987654321

F1 : "There is a person with
id <1>."

O1 : 'person <1>'
O8 : '<1>'

1

1:
2:

Person

1

123456789
987654321

1

123456789
987654321

1
F1 : "There is a person with

id <1>."
O1 : 'person <1>'
O8 : '<1>'

11

1:
2:

123456789
987654321

Person

24

987654321
O7 : 'woman <24>'

12

1:

Woman

24

987654321

24

987654321

24

O8

O7 : 'woman <24>'

1212

1: 987654321

Woman

person_idperson_id

Fig. 10. An example of application of Is-A Pattern on the relation between Person (supertype)
and Woman (subtype)

4) Matrix Pattern
Things that are logically modeled as matrices can be modeled using the Matrix Pattern.

Suppose there is a group of objects A and B, the objects of group A can be mapped (in a
particular type of relation) to several objects of group B and vice versa.

The solution of such problem in FCO-IM is by defining an FT with two roles; each role is
played by an OT (can be the same or different OT). The mapping relationship is defined by
putting a UC that covers both roles. This ensures that the combinations of values from both
OT’s are unique.

A typical example of such relation is the relation between a Person and his/her Role in a
company. A Person in a company can have several Roles, such as a customer and as an
employee of the company. The Role customer involves several Persons, and so does the Role
employee. Fig. 11 shows the IGD of the example of Person and Role which is defined by the
FT ‘Role of Person’. Note that the TC’s at both sides of the roles of FT ‘Role of Person’ are
optional.

1

123456789
987654321

F1 : "There is a person with
id <1>."

O1 : 'person <1>'
O8 : '<1>'

1

1:
2:

Person

1

123456789
987654321

1

123456789
987654321

1
F1 : "There is a person with

id <1>."
O1 : 'person <1>'
O8 : '<1>'

11

1:
2:

123456789
987654321

Person

person_idperson_id

16

123456789

17

customer
F6 : "<16> has role <17>."

11

1:

Role of Person

16

123456789

17

customer

16

123456789

16 17

customer

17
F6 : "<16> has role <17>."

1111

1: 123456789 customer

Role of Person

18

customer
O5 : '<18>'

10

1:

Role

18

customer

18

customer

18
O5 : '<18>'

1010

1: customer

Role

role_namerole_name

O13 O5 43 4

Fig. 11. An example of application of Matrix Pattern

5) Graph Pattern
In graph problem, an object is related to one or more objects in a certain type of relation.

The relation is defined per pair of objects. An object can have one or more pairs. The pair can
also be itself.

The solution of such problem in FCO-IM is by defining an FT that holds two roles; each
role is played by the same OT. A UC is placed on both roles to uniquely define the pair.

An example of the problem is the connection between cities in a map, as can be observed in
Fig. 12. Each city is modelled as OT City. UC 2 ensures that each pair occurs only once.

1

Bandung

2

Sukabumi
F1 : "<1> has connection with <2>."

1:

Cities Connection
2

1

Bandung

2

Sukabumi

1

Bandung

1 2

Sukabumi

2
F1 : "<1> has connection with <2>."

1: Bandung Sukabumi

Cities Connection

3

Bandung
Sukabumi

O1 : 'city <3>'
1:
2:

City

1

O1O1

3

Bandung
Sukabumi

3

Bandung
Sukabumi

3
O1 : 'city <3>'

1:
2:

Bandung
Sukabumi

City

city namecity name

11

22

Fig. 12. An example of application Graph Pattern

6) Successor-Predecessor (Sequence) Pattern
In a sequence problem, one object is related to another object (of the same type of objects)

in a sequential manner. This requires one object (the successor) is ‘followed’ by another object
(the predecessor). A successor may only be followed by exactly one predecessor and one
predecessor may follow at most only one successor.

This pattern is considered as a special type of Graph pattern. The problem defined in
successor-predecessor problem is more restricted than the graph pattern in a way that an object
can only be related to at most one other object and there is a sequential relation that must be
kept among the objects.

A solution for this problem in FCO-IM is by defining an FT which holds two roles. Each
role is played by the same OT. One of the roles is the successor role; the other is the
predecessor role. To make sure that each successor is followed at most by one predecessor, a
UC is placed on top of the successor role and to make sure that each predecessor only follows
at most one successor, a UC is placed on top of the predecessor role.

An example of the application of this pattern is an assembling process of a product out of
spare parts, as depicted in Fig. 13. Suppose there is a machine that is used to assemble a certain
product. OT ‘Assembly Process’ is identified by OT ‘Process’ which is identified by a process
number and an OT ‘Sparepart’ that defines which spare part is currently involved. The FT
‘Sequence of Process’ defines the sequence that must be carried out during the assembly
process. Role 8 is played by the successor, while role 9 is played by the predecessor.

10

PHC-123434
YU9992

11

1
1

O4 : '<10> on <11>'

7

1:
2:

Assembly Process

10

PHC-123434
YU9992

11

1
1

10

PHC-123434
YU9992

10 11

1
1

11
O4 : '<10> on <11>'

77

1:
2:

PHC-123434
YU9992

1
1

Assembly Process

8

PHC-123434,1

9

YU9992,1
F6 : "<8> is followed by <9>."

8
9

1:

Sequence of Process

8

PHC-123434,1

9

YU9992,1

8

PHC-123434,1

8 9

YU9992,1

9
F6 : "<8> is followed by <9>."

8
9

8
9

1: PHC-123434,1YU9992,1

Sequence of Process

O4 O4

4

PHC-123434
YU9992

OU-2912873

F2 : "There is a sparepart
<4>."

O2 : 'sparepart <4>'

3

1:
2:
3:

Sparepart

O2

4

PHC-123434
YU9992

OU-2912873

4

PHC-123434
YU9992

OU-2912873

4
F2 : "There is a sparepart

<4>."
O2 : 'sparepart <4>'

33

1:
2:
3:

PHC-123434
YU9992

OU-2912873

Sparepart

12

1
O5 : 'process <12>'

10

1:

Process

O5

12

1

12

1

12
O5 : 'process <12>'

1010

1: 1

Process

process_noprocess_nosparepart_snsparepart_sn

Fig. 13. An example of application Sequence Pattern

7) Parent-Child (Tree) Pattern
Objects of the same type can have hierarchy in which one object has higher hierarchy in

comparison to other objects. Objects with higher hierarchy are called the parents; whereas
objects with lower hierarchy are called the children. Every child has exactly one parent, while a
parent may have 0 to n children.

Parent-child pattern is considered as a special type of Graph Pattern. It restricts the graph
pattern by defining that each object must at most have only one relation called parent with
other object, but allow the object to have more than one relation called child(ren) with other
objects.

The solution of such problem in FCO-IM is by defining an FT with two roles to define the
parent-child relation. Both roles are played by the same OT. One role is played by the ‘parent’;
while the other is played by the ‘child’. Because every child has only one parent, a UC is
placed on top of the role that plays the ‘child’.

As an example, there is a supervision hierarchy of employees as depicted in Fig. 14. The
resulting data model should consider this hierarchy as well. Suppose that the names of the
employees are unique and each employee may only show up once in the hierarchy, the related
FCO-IM IGD is as shown in Fig. 15.

Fig. 14. An example of hierarchy of supervision of employees

Peter Johnson

Anne Smith Jack Harrison

Sam BurnsMark Allen

3

Peter
Anne
Mark
Jack
Sam

4

Johnson
Smith
Allen

Harrison
Burns

O1 : '<3> <4>'

1

1:
2:
3:
4:
5:

Employee

3

Peter
Anne
Mark
Jack
Sam

4

Johnson
Smith
Allen

Harrison
Burns

3

Peter
Anne
Mark
Jack
Sam

3 4

Johnson
Smith
Allen

Harrison
Burns

4
O1 : '<3> <4>'

11

1:
2:
3:
4:
5:

Peter
Anne
Mark
Jack
Sam

Johnson
Smith
Allen

Harrison
Burns

Employee

11

Peter,Johnson
Peter,Johnson
Anne,Smith
Jack,Harrison

12

Anne,Smith
Jack,Harrison
Mark,Allen

Sam,Burns

F3 : "<11> supervises <12>."

6

1:
2:
3:
4:

Supervision

11

Peter,Johnson
Peter,Johnson
Anne,Smith
Jack,Harrison

12

Anne,Smith
Jack,Harrison
Mark,Allen

Sam,Burns

11

Peter,Johnson
Peter,Johnson
Anne,Smith
Jack,Harrison

11 12

Anne,Smith
Jack,Harrison
Mark,Allen

Sam,Burns

12
F3 : "<11> supervises <12>."

66

1:
2:
3:
4:

Peter,Johnson
Peter,Johnson
Anne,Smith
Jack,Harrison

Anne,Smith
Jack,Harrison
Mark,Allen

Sam,Burns

Supervision

firstnamefirstname surnamesurname

O1 O1

Fig. 15. Supervision Hierarchy

4. Remarks on The Generic Patterns

The problems defined for the generic patterns discussed in the previous chapter are found
among the structures that can be found in a lot of data Modelling cases. Thus the solutions (in
FCO-IM) of the patterns can be reapplied when a data modeler encounters and recognizes the
problems in his/her work. The solutions prove to be not complicated. Even a novice data
modeler should be able to understand them well. Of course, it requires the data modelers to
understand the basic concepts of FCO-IM since some the solutions use typical concepts of
FCO-IM.

The generic problems presented in this paper encompass small scope of problems, but they
can cover the solutions for a wide variety of cases. The solutions provide a standard way of
solving the problems. The knowledge embedded within the patterns can be used to make data
Modelling faster and easier because data modelers do not have to take too much time to decide
which one is the best way to model something.

The generic patterns can be viewed as the base patterns of bigger patterns which we will
explore further in a form of pattern language [1]. Bigger data Modelling patterns are defined
based on bigger scope of problems that consist of smaller problems. So, bigger patterns are
basically the reapplications of smaller/generic patterns. Thus, the codifications of bigger
patterns should always take the generic patterns into account. This is our view of generativity
[1].

Such generativity concept can be perceived early on the relation of the two categories of
patterns described in the previous chapter. Each object defined in the patterns based on the
relation between two objects are identified uniquely using one of the patterns based on
identification of an object.

5. Conclusions and Future Works

Typical problems found in data Modelling activities can be found from the structures of the
facts found in a UoD and the problems can be solved not in complicated ways using FCO-IM.
What a data modeler must do is finding in which type of problem does a specific case falls into
and thus, the solution can be applied. In this paper, the generic patterns are divided into two
categories, which are based on the identification of an object (6 patterns) and based on the
relation between two objects (7 patterns). The latter group of patterns “use” the patterns of the
first group in defining the identification of the objects involved.

Some works are still needed to be carried out regarding to the generic patterns. First, the
patterns are needed to be documented in details, providing the elements of each pattern in order
to create a full documentation of the patterns. Next, the patterns are required to be shared with
other parties in order to receive comments and improvements. Furthermore, there may be other
generic data Modelling problems that are not covered by the list provided in this paper; thus the
list can be expanded in the future.

Bigger scope of patterns is also in the list of next works. Most current works on data model
patterns are domain-specific patterns, i.e. patterns that can be applied directly in a very specific
realm. This type or other type of patterns can be developed for FCO-IM data model patterns in
the form of a pattern language.

References
[1] Alexander, C, “The Timeless Way of Building”, Oxford University Press, USA, 1979.
[2] A Pattern Definition, http://hillside.net/patternsdefinition.html, accessed on 19/04/2006.
[3] Appleton, B, “Pattern and Software: Essential Concepts and Terminology”,

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html, accessed on 19/04/2006.
[4] Arlow, J., Neustadt, I, Enterprise Patterns and MDA, Building Better Software with

Archetype Patterns and UML, Addison Wesley, 2004.
[5] Articles on FCO-IM, http://www.casetalk.com/php/index.php? Articles, accessed on

18/3/2006.
[6] Azizah, F.N.; Bakema G, “Data Modelling Patterns using Fully Communication Oriented

Information Modelling (FCO-IM)”, ORM Workshop 2006 (part of OnTheMove Federated
Conferences and Workshops 2006), working papers, Montpellier, France, 2006.

[7] Bakema, G.; Zwart, J. P.; Lek, H. van der: “Fully Communication Oriented Information
Modelling (FCO-IM)”, 2002. The book can be downloaded for free in
http://www.casetalk.com/php/index.php? FCO-IM%20English%20Book.

[8] Bakema, G.P., Zwart, J. P. C., Lek, H. van der: “Fully Communication Oriented
Information Modelling”, http://www.infagon.com/Content/ FCO_Article.html, accessed
on 11/6/2009.

[9] Barker, R.: Case*Method: “Entity Relationship Modelling”, Addison-Wesley Professional,
1990.

[10] Blaha, M., Premerlani, W, “Object-Oriented Modelling and Design for Database
Application”, Prentice Hall, 1998.

[11] Coad, P., North D., Mayfield, M, “Object Models: Strategies, Patterns, and Applications”,
Prentice Hall, 1997.

[12] Fowler, M, “Analysis Patterns Reusable Object Models”, Addison Wesley, 1996.
[13] Fowler, M, “Patterns in Enterprise Software”,
[14] http://www.martinfowler.com/articles/enterprisePatterns.html, accessed on tanggal

19/04/2006.
[15] Gamma, E., Helm, R., Johnson, R, Vlissides, J, “Design Patterns: Elements of Reusable

Object-Oriented Software”, Addison-Wesley Professional, 1st edition, 1995.
[16] Hay, D.C.: Data Model Patterns, “A Convention of Thought”, Dorset House Publishing,

New York, 1996.
[17] Hay, D.C.: Data Model Patterns, “A Metadata Map”, Morgan Kaufmann Publishers, San

Fransisco, 2006.
[18] Nicola, J., Mayfield, M., Abney, M, “Streamlined Object Modelling”, Patterns, Rules,

and Implementation, Prentice Hall, 2001.
[19] Silberschatz A., Korth H.F., Sudarshan S., “Database System Concepts”, Fourth Edition,

McGraw Hill, 2002.

[20] Silverston, L., “The Data Model Resource Book”, Revised Edition, Volume 1 and 2, John
Wiley & Sons Inc., 2001.

[21] Simsion, G.; Witt, G, “Data Modelling Essentials”, Third Edition, Morgan Kaufmann
Publishers, 2005.

