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Abstract: This paper presents a heuristic approach for optimal feeder reconfiguration of 
radial distribution systems (RDS). Optimal feeder reconfiguration involves the selection 
of the best set of branches to be opened by considering the all tie switches, such that the 
resulting RDS has the desired performance. Amongst the several performance criteria 
considered for optimal feeder reconfiguration, line maximizing loadability is an 
important one. In this paper an algorithm is proposed based on simple heuristic rules 
and identified an effective switch status configuration of distribution system for 
maximizing the line maximum loadability of the system. The line maximum loadability, 
power loss and voltage profile calculation of the best switching combination are found 
by load flow solution. Compared to other published articles, the proposed method 
reduces the switching combinations searched and gives the optimum solution in few 
number of load flow runs. To demonstrate the validity of the proposed algorithm, 
computer simulations are carried out on 33-bus system and the performance of the 
proposed method compared with the other existing methods.  
Keywords: radial distribution networks, feeder reconfiguration, load flow, heuristic 
technique 

 
1. Introduction 
 Distribution networks generally operate in a radial configuration. Feeder reconfiguration is 
very important for operating the distribution system at minimum cost and to improve the 
system security. The reconfiguration of a distribution system is a process that alters feeder 
topological structure, changing the open/close status of sectionalizing switches and tie switches 
in the system. Large number of candidate switching combinations in the system and discrete 
nature of the switches, make the problem a formidable mixed integer nonlinear optimization 
problem.  
 In the last two decades, considerable efforts have been made to solve this problem. Merlin 
and Back [1] proposed a branch and bound technique, in which all the network switches are 
closed first to form a meshed system and then the switches are opened successively to restore 
radial configuration. Shirmohammadi and Hong [2] proposed a technique in which the 
switches were opened one by one beginning from a fully meshed system, based on an optimal 
flow pattern. In [3, 4] a branch exchange method was used in which approximate formulae 
provide the change in loss due to feeder reconfiguration. Goswami and Basu [5] proposed an 
algorithm based on optimal flow pattern, of a single loop, formed by closing a normally open 
switch, and the switch with minimum current was opened. Taylor and Lubkeman [6] developed 
an expert system using heuristic rules to shrink the search space for reducing the computation 
time. Wagner et al. [7] proposed a linear programming method and a heuristic search method. 
Glaomocanin [8] used a quadratic programming technique to solve the reconfiguration 
problem. Borozan et al. [9] presented a method similar to that of [1, 2], for solving 
reconfiguration problem. Compensation-based power flow method was used to obtain power  
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flow solution for meshed system. A survey on reconfiguration was presented in [10]. Sarfi et 
al. [11] developed a method based on partitioning the distribution system into group of load 
buses, such that the line section losses between groups of nodes were minimized. 
 Roytelman et al. [12] presented a heuristic-based two stage solution approach, in which 
weights were assigned to multi-objective functions. In [13, 14], algorithms for distribution 
system switch reconfiguration and capacitor control have been proposed. McDermott et al. [15] 
proposed a constructive heuristic method that started with all switches open, and at each step, 
the switch that resulted in the least increase in the objective function was closed. Lin and Chin 
[16] designed heuristic based switching indices, by utilizing fuzzy notations for the distribution 
system loss reduction. In [17] Broadwater presented a reconfiguration algorithm that calculates 
switching pattern as a function of time. Both manual and automatic switches are used to 
reconfigure the system for seasonal studies, whereas only automatic switches are considered 
for daily studies. 
 Gomes et al. [18] presented an algorithm based on a heuristic strategy. The solution started 
with a meshed system obtained by closing all tie switches. Then the switches were opened 
successively based on minimum power loss increase, determined by a power flow. A branch 
exchange procedure was applied in the neighborhoods of the open switches to improve the 
solution. They presented an optimal power flow-based approach [19], in which the switch 
status was represented by continuous functions to reduce the number of power flows in [18]. 
Schmidt et al. [20] formulated the problem as mixed integer, nonlinear optimization problem. 
Newton method is used to compute branch currents within the integer search.  
 Chen and Cho [21] presented an approach to derive optimal switching plan to achieve 
energy loss minimisation, for short- and long-term operation of distribution systems. Zhou et 
al. [22] proposed a heuristic approach for reconfiguration, which reduced operating cost over a 
specified time period. In [23], a method was proposed to determine the configuration with 
minimum energy loss for a given period. In [24–27], solution strategies have been proposed for 
feeder reconfiguration using simulated annealing. Morton et al. [28] developed graph–theoretic 
techniques involving semi-sparse transformations of a current sensitivity matrix.  
 Das [29] presented a method based on heuristic rules and fuzzy multi-objective approach. 
In [30–35], different approaches were presented to obtain minimum loss configuration of the 
distribution system using genetic algorithm. Hsiao et al. [36] proposed a multi-objective 
evolutionary programming method, in which an interactive fuzzy algorithm has been used for 
obtaining a solution. Ramos et al. [37] developed algorithms based on genetic algorithm and 
conventional mixed integer linear problem.  
 Mary and Babu [38] proposed a systematic methodology to derive the optimal switching 
criterion to reduce the energy loss for short and long terms operation of distribution systems. 
At present, new methods based on artificial intelligence have been used. Dolatdar et al. [39] 
proposed an approach of network reconfiguration based on a tree model using radial 
distribution power flow and genetic algorithm. Jen-Hao Teng [40] proposed a direct approach 
for distribution system load flow solutions. This approach has been integrated with graph 
theory to follow changes in system structure during reconfiguration. Srinivasa and Narasimham 
[41] developed an algorithm based on the voltage differences and power losses. Wang and 
Cheng [42] proposed an approach of network reconfiguration based on plant growth simulation 
algorithm. Vanderson et.al [43] proposed a heuristic reconfiguration algorithm for large 
distribution systems.  
 This paper presents a simple line loadability index (LLI) that gives a measure of the 
proximity of the present state of a line in the RDS to maximum loadability. LLI gives an 
estimate of line loading margin as a factor of the existing load that may be draw before 
reaching the point of maximum loadability. The value of LLI may be computed at each line of 
the RDS. A value of LLI close to 1.0 indicates that the feeder would be unable to supply any 
more apparent power. Using the proposed index, the buses close to maximum loadability may 
be identified andvappropriate action for improvement may be initiated through an optimal 
reconfiguration scheme. The second part of the paper proposes a heuristic approach for optimal 
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( ) qSLLI ×−1  represent the line maximum loadability (LML) and the line loading margin, 

respectively, where 22
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receiving bus for all lines in a distribution system can be obtained by load flow calculations 
[45]. Then the LLI of each line can be calculated easily and quickly. The line with the minimal 
LLI is the weakest line, and its receiving bus is the weakest bus. The line will reach the critical 
loading condition when line LLI is approaches 1.0, thus the system will become critical to lose 
voltage stability. 
The preceding analysis is for a line in a RDS that may have any number of nodes and depicts 
only the megavolt ampere (MVA) capacity of a line to carry load. As an example, consider a 
distribution line as shown in Figure 2.  
 
 
 
   
 
 
 
 

Figure 2. A simple model of RDS branch for LLIi calculation 
 

 The sending end voltage is assumed to be Vp∠δp = 1.0∠0.0. The value of LLI is evaluated 
for various values of power flow through the line and the results are tabulated in Table 1. For 
each step of loading, the fourth column of Table.1 reports the value of line loadability MVA 
margin. It is equal to the maximum possible additional power flow in the line when the value 
of LLI is greater than 1.0 or the minimum power flow decrement to establish solvability of the 
power flow equation when the value of LLI is less than 1.0. At an Sq of 7.10 MVA, the value 
of LLI is equal to 0.99. This indicates that a reduction of load to the extent of 0.066 MVA to 
reach 7.034 MVA restores solvability of the power flow equation for the line and increases LLI 
to 1.0. In a similar view, at a MVA load of 1.60, the value of LLI is equal to 4.40. This 
indicates that an increase of power flow by 5.434 MVA to reach 7.034 MVA reduces LLI to 
1.0 and moves the line to the point of maximum loadability. Figure 3 depicts graphically the 
change in line load and its effect on the value of LLI and voltage magnitude at bus q. 
Table 1 Relationship between MVA load, LLI, and line loading MVA margin in line pq for 
sample model 
 

MVA load, 
Sq in MVA 

Voltage at bus q 
in p.u. LLI 

Line Loading MVA margin 
= Sq×(LLI-1.0) 

1.60 0.93948 4.40 5.434 
2.10 0.91877 3.35 4.934 
2.60 0.89699 2.71 4.434 
3.10 0.87394 2.27 3.934 
3.60 0.84937 1.95 3.434 
4.10 0.82294 1.72 2.934 
4.60 0.79414 1.53 2.434 
5.10 0.76220 1.38 1.934 
5.60 0.72578 1.26 1.434 
6.10 0.68222 1.15 0.934 
6.60 0.62422 1.07 0.434 
7.10 no solution 0.99 -0.066 

Sending end 
 Vp∠δp 

q p 

1.6 MVA

Receiving end 
       Vq∠δq    Pq+jQq = Sq 

Rpq+jXpq   = 
3.5 + j 2.5Ω
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Figure 3. Voltage at bus q and LLI value in branch pq variation with respect to line MVA load 

of sample model of Figure 2 
 
3. Reconfiguration Problem Formulation 
 The problem of optimal reconfiguration requires the determination of the best combination 
of branches, one from each loop, to be switched out such that the resulting RDS has the best 
loadability and the best voltage profile. 
 Consider any qth bus in the RDS except the main substation. The qth bus would be 
connected to several lines. However, owing to the radial nature of the RDS, only one line 
connected qth bus to the main substation of the RDS. The value of LLI evaluated for the supply 
line associated with the qth bus is termed as LLIq. The actual MVA flow in the supply line 
associated with the qth bus is defined as MVAq. The product LLIq*MVAq indicates the line 
maximum loadability for pq line of the RDS. The line with the least value of the product 
obviously is closest to the point of maximum loadability. Reconfiguring and maximizing the 
minimum of all such product values in a radial system would therefore move the system to 
achieve highest loadability state. 
 Mathematically the problem is stated as  
 Line Maximum Loadability by Maximizing {minimum of LLIq*MVAq} (12)
  Where q = all buses except the main substation bus 
   
subject to  
 Voltage constraint  
 Voltage magnitude at each node must lie with their permissible ranges to maintain power 
 quality.  
 maxmin

qqq VVV ≤≤  (13)
  
 Current constraint  
 Current magnitude of each branch (feeder, laterals, and switches) must lie with their 
 permissible ranges. 
 max

pqpq II ≤  (14)
  
 Power source limit constraint  
 The total loads of a certain partial network can not exceed the capacity limit of the 
 corresponding power source.  
 max

qq SS ≤  (15)
   
 Radiality constraint 
 The distribution system can never deviate from the radial structure. 
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4. Flowchart for Network Reconfiguration  
 The flowchart of the proposed method for feeder reconfiguration of distribution systems is 
shown in Figure 4. 
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Figure 4. Flowchart for prposed feeder reconfiguration 

 
Note:  
tse - tie switch sending end node 
tre - tie switch receiving end node 
bse - branch sending end node 
bre - branch receiving end node 
TPL - total active power losses of the system 
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5. Test Results and Analysis 
 The distribution system presented in [4] is used to demonstrate the validity and 
effectiveness of the proposed method. The proposed method is programmed in MATLAB on a 
PC Pentium IV, 2.22-GHz computer with 1.99 GB RAM. A 12.66kV distribution system for 
reconfiguration consists of 33 buses and 5 tie lines. The tie switches are 33, 34, 35, 36, and 37 
represented by the dotted lines and normally closed sectional branch switches 1 to 32 are 
represented by the solid lines as shown in Figure 5. For this base case, the total loads at feeder 
are 3715 kW and 2300 kVAr. The base network losses are 210.98 kW and 143.02 kVAr. The 
line, load data and tie line data of 33- bus system are given in appendix.  
 

 
 

Figure 5. Single line diagram of 33-bus RDS before network reconfiguration 
 
 In order to quantify the line maximum loadability of the RDS, the total line marginal load 
that may be drawn from the RDS before it suffers a collapse is determined. This additional line 
marginal load is increased while retaining the existing power factor of the loads and load 
distribution in the RDS. In the base case, the total load is equal to 0.162 MVA and the line 
marginal load value is equal to 16.32 MVA. When an additional load equal to line marginal 
load value was added to the base case, supply lines to buses 16 and 17 were carrying maximum 
allowable power and the voltage magnitudes at these buses at the point of collapse were 
0.56329 p.u. and 0.39245 p.u., respectively. 
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Figure 6. Single line diagram of 33-bus RDS after network reconfiguration 

 
Table 2. Solution details of the heuristic reconfiguration approach 

State Open Switches 
Total Real 
power loss, 

kW 

Total Reactive 
Power loss, 

kVAr 

Minimum Line 
maximum 
loadability, 

MVA 

Worst 
voltage, 

p.u. 

Base Case 33-34-35-36-37 210.98 140.02 16.52 0.90378 
After Reconfiguration 33-14-7-36-28 137.36 117.93 18.27 0.94037 

 
 Figure 6 shows the single line diagram for 33-bus RDS after feeder reconfiguration. After 
feeder reconfiguration using the proposed method, the line marginal load increased to 18.11 
MVA. In the reconfigured RDS, collapse was imminent only at line 16 when an additional load 
equal to line marginal load (MVA) was added and the voltage magnitude at buses 16 and 17 at 
the point of collapse were 0.58437 and 0.41121 p.u.. Table 2 shows the solution details of the 
heuristic reconfiguration approach. From the Table 2, it has observed that losses are decreased, 
minimum line maximum loadability at 16th line is improved and worst voltage in the system is 
also improved after the feeder reconfiguration. Figure 7, 8 and 9 compare voltage profile along 
the system before and after reconfiguration, the active power flow along the system before and 
after reconfiguration, and the reactive power flow along the system before and after 
reconfiguration respectively.  
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Figure 7. Voltage profile before and after reconfiguration 

 
 
 

 
Figure 8. Real power flow before and after reconfiguration 
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Figure 9. Reactive power flow before and after reconfiguration 

 
A.  Comparison with other methods  
 The proposed method is compared with the other heuristic methods proposed by Goswami 
[5], Mcdermott [15], Srinivasa [41], Chun Wang [42], Gomes [43], applied to the 33-bus test 
system [4] with loss minimization objective. The base system loss was 205.81 kW. Method in 
[15] applied to [4] system with two line voltage regulators added. The objective was 
minimization of increment all losses divided by incremental load served. The base system loss 
was 202.68kW. Method of [41] applied to [4] system with loss minimization objective. The 
load at feeder head-section was 5084.26+ j2457.32 kVA and the base system loss was 205.81 
kW. Method in [42] applied to [4] system with loss minimization objective. The load at feeder 
head-section was 3715 + j2300 kVA and the base system loss was 202.7 kW. Method in [43] 
applied to [4] system with loss minimization objective. The load at feeder head-section was 
5058.25+ j2547.32 kVA and the base system loss was 202.68 kW. Also irrespective of 
differences in load at feeder head section in [18] from one side and [17] from the other side the 
base system losses are close. The load flow algorithm presented in this paper gives same base 
system loss as from Newton Raphson. For effective comparison, the results of the proposed 
method along with other methods are shown in Table 3. The saving in total loss by the 
proposed method is higher than all other methods where base system loss is abnormally 
different from those given by most of the researchers. The CPU time taken by the proposed 
method is less than Srinivasa’s [41] and Chun Wang’s [42] methods where as an half the time 
of Goswami’s [5] method and 4 to 5 times less than the Gomes [43] and Mcdermott [15] 
methods.  

 
Table 3 Comparison proposed method with other methods using 33-bus system data. 

Method Final Open Switches Total loss savings (%) CPU Time (s) 
Proposed 33-14-7-36-28 34.87 0.38 
Srinivas [41] 33-14-8-32-28 33.02 0.42 
Goswami [5] 7-9-14-32-37 30.76 0.87 
Gomes [43] 7-9-14-32-37 32.60 1.66 
Mcdermott [15] 7-9-14-32-37 32.60 1.99 
Chun Wang [42] 7-9-14-32-37 31.17 0.50 
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 The number of load flows required to get the optimum solution by the proposed algorithm 
is only 8, whereas it is 26 in case of Srinivasa [41] and 29 for the case of Baran and Wu [4]. 
Since the test case system is small (33 buses) and above results are obtained on 12 years time 
span the CPU time differences may be understood to be due to development in computers. 
However, some percent of CPU time difference is only due to this reason, recalling that the 
proposed algorithm gives the optimum solution with a few numbers of load flow runs (8 
compared to 26 runs in Ref. [41]). Therefore, this method can be effectively used in real time 
application of the large distribution system under widely varying load conditions, where the 
CPU time will be a major point of comparison. 
 
6. Conclusions 
 This paper presents a line loadability index that quantifies the margin to maximum 
loadability for any distribution line when the sending end voltage is kept constant. This index 
is simple to use and also guides to compute the extent of load reduction to restore solvability of 
power flow equations. This paper further develops a heuristic approach reconfiguration method 
for radial distribution systems. The proposed scheme is based upon maximizing the line 
maximum loadability. The algorithm gives the solution with a few numbers of switching 
operations, load flow runs and the CPU time needed is small compared to that in all 
publications.  Comparison of different methods for distribution network reconfiguration 
suggested that heuristic approaches may not determine global optimum but they are suitable for 
real time distribution system reconfiguration for loss minimization. Thus, the proposed 
technique represents an improved, more efficient method which can easily solve the 
distribution network reconfiguration problem including maximization of line loadability 
compared with other methods. 
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Appendix 
 

Table 1. Data for 33-bus test system [4] 

Branch Sending 
end 

Receiving 
end 

Resistance 
in ohms 

Reactance 
in ohms 

Active power 
load in kW 

Reactive power 
load in kVAr 

1 1 2 0.0922 0.0470 100.00 60.00 
2 2 3 0.4930 0.2511 90.00 40.00 
3 3 4 0.3660 0.1864 120.00 80.00 
4 4 5 0.3811 0.1941 60.00 30.00 
5 5 6 0.8190 0.7070 60.00 20.00 
6 6 7 0.1872 0.6188 200.00 100.00 
7 7 8 1.7114 1.2351 200.00 100.00 
8 8 9 1.0300 0.7400 60.00 20.00 
9 9 10 1.0440 0.7400 60.00 20.00 

10 10 11 0.1966 0.0650 45.00 30.00 
11 11 12 0.3744 0.1238 60.00 35.00 
12 12 13 1.4680 1.1550 60.00 35.00 
13 13 14 0.5416 0.7129 120.00 80.00 
14 14 15 0.5910 0.5260 60.00 10.00 
15 15 16 0.7463 0.5450 60.00 20.00 
16 16 17 1.2890 1.7210 60.00 20.00 
17 17 18 0.7320 0.5740 90.00 40.00 
18 2 19 0.1640 0.1565 90.00 40.00 
19 19 20 1.5042 1.3554 90.00 40.00 
20 20 21 0.4095 0.4784 90.00 40.00 
21 21 22 0.7089 0.9373 90.00 40.00 
22 3 23 0.4512 0.3083 90.00 50.00 
23 23 24 0.8980 0.7091 420.00 200.00 
24 24 25 0.8960 0.7011 420.00 200.00 
25 6 26 0.2030 0.1034 60.00 25.00 
26 26 27 0.2842 0.1447 60.00 25.00 
27 27 28 1.0590 0.9337 60.00 20.00 
28 28 29 0.8042 0.7006 120.00 70.00 
29 29 30 0.5075 0.2585 200.00 600.00 
30 30 31 0.9744 0.9630 150.00 70.00 
31 31 32 0.3105 0.3619 210.00 100.00 
32 32 33 0.3410 0.5302 60.00 40.00 

 
Tie Line Data 

33 21 8 0.0000 2.0000 
34 9 15 0.0000 2.0000 
35 12 22 0.0000 2.0000 
36 18 33 0.0000 0.5000 
37 25 29 0.0000 0.5000 
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