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Abstract: Poweraloss is considered as one of theaimportant indicators used toaquantify 
theaperformance of distributionsnetworks. Minimisation of power lossesawith integration of 
distributedsgeneration (DG) unitssin distributionisystems has gained significantimomentum due 
to the associateditechno – economic incentives. Inithis paper, a noveliImproved Artificial Bee 
ColonyiAlgorithm (IABC) is developed toirobustly detect the optimalisite and sizedof DG units 
for minimisation of total poweralosses without violatingathe equality anddinequality constraints. 
Theiproposed algorithm is simulated in MATLABienvironment, and theieffectiveness of 
theialgorithm is validatedron IEEE – 34 bus andtIEEE – 69 bus radialrdistribution systems. 
Therperformance of thetproposed techniquerhas been validated by comparingsthe results 
obtained fromsother competesalgorithms. Comparisons showithat the proposed technique is 
moreiefficient in terms of simulationiresults of power loss andiconvergence propertyithan the 
other reportedialgorithms, suggesting that theisolution obtained is a globalioptimum. 
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1. Introduction
Inirecentiyears, the penetrationiof intermittentirenewableienergy sourcesisuch as wind and

solariinto theiIndia’s energy profile hasiincreasedisignificantly. TheiGovernment of Indiai (GoI) 
has set ambitiousirenewable electricityitargets for the short toimedium term. Byr2022 the 
country aims toshave 175 GWsof installed renewablerelectricity capacity [1, 2]. Energyasources 
utilized inathis manner are knowndas distributed generation (DG) units. Distributedigeneration 
(DG) refers to relativelyismall generation systemsithat are designed, installedi, androperated in 
distribution networks or distributedrat the customer side to meetrspecial customers’rneeds and 
supporttthe operation of distribution networkstbased on economic, efficienti, convenieint, and 
reliablergeneration [3]. Fromtthe perspective of utilities, integrationiof DG units can bring 
multipleitechnical benefits toidistribution networksssuch as loss reduction, voltage 
profilesimprovement, voltagerstability, network upgradesdeferral and reliabilityiwhile 
supplyingienergy sales as a primaryitask [4]. 
      The distributionbsystem is well-knownbfor its high R/Xbratio andssignificant voltageidrops 
that could cause substantialipower losses along theifeeders [5]. It is added that thesdistribution 
system incurs a powersloss which is normallyehigher than the transmissionisystem. For instance, 
a study byiWong et al. [6] andiNourai et al. [7] hasrshowedtthat an American ElectricrPower’s 
distributionrsystem incurred arloss in the rangeiof 7–9% when compared to theitransmission loss 
of 2.5–8.5%. This figureiwould be muchEhigher in radial distributionEsystems (RDSs) with a 
highER/X ratio. Consequently, distribiutioniloss reduction has beenrone of the 
greatestrchallenges to power distributionrutilities worldwide, both inrmatured and 
growingrpower systems. Loss reductionrat the distribution systemrlevel is one of the 
majorrbenefits due to its impact on therutilities’ revenue. Inraddition, as a key considerationtfor 
DG planning, the loss reductionrcan lead to positive impactsson system capacitysrelease, voltage 
profilessand voltagerstability [8]. Renewablerenergy basedrDGrunits are developing fastiall over 
the world in recent yearsidue to its promisingipotential to minimizeipower lossesiand harmful 
carboniemissions. However, theichallenges iniDG applicationsifor loss reductioniare 
propertlocation, appropriatetsizes, and operatingtstrategies. Even if the locationiis fixed due 
toisome other reasons, improperisize would increase theilosses in theisystem beyondithe losses 
for caseiwithoutiDG. Hence, optimalilocation andisize of DG in the RDS is most important to 
harness the maximum benefits from the DG when connected with the RDS. Further, optimal 
location and sizing dependion theitype of DGias well [9].  
       Mostdof the techniques currentlydavailable in the literature toddetermine the 
optimalilocation andisizetof DGtunits fortlossireduction are based on theiassumption that 
DGsican only deliver real power. Thisiassumption is unrealisticibecause thereiare manyitypes of 
DGs that provideiand/or consumeiboth active and reactiveipowers. The mostisignificant work 
dealing with all types of DGs has been presented in [10]. The study adopted an 
ImprovedaAnalytical (IA) method, a modificationiof theamethod proposediin [11], to obtain the 
optimalilocation andisize of a singleiDG unit. Although robust, thissmethod also provides 
similarsresults as those of the originalsanalytical method. Moreover, theaIA method 
optimizessthe DG size and locationsseparately. Optimalilocation can only beiobtained 
afteridetermining theioptimal size. 
       Thescontribution of this paper is to find therglobally optimal sitesand size of differentstypes 
of DGsunits simultaneously, forSminimization of losses in theSRDS, using an Improved 
ArtificialaBee Colony (IABC) optimizer. In theiproposed IABC approach, the 
explorationiability of ArtificialiBee Colony (ABiC) algorithmiand the exploitationiability of 
DifferentialiEvolution (DE) algorithm are integratedito enhance the performanceiof both 
algorithms in searchingsof optimal minimum objectiverfunction. Theteffectiveness of the 
proposedralgorithm is validated oniIEEE 33 - and 69 - bus RDS with two differentitest cases. 
The resultsishow that in terms ofioptimality of thersolution, IABC has outstandingrperformance 
in attaining the simultaneoustoptimal location and sizingrof differentstypes of DG units in the 
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distributionsnetwork for power lossessreduction, thereby suggestingsthat the solutioniis a 
globallyioptimal one. 

2. Literature Review
Most of theiDG allocation and sizing studiesiwere performed with theiobjective of real

powerrloss minimization. In all suchrstudies, optimal locationrandrsizing of DG units has 
beenrinvestigated by minimizingractive power loss in the distributiontlines through 
DGrallocation. In this section, therexisting research works on DGrallocation and sizingrproblem 
for power lossrminimization are reviewed from therviewpoint of used optimisationSalgorithms. 
Many algorithmsShave been proposed by various researchersito determine the locationiand 
sizesof DGs for minimizingipower losses in the distributedinetwork. 
A summary of prominent research studiesithat haveibeen conductediin the past to determineithe 
optimalilocation andisizing of DGiunits for lossiminimization in radial distributioninetworks is 
presented in Table 1. 

Tablei1. Summaryiof various optimization methodsifor DG allocation and sizing for loss 
minimization 

Author(s) Objective Optimization Method IEEE Test System Year 

Wang and Nehrir [12] 
Power loss 

minimization in the 
system 

Analytical Approach 6 and 30 bus 2004 

Keane and O’Malley 
[13] 

Minimizing the 
system losses 

Linear Programming 
Approach 

Irish Distribution 
Network 2005 

Acharya et al. [11] Power loss 
minimization Analytical Method 16, 33 and 69 bus 2006 

Borges and Falcao 
[14] 

Minimization of 
power loss GA Experimental 

Test System 2006 

Harrison et al. [15] Power loss 
minimization Hybrid GA – OPF 69 bus 2008 

Injeti et al. [16] PoweriLoss 
Reduction 

Particle Swarm 
Optimization (PSO) 33 and 69 bus 2011 

Hung et al. [17] Loss Minimization Improved Analytical 16, 33 and 69 bus 2013 

Imran and Kowsalya 
[18] 

Minimization of 
losses 

Bacterial Foraging 
Optimization Algorithm 

(BFOA) 
33iandi69 bus 2014 

Moradi et al. [19] 
Minimization 

ofipoweriloss in 
distribution system 

ICA - GA 33 and 69 bus 2014 

Prabha et al. [20] Total lineiloss 
minimization 

Intelligent Water Drop 
(IWD) 10, 33iandi69 bus 2015 

Kefayat et al. [21] 
Minimization of 
iloss and total 

emissions 

Hybrid Ant iColony 
Optimization (ACO) and 

ArtificialiBee Colony 
(ABC) 

33 and 69 bus 2015 

Sultana and Roy [22] Lineiloss 
minimization 

Oppositional Krill Herd 
(OKH) Algorithm 33, 69 and 118-bus 2015 

Mohandas et al. [23] 
Power loss 

minimization in the 
system 

ChaoticiArtificial 
BeeiColony (CABC) 

algorithm 
33iandi69 bus 2015 

Prabha et al. [24] Total lineiloss 
minimization 

Invasive Weed 
Optimization (IWO) 33 and 69 bus 2016 
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Author(s) Objective Optimization Method IEEE Test System Year 

Kansal et al. [25] Poweriloss 
reduction 

Hybrid Analytical and 
Heuristic Approach 33 and 69 bus 2016 

Khodabakhshian and 
Mohammad [26] 

Power loss 
minimization IMDE 33 and 69 bus 2016 

Sanjayiet al. [27] Minimization of 
poweriloss 

Hybrid Grey Wolf 
Optimizer (HGWO) 

33, 69 and Indian 
85 bus 2017 

Mohan and Albert 
[28] 

Lineiloss 
minimization GA - PSO 33, 69iand 

Portuguesei94 bus 2017 

Quadri et al. [29] Network loss 
reduction 

Comprehensive Teaching 
Learning-Based 

Optimization (CTLBO) 
33, 69 and 118 bus 2018 

Duong et al. [30] Power loss 
reduction 

Biogeography-based 
optimization (BBO) 33 and 69 bus 2019 

M’hamdi et al. [31] Power loss 
minimization GWO, WOA and PSO 33 and 69 bus 2020 

Suresh and Edward 
[32] Loss Reduction Hybrid GOA - CS 33 and 69 bus 2020 

 Basedion the above review, it isiclear that considerableiresearch has beeniconducted to 
resolverthe DG allocationrproblem. However, most of the studies arerbased onsthe assumptionithat 
DGsican onlyideliver realipower. In addition, most of the studies didn’t provideithe 
optimalisolution forisimultaneously allocatingia mix of differentiDG types. Insrecent years, 
researchersahave been interested to solve the optimalaplacement of differentstypessof DGs 
simultaneously in therRDS for morerloss reductionrand better voltageiprofile. In simultaneous 
placementiof differentitypesiof DGs, there is a need for combined or hybrid techniques for global 
optima with fast convergence. To bridge this gap, this paper contributes to develop an efficient 
hybrid algorithm IABC using ABC and DE for solving the simultaneous placement of different 
typesiof multiple DGiunits to reduce theilossesiin the RDS.  

   DG canHbe classified intoHfour major typesHbased on theirHterminal characteristicsiin 
termsiof real andireactiveipower delivering capability as follows [10]: 

a. Typei1: DGicapableiof injecting P (i.e. realipower) only.
b. Typei2: DGicapableiof injecting Q (i.e. reactiveipower) only.
c. Typei3: DGicapableiof injecting bothiP and Q.
d. Typei4: DGicapable of injecting P buticonsuming Q.

 Photovoltaici, micro-turbines, fuelicells, whichrare integrated torthe main gridrwith the helpSof 
converters/inverters areSgood examplesSof Type1. TypeS2 couldSbe synchronousicompensators 
such asigas turbines. DGiunits that are based onisynchronous machinei (cogeneration, gastturbine, 
etc.) fallsin Type 3. Types4 is mainlysinduction generatorsithat are used in windifarms [17]. 

   In this paper, an Improved Artificial Bee Colony (IABC) algorithm which is a hybrid 
algorithm that integrates ABC (Artificial Bee Colony) and DE (Differential Evolution) is proposed 
for solving the simultaneous placement of differentatypes of multiple DG units for minimizing the 
losses in RDS with three scenarios. 

• Scenario I: Placement of Type III DGs alone.
• Scenario II: Placementiof Type I and IIiDGsisimultaneously.
• Scenario III: Placement of Type II and III DGs simultaneously.
In all the three scenarios, bothsreal and reactivespower issinjected into the system by different 

type of multiple DGs. The schematic diagram with load and different types of DGs is shown in 
Figure 1. 
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3. Problem Formulation 
 The totalereal powereloss in poweresystem iserepresented by Eq. (1), popularly knownias 
“exacttlosstformula” [11]: 

    ( ) ( )[ ]∑
=

∑
=

−β++α=
N

i

N

j
jQiPjPiQijjQiQjPiPijLossP

1 1
                                                        (1) 

Where 

       ( )jicos
jViV

ijr
ij δ−δ=α ,   ( )jisin

jViV
ijr

ij δ−δ=β ; 

      iiV δ∠               the complexivoltageiat the ith bus; 

      ijijij Zxr =+   the ijthSelement of [Zbus]Simpedance   matrix; 

       Pi andiPj          the activeipower injectionsiat the ithiand jthibuses, respectively; 
     Qi andiQj          the reactivejpower injections atjthe ith and jthibuses, respectively; 

         N                   the numberiof buses 

 
Figure 1. Schematic diagram of RDS with load and different types of DGs 

 
 In the current study, the main objective of simultaneously placing and sizing DG units in 
RDS is to minimizetpower losses whiletsatisfying all operatingtconstraints. Thus, the objective 
function is formulatedias: 
 
     Minimizeif = min (PLoss) 
 
  Subject to the following equalityiand inequalityiconstraints 

(a) Poweribalanceiconstraint 
Sumtof all incoming androutgoing real and reactiverpower at each bustmust beizero. 
Mathematically, expressed as: 

      ( )∑
=

=θ−δ−δ−−
N

j
jjicosijYjViVDiPGiP

1
0                                                             (2) 

      ( )∑
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(b) Voltageilimits 
In ordertto maintain the qualityiof supply, theivoltageiprofile of theinetwork shouldsbe 
maintained to ansacceptable range. Thesvoltageslimits at all the buses of the RDS can 
be expressed as follows: 

maxiViVminiV ≤≤                                                                     (4) 
(c) Line poweriflow 

All thedbranch apparent powerdflows should be maintaineddwithin their 
thermalicapacities to maintain the lineisecurity. 

maxijSijS ≤                                                                              (5) 
(d) DG capacity limits 

The minimum and maximum pre-specified limits of the realiand reactive power 
capacity of DG units at candidate buses can be expressed as follows: 

max
DGiPDGiPmin

DGiP ≤≤                                                                                 (6) 
max
DGiQDGiQmin

DGiQ ≤≤                                                                                  (7) 
 
Where,  

( )



 −= DGipfcostanDGiPDGiQ 1                                                                            (8) 

{ }DGN,......,,i 21∈  
(e) DG power factor limit 

The minimumiandimaximum pre-specified limitsiof the power factors of DG units at 
candidate buses can be expressed as follows: 

max
DGipfDGipfmin

DGipf ≤≤                                                                           (9) 

Where, 

               { }DGN,......,,i 21∈  

4. Proposed Methodology 
The problem of optimal locating and sizing of different types of multiple DG units 

simultaneously in RDS is solved by IABC algorithm. The proposed IABC algorithm is a hybrid 
metaheuristic algorithm combining the features of ArtificialrBee Colony (ABC) algorithmjand 
Differential Evolution (DE) algorithm. First, a brief description of ABC algorithm is presented, 
and then the proposed algorithm is explained in the following sections. 

 
A. Overviewiof ArtificialiBeeiColony (ABC) iAlgorithm 
      The ABCjalgorithm is an optimizationralgorithm based on the intelligentrforaging 
behaviorrof honey bee swarm, proposed byrDerviş Karaboğa in 2005 [33]. InrABC algorithm, 
thekcolony of artificial beeskcontains three groups of beeskknown as employedibees, onlookers, 
and scouts. A beeigoing to the food sourceivisited by itself is called aniemployed bee. For every 
foodisource, there is only one employedibee. The number of employedibees is equal to the 
numberiof food sources aroundrthe hive. A bee waitingion the dance area for makingidecision 
to choose a food sourceiis called an onlooker. A beetcarrying out randomtsearch is called a scout. 
The onlookerstobserve the dance of theiemployed bees within theihive to select a food source, 
whereasiscouts searchrrandomly for new food sources. Thetemployed bees comprise the 
firstthalf of the colony, whereastthe second half consiststof the onlookers. In the contexttof ABC 
algorithm, thesnumber of food sources (thatsis the employed or onlookerabees) is 
consideredrequivalent to the number of solutionsrin the population. Furthermoree, the positionSof 
a food source signifies theSposition of a promisingSsolution to the optimizationrproblem, 
whereas the qualityrof nectar of a food sourcerrepresents the fitnessScost (quality) of the 
associatedSsolution. To apply ABCSalgorithm, the consideredioptimization problem is 
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firsticonverted to the problem of findingithe best parametervvector that minimizes an 
objectivevfunction. Then, the artificialvbees randomlyidiscover a population of initialisolution 
vectors and then iterativelyiimprove them byeemploying the strategies, movingetoward better 
solutions byemeans of a neighborisearch mechanism whileiabandoning poorisolutions.  
     The searchicycle of ABC algorithmiconsists of three steps: (i) sending theiemployed bees to 
a foodrsources and then measuringrthe nectar quality, (ii) selectingrthe food sourcesSby the 
onlookers after sharingSthe information of employedSbees and determiningithe nectar amount 
of therfoods, and (iii) determiningrthe scout beesrand then sendingithem onto possibleifood 
sources. 
    In ABC optimizationialgorithm, the positioniof a food sourceirepresents a possible solution of 
theSoptimization problem, and the nectarSamount of a foodSsource correspondssto the quality 
(fitness) of the associatedasolution. The numberaof the employeddbees or the onlookerdbees is 
equal to the numberdof solutionsdin the population. Initially, theialgorithm generates a 
randomlyidistributed initialipopulation of Nisolutions, where N denotes the size ofipopulationi. 
For eachisolution (food source), )N......,,,i(ix 21= is aSD-dimensional parameterSvector. 
AfterSinitialization, the populationrof the positions (solutions) isssubjected to repeatedrcycles of 
thessearch processessof the employed bees, onlookerebees, and scout bees. Theealgorithm is 
implementedias explained below: 
 Leti { }n,ix,.......,,ix,,ixiX 21=  representiith solution in theiswarm, where n is the 
dimensioniof the solution vector. Each employedibee iX generates a newicandidate solutiont iV
in the neighbourhood of the presentsposition as given by thesequation below: 

  Vi,k = Xi,k + φi,k (X1i,k – Xj,k)                                                                                    (10)  
Where, Xj is arrandomly selectedrcandidate solution ( )ji ≠ , k is a randomtdimension index 
selectedsfrom the set { }N,.......,,21 , and φi,k is arrandom numberswithin [-1,1]. Once the 
newscandidate solution Vi issgenerated, a greedysselection is used. If the fitnessivalue of Vi is 
better than that of itsiparent Xi, then update Xi withiVi; otherwise, keep Xitunchanged. After all 
employed beestcomplete the searchrprocess, theyrshare the informationrof theirifood 
sourcesiwith theronlooker beesithroughiwaggle dances. An onlookerrbee evaluatesithe 
nectarrinformation takenrfrom all employedrbees and choosesia foodisource withia 
probabilityirelated to its nectariamount. Thisiprobabilistic selectionSis really a roulette wheel 
selectiondmechanism that is describedbby the followingiequation: 

 
∑

=

j
jtif

itifiP                                                                                              (11)                            

where, itif iis the fitnessivalue of the ithisolution in theiswarm. Asiseen, theibetter the solution 
i, theihigher the probabilityiof the ith foodisourceiselected. Ifia positionicannot be improvediover 
a predefinedinumber (calledilimit) of cyclesi, thenithe foodisource is abandoned. If the 
abandonedssource is Xi, then the scoutsbee discovers a newsfood source to beireplaced with ith 
food sourceias expressed by the equationibelow: 

 ( ) 




 −+= j,blj,bu,randj,blk,iX 10                                                                      (12) 

Whererrand (0, 1) is a random numberrwithin [0, 1] basedronra normalrdistribution, bl  and bu
areilower andiupper boundariesiof the ith dimensioni, respectively. 
 
The implementationiof the algorithm isiillustrated with the followingisteps: 
1. Initializeipopulation with randomisolutions. 
2. Evaluateifitness of theipopulation. 
3. Checkifor convergence. 
4. Selectisites for neighbourhoodisearch. 
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5. Recruitibees for selectedisites and evaluate theirifatnesses. 
6. Select theifittest bee fromieach patch. 
7. Assigniremaining bees to searchirandomly and evaluateitheir fatnesses. 
8. Endi. 
     The main advantage of ABC lies in that it conducts local search in each iteration. ABC can 
produce a more optimal solution and thus is more effective than the other methods in several 
optimization problems. However, the main drawback of ABC is that in the searching process of 
ABC, only one vector is updated at each time for both employed bee phase and onlooker bee 
phase. Although this update strategy has a good exploitation, it will result in ABCdeasily falling 
intodlocal optima when solving compleximultimodal problems. Theiconvergence rate of the 
algorithm also decreased. 
 
B. Improved ArtificialiBeeiColony (ABC) iAlgorithm 
     To overcome the limitation of conventional ABC algorithm, mutation process of Differential 
Evolution (DE) is incorporated in the conventional ABC algorithm for enhancing the speed of 
the searching process. 

B.1 Efficient search operation based on DE 
       DE algorithmrintroduced by Storn andrPrice, 1997 [34] is a branch ofrevolutionary 
programmingiused to solve optimizationiproblems. Among the evolutionaryimethods, DE is a 
simplerpopulation-based searchrmethod used for globalroptimization of real-valuedrfunctions. 
This heuristic searchrtechnique is useful to optimizerthe nonlinear and non-
differentiableEcontinuous space problems. ThisEmethod exhibitsEfaster convergencesand is 
easier to implement, andsit has few controlsparameters. DE is similartto GA as it uses the 
evolutionaryroperators such as selectioni, recombinationi, and mutationias in GA. However, 
DEidiffers fromiGA in aimutation schemeithat makes DEtself-adaptive and in the 
selectiontprocess. In DE, allrthe solutions have thersame chanceiof being selected as parents. 
DEiemploys a greedy selectioniprocess: theibetter oneEof new solution and itsEparent wins 
theEcompetition providingEsignificant advantagetof converging performancetover GAs. 
     The standardsmutation operator of DEsneeds three randomlyaselected different individuals 
fromathe current populationsfor each individual to form assimplex-like triangle. Itrprevents 
premature localrconvergence and ensures globalrconvergence in the finalistage as all 
individualsiin general evolveito one optimalipoint. 
Among the several variants of DE algorithm based on the mutation strategy, the frequently used 
method of mutation strategy is DE/best/1. Therdifferentialrmutation operationtgenerates a 
mutatedtindividual given by: 
 ( )21 rXrXFbestXiV −+=                                                                (13) 
where { }N.......,,,r,r 2121 ∈ areerandomly chosen integers, whicheare differentefrom each other 
and also different from the running index i, and F is the mutation constant ranging between 0 
and 2 that controls the amplification of the difference between two individuals.   
 In DE/besti/1, theSsolutions explored inSthe history are usedSto direct the movementaof the 
currentepopulation. Based on theevariant DEealgorithm and the propertyiof ABC, the solution 
searchiequation is devisedias follows: 
 )j,rxj,rx(Fj,bestxj,iv:/best/ABC 211 −+=                                                             (14) 

where xbest isithe best individualivector with the bestifitness in the currentipopulation; and j 
isirandomly choseniindexes. 
 The mutation process shown in Eq. 14 is incorporated into the employed bee phase of ABC 
and the Improved Artificial Bee Colony (IABC) algorithm is developed. Hence, the updated 
variables are increased and the information about the best solution of the current population is 
utilized to enrich the searching behavior and to avoid being trapped into a local optimum.   
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The parameters of the IABC algorithm are the colony size (NP=50), the number of food 
sources (SN=NP/2), the limit for scout, L = SN×D, D is the dimension of the problem and a 
Maximum Cycle Number (MCN=500). 
 The flowchart for IABC algorithm for solving the problem of optimaliplacement and sizing 
ofiDG units is shown in Figure 2. 
 

 
Figure 2. Flowchart of Improved Artificial Bee Colony Optimization Algorithm 
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5. Results and Discussions 
Toiverify the effectivenessiof the proposediIABC algorithm, theiIEEE 33-busiand 69-

busiRDS are considered in theidifferent scenario for different test cases. Also, the results are 
compared with the results obtained from othersmethods. Theaproposed IABC algorithm is 
implementedrin MATLAB and is executedronran Intel coreTM i3 PCiwith 2.66-GHzispeediand 
4GBiRAM.  

For all the three scenarios that are mentioned in literature review, the following two test cases 
are considered. 

• Test case -1: Two numbers of DGs in each type. 
• Test case -2: Three numbers of DGs in each type. 

 
A. IEEE – 33 Bus Radial Distribution System 

Theisingle line diagram of IEEE 33-busidistribution systemiis shown in Figure 3 [20]. 
Theisystemivoltage is 12.66 kViand total system active andireactive loads are 3715 kWiand 2300 
kVAr, respectively. Thisitestisystem consistsrof 33 buses and 32 branches. For 33-busrsystem 
without installationrof DG real, reactiverpowerrlosses are 210.954 kWiand 
143.0324ikVARirespectively. 
   

 
Figure 3 Single line diagram of IEEE 33-bus radial distribution system 

 
    In the scenario I, only Type III DGs are used for supplying real and reactive power to the 
system. At first, for the scenario I with both test cases, ABC and IABC algorithms are 
implemented. The results obtained in one trail among many trails are compared and given 
intTable 2. From thisttable, it istobserved thattthe numberrof iterationrand computationalstime 
requiredsto attain the global optimum using IABC algorithm is lesser than the numberiof 
iteration andicomputational time using ABC algorithm. 
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Table 2. Performance of ABC and IABC with 33-bus RDS for scenario I 

Test 
Case Method 

Optimal Location and Size 
of DGs Total DG 

Capacity 
(MVA) 

Power 
Loss 
(kW) 

Percentage 
Loss 

Reduction 

Number of 
Iterations 

Time 
(sec) Bus No Size 

(MVA) 
Power 
factor 

1 
ABC 13 0.933 0.91 2.489 28.50 86.491 287 66.30 30 1.546 0.731 

IABC 13 0.934 0.91 2.491 27.89 86.78 55 9.35 30 1.547 0.73 

2 

ABC 
14 0.841 0.898 

3.482 11.79 94.41 464 109.70 24 1.181 0.891 
30 1.458 0.721 

Propose
d IABC 

13 0.876 0.90 
3.506 11.74 94.43 75 12.75 24 1.189 0.90 

30 1.441 0.71 
 
    The convergence characteristics for both the algorithms are compared and shown in Figure 4. 
From this figure, it is clear that the IABC approach takes less number of cycles compared to 
ABC algorithm that required more than 250 cycles to reach the objective function (i.e. 
minimization of power loss). Hence, the proposed algorithm reduces the computational time 
significantly. To verify the superiority of the IABC algorithm, it has been implemented for above 
mentioned three scenarios with two test cases. 
                                                 

 
Figure 4. Convergence of ABC and IABC for 33 – bus RDS for scenario I 

A.1 Comparison of Performance of IABC and other Methods for Scenarioi - I 
          Simulationtresults of 33-bustRDS for thetscenarioi – I are compared with other methods 
and presented in Table 3. Itiis observedifrom Table 3, thatifor theiscenario - I, theiloss reduction 
percentage given by test case-2 is higher than the loss reduction percentage 

 
 1The percentage loss reductions is calculated as:  
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50.28954.210%100
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given by test case-1.When compared to IA, CLS-MINLP, A-PSO methods, the proposed 
algorithm gives the lowest real power losses 28.45 kW for the test case-1.The optimal power 
factors of two number of Type III DGs attained by the proposed technique (0.91, 0.73) and APSO 
(0.91, 0.72) are also more or less same. In the test case-2, the real power loss obtained from the 
proposed technique is obtained as 11.15 kW which is lower than the results (23.05kW, 21.05 
kW, 15.91 kW and 12.74 kW) obtained by the methods IA, BFOA, HACO - ABC and IWO 
respectively. At the same time, the optimal power factors of Type III DGs obtained by the 
proposed technique (0.90, 0.90, and 0.71) are almost same as that of PSO and BBO 

 

Table 3. Comparison of Performance of IABC and other methods with 33-bus RDS for scenario - I 

Test 
Case 

Optimization 
Method 

Type III DGs Total DG 
Capacity 
(MVA) 

Power 
Loss 
(kW) 

Percentage 
Loss 

Reduction Bus No Size 
(MVA) 

Power 
factor 

1 

IA [17] 6 2.117 0.845 3.176 44.83 78.76 30 1.058 0.85 

HGWO [26] 13 0.927 0.883 2.866 29.30 86.09 30 1.936 0.80 

 PSO [16] 13 1.038 0.912 2.547 28.97 86.27 30 1.509 0.729 
Proposed 

IABC 
13 0.935 0.90 2.491 28.45 86.52 30 1.557 0.73 

2 

IA [17] 
6 1.058 0.85 

2.86 23.05 89.08 14 0.74 0.85 
30 1.059 0.85 

BFOA 
[18] 

14 0.786 0.88 
3.134 21.05 90.02 25 1.002 0.64 

30 1.348 0.62 

HACO-ABC 
[21] 

12 1.014 0.85 
3.337 15.91 92.46 25 0.960 0.85 

30 1.363 0.85 

IWO [24] 
13 0.880 0.87 

3.498 12.74 93.95 24 1.186 0.88 
30 1.432 0.80 

BBO [29] 
13 0.883 0.90 

3.52 11.94 94.35 24 1.189 0.90 
30 1.448 0.71 

PSO [16] 
13 0.872 0.90 

3.499 11.77 94.43 24 1.185 0.89 
30 1.438 0.71 

Proposed 
IABC 

13 0.875 0.90 
3.507 11.15 94.52 24 1.188 0.90 

30 1.442 0.71 
 

A.2 Comparison of Performance of IABC and other Methods for Scenarioi – II 
      Comparison of performance of IABC and other methods foriscenario II areigiven iniTable 
4. From theiTable 4, it istobserved thattthe loss reduction percentage obtained intscenario II is 
sameias that of scenario I for both test cases. The proposed technique offers lowest real power 
losses (28.10 kW) when compared to other methods such as IMDE (32.08kW) and GA-PSO 
(28.55kW) for test case-1. Similarly, when considering test case-2, proposed method gives the 
better result of power loss reduction (11.65 kW) than the results (11.80kW and 11.75kW) 
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obtained by the methods PSO and GA-PSO respectively for the same optimal locations (14, 24 
and 30). 

Table 4 Comparison of Performance of IABC and other methods with 33-bus RDS for scenario – II 

Test 
Case 

Method 
Type I DGs Type II DGs Power 

Loss 
(kW) 

Percentage 
Loss 

Reduction Bus No. Size 
(MW) 

Bus 
No. 

Size 
(MVAR) 

1 

IMDE [26] 
10 1.079 16 0.253 

32.079 84.78 
31 0.895 30 0.933 

GA – PSO 
[28] 

13 0.829 12 0.435 
28.56 86.46 

30 1.113 30 1.035 

Proposed 
IABC 

13 0.845 12 0.445 
28.10 86.63 

30 1.136 30 1.043 

2 

PSO [16] 

14 0.752 13 0.364 

11.81 94.41 24 1.074 24 0.515 

30 1.027 30 1.007 

GA – PSO 
[28] 

14 0.754 13 0.365 

11.75 94.42 24 1.076 24 0.517 

30 1.029 30 1.009 

Proposed 
IABC 

14 0.753 13 0.371 
11.55 95.12 24 1.075 24 0.516 

30 1.027 30 1.010 

 

A.3 Comparison of Performance of IABC and other Methods for Scenarioi – III 

      In scenario III, Type II and III DGs are installed simultaneously in the system for attaining 
minimum objective function. The real power is supplied only by Type III DGs and reactive 
power is supplied by bothiType II andiType IIIiDGs. The simulation results obtained for 33-bus 
RDS with scenario III are compared with other methods and shown in Tablei5. It reveals thatithe 
lossireduction percentage obtained by using scenario III is higher than the loss reduction obtained 
by implementing scenario I and II for both test cases. In scenario III, proposed approach yields 
lowest power losses (24.50kW and 10.28 kW) for test cases-1 and 2 respectively among all three 
scenarios for both test cases-1 and 2. For the test case-2, proposed method gives lowest active 
power loss (10.28 kW), when compared to the power losses (17.01 kW and 14.00 kW) obtained 
by the methods GA-PSO and ICA-GA respectively.  
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Table 5. Comparison of Performance of IABC and other methods with 33-bus RDS for 
scenario III 

Test 
Case Method 

Type II DGs Type III DGs Power 
Loss 
(kW) 

Percentage 
Loss 

Reduction 
Bus 
No. 

Size 
(MVAR) 

Bus 
No. 

Size 
(MVA) 

Power 
factor 

1 

CTLBO 

[29] 

25 0.521 14 1.526 0.72 
26.89 87.25 

12 0.356 24 1.012 0.81 

IABC 
24 0.468 30 1.454 0.79 

24.50 88.30 
6 0.280 13 0.903 0.90 

2 

GA – PSO 
[28] 

12 0.151 14 0.765 0.88 
17.01 91.94 30 0.451 25 0.787 0.85 

32 0.150 30 0.927 0.90 

ICA – GA 
[19] 

8 0.152 13 0.877 0.905 
14.10 93.35 18 0.152 24 1.187 0.90 

30 0.299 30 1.269 0.81 

IABC 
22 0.103 14 0.826 0.836 

10.28 95.12 26 0.278 24 1.173 0.90 
32 0.193 30 1.256 0.90 

 
The comparison of convergence characteristics for 33 – bus RDS with Test Case – 2 for all 

the three scenarios is shown in Figure 5. The figure reveals that the losses provided by the 
scenario III are lowest among all the scenarios I, II &III. 

 
Figure 5. Comparison of Convergence Characteristics for 33 – bus RDS for all three Scenarios 

 

B. IEEE – 69 Bus Radial Distribution System 

    TheiIEEE 69-bus distribution systemiwith 12.66-kVibase voltage (Baraniand Wu, 1989) 
isishown intFigure 6 is employediin this paper. It consists of oneislack bus and 68 loadibuses. 
The totalireal and reactive poweridemand is 3802.190ikW and 2694.600 kVAr, respectively. 
Thisitest system consistsiof 69 buses andi68 branches. Fori69-busSsystem without 
installationSof DG real, reactive powerSlosses are 225.023SkW and 102.1763SkVAR 
respectively. 
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B.1 Comparison of performance of IABC and other methods for Scenario – I 
       From the resultssof 69-bussRDS for thesscenario - I, given in Table 6, itsis observedsthat 
the losssreduction percentage given bysproposed approach with Test case-2 isihigher (98.10%) 
thanithe Test case-1 (96.80%). Considering Test case-1, the proposed method provides the 
percentage of loss reduction (96.80%) higher than that of percentage of loss reduction offered 
by other techniques like A-PSO and CLS-MINLP. Also, for test case-2, thetpercentagetof 
powertloss reduction (98.10%) given byiproposed technique is higher than the percentage of 
power loss reduction (95.10%, 97.87% and 97.90%) provided by the other methods GA-PSO, 
A-PSO and PSO respectively. At the same time, proposed method yields same results as that of 
the results obtained using CLS-MINLP and ICA-GA methods. 

 
Table 6. Comparison of Performance of IABC and other methods with 69-busiRDS foriscenario - I 

Test 
Case Method 

Type III DGs Total DG 
Capacity 
(MVA) 

Power Loss 
(kW) 

Percentage 
Loss 

Reduction Bus No Size 
(MVA) 

Power 
factor 

1 

HGWO 
[26] 

17 0.633 0.824 2.765 7.31 95.10 61 2.131 0.814 
 PSO 
[16] 

17 0.63 0.82 2.75 7.31 95.10 61 2.12 0.81 
Proposed 

IABC 
17 0.630 0.82 2.762 7.20 96.80 61 2.131 0.81 

2 

GA – PSO 
[28] 

18 0.510 0.71 
2.495 10.33 95.10 61 1.627 0.77 

64 0.358 0.81 

HACO-
ABC [21] 

18 0.48 0.77 
3.07 4.71 97.87 61 2.06 0.83 

66 0.53 0.82 

PSO [16] 
11 0.60 0.83 

3.120 4.61 97.90 18 0.46 0.81 
61 2.06 0.81 

IWO [24] 
11 0.608 0.814 

3.123 4.55 97.91 17 0.458 0.828 
61 2.056 0.814 

ICA – GA 
[19] 

11 0.608 0.814 
3.121 4.46 97.92 18 0.454 0.833 

61 2.059 0.813 

IABC 
11 0.647 0.82 

3.120 4.27 98.10 21 0.415 0.83 
66 2.057 0.82 
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Figure 6. Single line diagram of IEEE 33-bus radial distribution system 

 

B.2 Comparison of performance of IABC and other methods for Scenario – II 
    

Table 7. Comparison of Performance of IABC and other methods with 69-bus RDS for scenario II 

Test 
Case Method 

Type I DGs Type II DGs Power 
Loss 
(kW) 

Percentage 
Loss 

Reduction 
Bus 
No. 

Size 
(MW) 

Bus 
No. 

Size 
(MVAR) 

1 

IMDE 
[26] 

24 0.479 61 1.192 
13.83 93.84 

62 1.738 63 1.234 

PSO [16] 
17 0.517 17 0.352 

7.59 96.63 
61 1.725 61 1.234 

GA – PSO 
[28] 

17 0.517 17 0.352 
7.21 96.79 

61 1.725 61 1.234 
Proposed 

IABC 
17 0.517 17 0.353 

7.20 96.80 
61 1.734 61 1.238 

2 

PSO [16] 
11 0.633 18 0.326 

5.15 97.70 21 0.321 53 0.206 
61 1.647 61 1.192 

GA – PSO 
[28] 

11 0.518 11 0.375 
4.27 98.10 20 0.358 21 0.230 

61 1.670 61 1.194 

Proposed 
IABC 

11 0.495 11 0.374 
4.25 98.11 17 0.379 21 0.230 

61 1.673 61 1.196 
  

 Comparison of performance of IABC and other methods for scenario II are givenrinrTable 
7. From the Table 7, itrisrclear thatrthe scenario II obtained the same real power loss as that 
obtained in scenario - I, irrespective of the approaching methods for both Test cases 1 and 2. For 
Test case-1, the proposed method presents lowest losses (7.20kW) than the losses (13.83kWand 
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7.59kW) given by IMDE and PSO respectively. However, the proposed technique offers the 
same result as that of the result given by the method A-PSO, due to same optimal locations (17& 
61) for installing both Types I and II DGs. When considering test case-2, activerpowerrloss 
(4.25kW) obtainedsby thesproposed method iselower than the losses (5.15kW and 4.27kW) 
provided by the approaches PSO and A-PSO respectively. 
 

B.3 Comparison of performance of IABC and other methods for Scenario – III 
In scenario III, to achieveithe minimumiobjective function (i.e. minimization of real 

poweriloss), Type IItandtType III DGsiaretplaced simultaneously in the RDS. The simulation 
results of 69-bus RDS for scenario - III is presented intTablet8. From Tablet8, it is observedithat 
as reactive power is injected into the system using TypeiII andiType IIIiDGs, the loss reductioniis 
higher than the loss reduction in scenario II for both test cases 1 and 2. 

Table 8. Comparison of Performance of IABC and other methods with 69-bus RDS for scenario - III 

Test 
Case Method 

Type II DGs Type III DGs Power 
Loss 
(kW) 

Percentage 
Loss 

Reduction 
Bus 
No. 

Size 
(MVAR) 

Bus 
No.  

Size 
(MVA) 

Power 
factor 

1 Proposed 
IABC 

11 0.353 17 0.579 0.90 
5.43 97.58 

49 0.569 61 2.106 0.82 

2 

GA – 
PSO [28] 

11 0.150 18 0.515 0.85 

8.02 96.43 49 0.150 61 1.345 0.88 

61 0.60 64 0.367 0.83 

Proposed 
IABC 

9 0.236 12 0.542 0.87 

3.16 98.51 50 0.508 21 0.371 0.84 

64 0.205 61 1.947 0.87 

 

 The comparison of convergence characteristics for 69 – bus RDS for all the three scenarios 
for test case -2 isishown iniFigure 7. Theifigureireveals that scenario III gives the highest loss 
reduction among all the three scenarios. 

 
Figure 7. Comparison of Convergence Characteristics for 69 – bus RDS with Test Case – 2 for 

all the three Scenarios 
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 The loss reduction given by proposed method for all the three scenarios i.e. scenario - I, II & 
III for both the test cases for 33-busiandi69-bus system is depicted in Figure 8 and Figure 9. 

 
Figure 8. Comparison of Percentage Loss Reduction using IABC for 33 – bus RDS 

 

 
Figure 9. Comparison of Percentage Loss Reduction using IABC for 69 – bus RDS 

 
 Among the all scenarios, scenario III provides the highest loss reduction percentage for both 
test cases 1 and 2 because in scenario III, reactivetpower istinjected into the system by Type II 
and Type III DGs simultaneously. Consequently, the reactiveipower suppliedSby Type III DG is 
significantly reduced with flat voltagedprofile and maximum lossereduction in theesystem. Also, 
the losses are minimized when the numbers of DGs are increased. 

 
6. Conclusions 

 In thisrpaper, a novel hybridrIABC algorithm (combiningrthe features of ABCrand DE 
algorithm) forroptimal placementiand sizing of differentitypes (Type I, II & IIIiDGs) of DGs with 
theiobjective for power lossiminimization in thesRDS is proposed. In order tosdemonstrate the 
efficacy andsperformance of the proposedstechnique, it is implementedtand tested on 33-bus and 
69- busrRDS. Results obtained fromrthe proposed techniquerare compared with thoseiof other 
compete methods. The empiricalifindings reveal that theiproposed techniqueiexhibits betteriresults 
in termssof real power loss reduction, andsconvergence speed. The maximumsloss reduction with 
bettersvoltage profile issobtained using the proposedshybrid IABC technique by optimalssiting and 
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sizing of differentstypes of multipleiDG units simultaneously thanioptimal placement andisizingiof 
DGs independentlyiin the RDS. Especially, simultaneoustplacement of three numbers (Testtcase-
2) of TypetII & Type IIItDGs (Scenario-III) yieldtmaximum lossireduction than 
simultaneousiplacement of two numbers (Testtcase-1) of Type IIItDGs (Scenario I) andtType I & 
IIrDGs (Scenario II). In view ofsthis, the proposed IABCroptimizer can providesplanning better 
locationsrfor distributedsgeneration sources and bettersmanagement of real and reactiveepower 
deployment. Thesauthor is in discussionewith local power DISCOMeto implement the 
proposedeoptimization algorithm in a realedistribution system. 
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