

 International Journal on Electrical Engineering and Informatics ‐ Volume 4, Number 1, March 2012

GPGPU computation in mobile robot applications

Janusz Będkowski1 , Andrzej Masłowski2.3

1.2Institute of Automation and Robotics, Warsaw University of Technology

ul. Św. A. Boboli 8, 02-525, Warsaw, Poland 2.3Institute of Mathematical Machines
ul. Ludwika Krzywickiego 34, Warsaw, Poland

1januszbedkowski@gmail.com
2a.maslowski@mchtr.pw.edu.pl

3a.maslowski@imm.org.pl

Abstract: The paper concerns the results related with GPGPU computing applied for
mobile robotics applications. The scalable implementation of the point to point and
point to plane 3D data registration methods with an improvement based on regular grid
decomposition is shown. 3D data is delivered by mobile robot equipped with 3D laser
measurement system for INDOOR environments. Presented empirical analysis of the
implementation shows the On-Line computation capability using modern graphic
processor unit NVIDIA GF 580. In the paper the discussion concerning the comparison
between these two methods is given. It will be shown why the point to plain ICP
implementation can achieve better performance than the point to point approach. We
show parallel vector computation that is used for semantic objects identifications and
for loop closing detection.

Keywords: Data registration, parallel computing, point to point, point to plane, mobile
robot.

1. Introduction
 Several researches of 3D mapping are based on the so called simulation of 3D laser range
finder to obtain 3D cloud of points [1]. In most cases 3D laser simulator is built on the basis of
a rotated 2D range finder. The rotation axis can be horizontal [2], vertical [3] or the rotational
axis in the middle of the scanner’s field of view [4]. Another approach of obtaining 3D cloud
of points using two orthogonal lasers is shown in [5]. The applications are related with urban
mapping [6].
 Alignment and merging of two 3D scans, which are obtained from different sensor
coordinates, with respect to a reference coordinate system is called 3D registration [7] [8] [9].
Park [10] proposed a real-time approach for 3D registration using GPU, where the registration
technique is based on the Iterative Projection Point (IPP) algorithm. IPP technique is a
combination of point-to-plane and point-to-projection registration schemes [11]. Processing
time for this approach is about 60ms for aligning two 3D data sets of 76800 points during 30
iterations of the IPP algorithm. Fast searching algorithms such as the k-d tree algorithm are
usually used to improve the performance of the closest point search [12] [13]. GPU accelerated
nearest neighbor search for 3D registration is proposed in [14], where the advantage of Arya’s
priority search algorithm described in [15] to fit NNS in the SIMD (Single Instruction Multiple
Data) model was used for GPU acceleration purpose. Purcell suggested that k-d tree and
priority queue methods are efficient but difficult to be implemented on GPU [16]. Garcia
proves, that a brute force NNS approach using NVidia Compute Unified Device Architecture
(CUDA) is 400 times faster over the CPU k-d tree implementation [17]. GPU-based NNS with
advanced search structures is also used in the context of ray tracing [18], where NNS procedure
builds trees with a different manner from a triangle soup, and takes these triangles as the
objects of interest. To convert k-d tree into serialized flat array that can be easily loaded into

Received: December 14th, 2011. Accepted: January 9th, 2012

15

CUDA device, left-balanced k-d tree was proposed [19] [20]. Another technique for 3D
registration using Fast Point Feature Histograms (FPFH) is shown in the work of Rusu [21].
Rusu also proposed a way of characterizing the local geometry of 3D points, using persistent
feature histograms, where the relationships between the neighbors of a point are analyzed and
the resulted values are stored in a 16-bin histogram [22]. The histograms are pose and point
cloud density invariant and cope well with noisy datasets. An alternative concept to ICP
algorithm which relies on instantaneous kinematics and on the geometry of the squared
distance function of a surface is shown in [23]. The proposed algorithm exhibits faster
convergence than ICP, which is supported both by results of a local convergence analysis and
by experiments. The ICP algorithm is used in SLAM 6D (Simultaneous Localization and
Mapping), where 6 DOF (Degree Of Freedom) of robot position is computed based on aliment
of 3D clouds of points and loop-closing technique [24].
 The Iterative Closest Point algorithm with its variations point to point and point to plane is
a well known method since it appeared in [25]. It is already proven that the ICP algorithm
needs a good prediction to achieve an accurate matching. The fastest implementation that can
be found in literature needs 60 ms to align two point clouds, each of 320 x 240 data points
[10], but the authors unfortunately did not report about scalability of proposed method. In this
paper, we will discuss new implementations of ICP (point to point, point to plane) that are
designed especially for high performance with an assumption of scalability for future GPGPU
devices. At the current stage of the implementation, we can process two data sets of 210*210
data points in parallel. The main goal was to decrease the bottlenecks, therefore they are
limited to copying data from/to host (CPU) to/from device (GPU). All computation related to
neighbor search and to calculating the correlation matrix is performed by the GPU. We will
show why the point to plain ICP implementation can achieve better performance than the
classic point to point approach. In the same time, we demonstrate the weaknesses of this
method in contrast to the advantages reported in many articles.
 The paper shows an improved implementation and empirical validation of GPGPU ICP
point to point and point to plane algorithms and the practical applications for normal vector
parallel computation. This algorithms offer online computation. The main difference compared
to State of The Art approaches is NNS procedure, where 3D space was divided into regular
grid of buckets, therefore there is no need to build complex data structures such as k-d tree, and
the time of ICP is decreased. We are optimistic that proposed methods will be used in future
real-task applications using for example FPGA or embedded computers with GPUs.

2. Classic point to point iterative closest point algorithm
 First classic ICP point to point algorithm will be described. Iterative Closest Points
algorithm is aligning two-view range images with respect to the reference coordinate system.
Range images are defined as a model set M and data set D, Nm and Nd denotes the number of
the elements in the respective set. The alignment of these two data sets is solved by
minimization with respect to R,t of the following cost function:

() ()∑

=
∑
=

+−==
mN

i

dN

j jiijwE
1 1

2
, tRdmtR (1)

wij is assigned 1 if the i-th point of M correspond to the j-th point in D. Otherwise wij=0. R is a
rotation matrix, t is a translation matrix. mi and di corresponds to the i-th point from model set
M and D respectively. Calculation of the rotation and translation (R,t) is performed using
reduced equation 1:

where ∑∑

= =

=
m dN

i

N

j
ijwN

1 1

, (3)

() ()∑
=

+−∝
N

i
iiN

E
1

21, tRdmtR , (2)

Janusz Będkowski, et al.

16

Rotation R is decoupled from computation of translation t using the centroids cm and cd of
points:

∑
=

=
N

i
im N 1

1 mc , ∑
=

=
N

i
id N 1

1 dc
,

 (4)

and modified data sets:

{ } Nmii ,...,1'' cmmM −== , (5)

{ } Ndii ,...,1'' cddD −== . (6)

After applying equations 3-6 to the mean square error function E(R, t), the equation 1 takes the
following form:

() ()∑

=

+−−−∝
N

i
dmiiN

E
1

2''1, RcctRdmtR (7)

Assuming that:

~
tRcct =+− dm , (8)

Equation 1 takes following form:

() ()∑ ∑∑

= ==

+−−−∝
N

i

N

i

N

i
iiii NNN

E
1 1

2~

1

~2 1''2''1, tRdmtRdmtR , (9)

To minimize 9 the algorithm has to minimize only term:

∑
=

−
N

i
ii

1

2'' Rdm , (10)

With an assumption:

 0
~
=t , (11)

 The optimal rotation is calculated by TVUR = , where matrices V and U are derived

from the singular value decomposition of a correlation matrix TUSVC = given by:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==∑
=

zzzyzx

yzyyyx

xzxyxxN

i
i

T
i

ccc
ccc
ccc

1

'' dmC , (12)

where:

∑ ∑ ∑
= = =

===
N

i

N

i

N

i
izizzziyixxyixixxx dmcdmcdmc

1 1 1

'',...,'','' , (13)

The optimal translation t is derived from equation 11 and 8, therefore

 dm Rcct −= , (17)
Listing 1 shows a classic ICP algorithm.

GPGPU computation in mobile robot applications

17

3. GPGPU based point to point iterative closest point algorithm
The algorithm of point to point method using GPU is shown on listing 2.

 The main idea of using the GPU is to decompose the 3D space into a regular grid of k*k*k
buckets, where k = 2n, n=5,6,7,8. Because we are violating the assumption of full overlap, we
are forced to add a maximum matching threshold dmax related to the dimension of single
bucket. This threshold accounts for the fact that some points will not have any correspondence
in the second scan. In most implementations of ICP, the choice of dmax represents a trade of
between convergence and accuracy. A low value results in bad convergence, a large value
causes incorrect correspondences to pull the final alignment away from the correct value. In
our implementation the choice of dmax is done by a normalization point cloud, which has XYZ
coordinates from the interval < 1; 1 >. We improved the state of the art algorithm described in

Janusz Będkowski, et al.

18

[12] by replacing the complex k-d tree data structure to improve the performance of the closest
point search by performing all computation using only GPU, we obtained TRUE nearest
neighbor search and after some approximation real-time ICP with minimal lost of accuracy.
NVIDIA GPGPUs are fully programmable multi core chips built around an array of processors
working in parallel. Details about the GPU architecture can be found in [26] and useful
additional programming issues are published in [27]. The GPU is composed of an array of SM
multiprocessors, where each of them can launch up to 1024 co-resident concurrent threads. It
should be noticed that available graphics units are in the range from 1 SM up to 30 SMs in high
end products. Each single SM contains 8 scalar processors (SP) each with 1024 32-bit registers,
the total of 64KB of register space is available for each SM. Each SM is also equipped with a
16KB on-chip memory that is characterized by low access latency and high bandwidth. It is
important to realize that all thread management (creation, scheduling, synchronization) is
performed in hardware (SM), and overhead is extremely low. The SM multiprocessors work in
SIMT scheme (Single Instruction, Multiple Thread), where threads are executed in groups of
32 called warps. The CUDA programming model defines the host and the device. The Host
executes CPU sequential procedures, whereas the device executes parallel programs - kernels.
A kernel works according to a SPMD scheme (Single Program, Multiple Data). CUDA gives
an advantage of using massively parallel computation for several applications.

4. Correlation matrix elements computation using optimized parallel reduction
 For the computation of the correlation matrix, the parallel prefix sum [28] is used. The all-
refix-sums operations take a binary associate operator with identity I, and an array of n
elements

 [a0; a1; … ; an-1] (18)

and returns the array

 [I; a0; (a0 a1) ; …; (a0 a1 … an-2)] (19)

 All-prefix-sums operations on an array of data is commonly known as a scan. The parallel
implementation uses multiple thread blocks for processing an array up to 1024*1024 data
points stored in a one dimensional array. The strategy is to keep all multiprocessors on the
GPU busy to increase the performance. An assumption is that each thread block reduces a
portion of the array. To avoid problem of global synchronization the computation is
decomposed into multi kernel invocations. An optimized kernel available in CUDA SDK
[26][27] is used in parallel computation.

5. Singular Value Decomposition (SVD)
 The equation for the singular value decomposition of a 3 x 3 matrix A is the following:

ܣ ൌ ܷ∑்ܸ (20)

where U is an 3x3 matrix, is an 3x3 diagonal matrix, and VT is also an 3x3 matrix. The
columns of U are called the left singular vectors { uk }, and form an orthonormal basis. The
rows of VT contain the elements of the right singular vectors {vk}. The elements of are only

nonzero on the diagonal, and are called the singular values, thus = diag(Ԅ1;…; Ԅn).
Furthermore, Ԅk > 0 for 1 ≤ k ≤ r, and Ԅi = 0 for (r+1) ≤ k ≤ n.
 The ordering of the singular vectors is determined by high-to-low sorting of singular
values, with the highest singular value in the upper left index of the matrix. In this particular

GPGPU computation in mobile robot applications

19

application we need to compute the SVD of a 3x3 matrix. For such a small matrix, generalized
SVD algorithms from libraries like LAPACK (Linear Algebra PACKage) [29] are not
beneficial especially when we have to implement them on GPGPU. Our implementation
computes the singular values by solving for the roots of a cubic polynomial and then
eigenvectors of ATA for V , then it uses A and V to compute U. The algorithm is executed in 5
steps.
1. Compute AT and ATA.
2. Determine the eigenvalues of ATA (by solving the roots of a cubic polynomial) and sort
 these in descending order. Compute square roots to obtain singular values of A.
3. Construct the diagonal matrix by placing singular values in descending order along its
 diagonal. Compute -1.
4. Use the ordered eigenvalues from step 2 and compute the eigenvectors of ATA. Place these
 eigenvectors along the columns of V and compute VT .
5. Compute U = AV -1

6. Point to plain ICP
 The alignment of the M and D data sets for point to plane ICP is solved by minimization of
the following cost function:

() ()∑∑
= =

+−==

p
m dN

i

N

j
ji

p
ijwE

1 1

2
, tRdmtR

 (21)
where mp

i corresponds to projected point from data set D onto the approximation plane of data
set M. wij is assigned 1 if the ith point of M correspond to the jth point in D. Otherwise wij=0. R
is the rotation matrix, t is the translation matrix, dj corresponds to points from data set D. We
also assume that the INDOOR dataset is locally planar. Since we are sampling from two
different perspectives, we will not in general sample the exact same point. For this reason, in
theory the point to plane method is more accurate than point to point (see Figures 1 and 2).
Unfortunately in practical application there are many exceptions where this method is less
accurate than classic point to point method. We observed that in some cases it is difficult to
find automatically an accurate plane approximation and a correct point to plane correspondence
(see Figure 3). Of course everything is determined by the need for high performance using
GPU. Therefore, the implementation based on decomposition into a regular grid of buckets
may be affected by this problem. The advantage of the point to plane method over point to
point is the decreased time of computation, as there is no need to search best correspondence
for each bucket. This is also related to the global synchronization of threads busy with
executing the same kernel for each bucket. Instead of searching the best correspondence for
each bucket, the point to plane method computes a projected point, and all kernels are executed
in almost the same time. Therefore, the synchronization of threads does not affect global
execution time. In the consequence point to plane method can be 3 times faster than point to
point. However, we would like to emphasize the fact that the bottleneck related to the large
amount of processed points affects the global performance of the method.

Figure 1. An advantage point to plane over point to point method.

Janusz Będkowski, et al.

20

Figure 2
correspo

persp

Fi

7. Using
 Loop
important
displacem
should be
using the
loop closi
to be take
robot that
INDOOR
on entrop
showing s
(RGB) w
image fro
are visual
walls will
B for ea
following

(Ad PE

where:

 AdP -

. Comparison b
ond points are c
ectives, we wi
eliminates this

igure 3. An exa
corresp

g parallel vecto
closing occur

t to realize tha
ment between l
e minimized to

strategy of ro
ing method is
en into the con
t it visited twi

R environment
py. This meth
satisfying resu

where different
om 3D laser sca
lized as colors
l have the same

ach semantic o
g equation:

)
B

B

A

Cd
dP

∈
∑ −=

region of pixel

between point
connected via l
ll not in genera
s problem (the

ample of disad
pondence betw

or computatio
rs when robot
at the robot is
loop closing ro
o increase the
obot motion, es
guarantying he

nsideration. Fo
ice with the sim
we propose ne

hod is faster
ults. For our pu

colors corres
an normal vect
(R, G, B). As

e color. To find
object from im

A

Ad
B

d

Pd P

P

P ∈
log

ls in image A o

to point and po
line segments.
al sample the e
interesting reg

dvantage of poi
een point and l

on for loop clo
t is visiting th

not able to p
obot positions
efficiency of t
specially when
eading and dis

or this reason w
milar region o
ew method ba
than classic a

urpose the sema
pond to differ
tors for each po
s a result we ex
d entropy betw
mage A follow

A

Ad
B

d

Pd

P

P ∈

of category d,

oint to plane m
When we are s

exact same poin
gions are marke

nt to plane met
local plane app

osing detection
he same place

perform exactly
occurs. In ou

the loop closin
n it traverses n
splacement inv
we define loop
of observation.
sed on semant
approach and
antic image is
rent semantic
oint are compu
xpect that poin

ween semantic
wing entropy

methods. In the
sampling from
nt. Point to pla
ed as green circ

thod related to
proximation.

n
e a second tim
y the same pa
ur opinion, this
ng method. Thi
narrow paths. E
variance, the co
p closing as a l

To improve l
tic images com
performed ex
represented as
objects. To ob

uted. Normal v
nts belong to fl
image A and s
has to be co

central image
m two different
ane method
cles).

o wrong

me. It is very
ath, therefore a
s displacement
is can be done
Even when the
ompromise has
location of the
loop closing in
mparison based
xperiments are
s a color image
btain semantic

vectors (X,Y,Z)
loor, ceiling or
semantic image
omputed using

(22)

y
a
t
e
e
s
e
n
d
e
e
c
)
r
e
g

GPGPU computation in mobile robot applications

21

 d - category/label,

 BC -set of categories in image B,

 Ad
B PdP ∈ - amount of pixels in image B of category dB from region of category dA

 in image A,

AdP - amount of pixels in region of category dA in image A.

Final entropy is given by following equation:

() ()AA

A
A

A

dd
Cd A

d
A PE

P

P
PE ∑

∈

= (23)

where:

AP -all pixels of image A,
d -category/label,

AC -set of categories in image A,

AdP -amount of pixels of category Ad ,

AP - amount of pixels in image A,
()AA dd PE - entropy computed using equation 22.

Figure 4. Loop closing with semantic images comparison based on entropy. Corresponding

semantic images are connected via black arrows. Corresponding robot position are marked by
red lines. Loop closing was found between robot observation 11 and 180, what is related with
the minimum value of ICP error and maximum amount of corresponding points between 3D

scans. Positive examples are shown on the left, negative example are shown on the right.

 The entropy of the same image equals 0, therefore to find corresponding semantic images
first we should minimize entropy. To demonstrate an approach figure 4 shows the loop closing
procedure performed for data set shown on figure 7. The minimization of entropies is very fast
(100ms per matching) but it does not guarantee loop closing, therefore further computation is

Janusz Będkowski, et al.

22

needed. It
correct lo

8. Using

detect
 To fin
RGB data
vegetation
vegetation
(Hue – Sa
From 3D
vegetation

Figur

9. Empi
 The P
which wa
observatio
scans, the
361*498
platform
benchmar
variants o
derived fr
most accu
shapes in
of ICP va
depends m
point clou
be more
(300ms f
accuracy
points and
is only on
neighbor

t can be used a
op closing it is

g parallel vec
tion
nd vegetation i
a and 3DLSN (
n is determine
n is related to
aturation –Val

D cloud of po
n. Figure 5 dem

re 5. Vegetation
semantic a

rical evaluatio
roposed Iterati

as performed in
ons in a stop-s
erefore the odo

3D data poi
PIONEER 3A
rk for obtainin
of ICP. The m
rom odometry
urate result, w
the point to pl

ariants strongl
more on the am
ud) rather than
than 10 and l

for 30 iteration
of ICP point t

d an amount of
ne computatio
search in point

as a fast method
s necessary to p

ctor computat

in outdoor env
(3D Laser Mea

ed by “noisy” n
 green color (
ue) image and

oints’ image (
monstrates the

n detection. 9 e
augmented wit

on
ive Closest Poi
n an INDOOR
scan fashion w
ometry error w
nts. Measurem

AT equipped w
ng a satisfying
main observatio

with gyroscop
hich was deter
lane variant. H
ly depends on
mount of point

n number of ite
less than 100
ns). We obser
to plane strong
f projected poin
n of point pro
t to point meth

d for finding th
perform ICP m

tion and HSV

ironments we
asurement Sys
normal vector
(in most cases)
d assigned colo
(noise) and H
results of prop

examples of tri
th vegetation re

int variations w
environment s

with one meter
was decreased.
ment was don

with 3DLSN un
result of odom

on is that all
pic correction
rmined by the

However, we w
various of fac

ts in the bucke
erations. The a
to obtain accu

rved that 30 i
gly depends on
nts. The point

ojection instead
hod.

he prerequisite
matching.

V image rep

use RGB-D da
stem 3D) unit 3
s in 3D cloud
), therefore we

or using thresh
HSV image (c
posed method.

iple images are
egions marked

were compared
shown on figur
r step. The goa

The data set i
ne using com
nit (rotated SI
metry correctio
ICP variants d
system. It seem
result of plan

want to emphas
ctors. The acc
et (it can be tu

average amoun
urate alignmen
iterations guar
n the complexi
to plane metho
d of many com

s of loop closin

presentation f

ata obtained by
3D data. The p
of points. We

e transformed
hold obtained e
olor) we obta

e shown (RGB
by gray color)

d during real-ta
re 6. The robot
al was to align
is composed o

mmercially ava
CK LMS 200
on, performed
did correction
ms that classic

ne-approximatio
size the fact tha
curacy of ICP
uned by norma
nt of points in b
nt with on-lin
rantee satisfyin
ity of shapes i
od is the fastest
mputations rela

ng. To validate

for vegetation

y the fusion of
prerequisites of
e assumed that
RGB to HSV

experimentally.
ain regions of

, semantic,
).

ask experiment,
t was acquiring
n iteratively all
of 142 scans of
ailable robotic
). We set as a
with different
of robot path

c ICP gave the
on of complex
at the accuracy
point to point

alization of the
buckets should

ne computation
ng result. The
in the cloud of
t because there
ated to nearest

e

n

f
f
t

V
.
f

,
g
l
f
c
a
t
h
e
x
y
t
e
d
n
e
f
e
t

GPGPU computation in mobile robot applications

23

 To conclude the discussion concerning the Iterative Closest Point method used for
odometry correction, we show a result of an additional experiment on figure 7. The idea was to
collect 3D data sets by the same robot (PIONEER 3AT equipped with 3DLSN unit and
gyroscope odometry correction) two times in the same environment using different types of
wheels (PIONEER 3AT indoor wheels and PIONEER 3AT outdoor wheels). The wheels have
different radius, size and friction. The result is a longer odometry path for the indoor wheels
(figure 7 C). We observed two important aspects of the applied ICP point to point method.
First, the odometry error was decreased satisfactory in both cases. Second, there are some
situations where the ICP accuracy can be decreased drastically, especially during rotations.
Therefore, a proper strategy of data acquisition during robot motion has to be applied to avoid
occlusions in the scan.

Figure 6. Comparison of ICP variants results. From left – indoor environment (Warsaw

University of Technology, Faculty of Mechatronics), ICP point to point 10 iterations, ICP point
to point 100 iterations, ICP point to plane 50 iterations.

Figure 7. Comparison of ICP point to point (30 iterations) 10dometry correction for robot

PIONEER 3AT equipped with 3DLSN unit and two different types of wheels (AB-
OUTDOOR, CD-indoor). A-odometry path using OUTDOOR wheels, B-ICP result for A, C-
odometry path using indoor wheels, D-ICP result for C. Experiment was performed in MECA

laboratory in Royal Military Academy, Brussels, Belgium.

Conclusion
 Compared to a state of the art method [10] where 60ms are needed to align two data sets of
320 x 240 data points, our implementation can process 361*498 data sets in 130ms for 30
iterations. Our main contribution was to propose a scalable method with an assumption of
satisfying performance. Based on our best knowledge it will be very difficult to improve the
performance while increasing amount of processed points because of the bottlenecks. For

Janusz Będkowski, et al.

24

practical application it is very beneficial to process 210 * 210 points because we can align not
only iteratively neighboring scans, but also building meta models containing more scans. It will
improve the accuracy of the method and it can be done with the newest GPUs with the FERMI
architecture. We demonstrated the problem of point to plane method’s accuracy and compared
with ICP point to point method based on various data sets. We have shown the applications of
the loop closing and the vegetation detection based on normal vector computation. Future work
will be related with GPGPU based ICP integration in 6DSLAM algorithm for robot
localization and map building purpose.

References
[1] Martin Magnusson, Tom Duckett, and Achim J. Lilienthal. 3d scan registration for

autonomous mining vehicles. Journal of Field Robotics, 24(10):803–827, Oct 24 2007.
[2] Andreas Nuchter, Hartmut Surmann, and Joachim Hertzberg. Automatic model

refinement for 3D reconstruction with mobile robots. In Fourth International Conference
on 3-D Digital Imaging and Modeling 3DIM 03, page 394, 2003.

[3] Michael Montemerlo and Sebastian Thrun. A multi-resolution pyramid for outdoor robot
terrain perception. In AAAI’04: Proceedings of the 19th national conference on Artificial
intelligence, pages 464–469. AAAI Press, 2004.

[4] Peter Kohlhepp, Paola Pozzo, Marcus Walther, and Rdiger Dillmann. Sequential 3d-slam
for mobile action planning. In Proceedings of 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Sendai, Japan, pages 722–729, September 28 -
October 2 2004.

[5] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3d mapping. In ICRA, pages 321–
328, 2000.

[6] Agustin Ortega, Ismael Haddad, and Juan Andrade-Cetto. Graph-based segmentation of
range data with applications to 3d urban mapping. In 4th European Conference on Mobile
Robots ECMR09, September 23- 25, 2009, Mlini/Dubrovnik, Croatia, pages 193–198.

[7] Daniel Huber and Martial Hebert. Fully automatic registration of multiple 3d data sets.
Image and Vision Computing, 21(1):637–650, July 2003.

[8] Andrew W. Fitzgibbon. Robust registration of 2d and 3d point sets. In British Machine
Vision Conference, pages 411–420, 2001.

[9] Martin Magnusson and Tom Duckett. A comparison of 3d registration algorithms for
autonomous underground mining vehicles. In In Proc. ECMR, pages 86–91, 2005.

[10] Soon-Yong Park, Sung-In Choi, Jun Kim, and Jeong Chae. Real-time 3d registration
using gpu. Machine Vision and Applications, pages 1–14, 2010. 10.1007/s00138-010-
0282-z.

[11] Soon-Yong Park and Murali Subbarao. An accurate and fast point-to-plane registration
technique. Pattern Recogn. Lett., 24:2967–2976, December 2003.

[12] Andreas Nuchter, Kai Lingemann, and Joachim Hertzberg. Cached k-d tree search for icp
algorithms. In Proceedings of the Sixth International Conference on 3-D Digital Imaging
and Modeling, pages 419–426, Washington, DC, USA, 2007. IEEE Computer Society.

[13] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm. In Third
International Conference on 3D Digital Imaging and Modeling (3DIM), June 2001.

[14] Deyuan Qiu, Stefan May, and Andreas Nuchter. Gpu-accelerated nearest neighbor search
for 3d registration. In Proceedings of the 7th International Conference on Computer Vision
Systems: Computer Vision Systems, ICVS ’09, pages 194–203, Berlin, Heidelberg, 2009.
Springer-Verlag.

[15] Sunil Arya and David M. Mount. Algorithms for fast vector quantization. In Proc. of
DCC ’93: Data Compression Conference, pages 381–390. IEEE Press, 1993.

[16] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen, and Pat
Hanrahan. Photon mapping on programmable graphics hardware. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS, 2003.

GPGPU computation in mobile robot applications

25

[17] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor search using
gpu. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, pages 1–6, 2008.

[18] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a gpu raytracer. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, HWWS’05, pages 15–22, New York, NY, USA, 2005. ACM.

[19] Henrik Wann Jensen. Realistic image synthesis using photon mapping. A. K. Peters, Ltd.,
Natick, MA, USA, 2001.

[20] Deyuan Qiu, Stefan May, and Andreas Nuchter. Gpu-accelerated nearest neighbor search
for 3d registration. In Proceedings of the 7th International Conference on Computer Vision
Systems: Computer Vision Systems, ICVS ’09, pages 194–203, Berlin, Heidelberg, 2009.
Springer-Verlag.

[21] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms
(fpfh) for 3d registration. In Proceedings of the 2009 IEEE international conference on
Robotics and Automation, ICRA’09, pages 1848–1853, Piscataway, NJ, USA, 2009.
IEEE Press.

[22] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, and Michael Beetz. Persistent
Point Feature Histograms for 3D Point Clouds. In Proceedings of the 10th International
Conference on Intelligent Autonomous Systems (IAS-10), Baden-Baden, Germany, 2008.

[23] Helmut Pottmann, Stefan Leopoldseder, and Michael Hofer. Registration without icp.
Computer Vision and Image Understanding, 95:54–71, 2002.

[24] Jochen Sprickerhof, Andreas Nuchter, Kai Lingemann, and Joachim Hertzberg. An
explicit loop closing technique for 6d slam. In 4th European Conference on Mobile Robots
ECMR09, September 23-25, 2009, Mlini/Dubrovnik, Croatia, pages 229–234.

[25] P. J. Besl, H. D. Mckay, A method for registration of 3-d shapes, Pattern Analysis and
Machine Intelligence, IEEE Transactions on 14 (2) (1992) 239-256.
doi:10.1109/34.121791

[26] NVIDIA CUDA C Programming Guide 3.2. http://www.nvidia.com/cuda, 10 2010.
[27] CUDA C Best Practices Guide 3.2. http://www.nvidia.com/cuda, 8 2010.
[28] Mark Harris, Shubhabrata Sengupta, and John D. Owens. GPU Gems 3, Parallel Prefix

Sum (Scan) with CUDA, chapter 39, pages 851–876. Addison-Wesley, 2007.
[29] http://www.netlib.org/lapack (2011).

Janusz Bedkowski, PhD in Automation and Robotics, adjunct in Industrial
Research Institute for Automation and Measurements, Institute of
Automation and Robotics- Warsaw University of Technology, Institute of
Mathematical Machines, Warsaw, Poland. The scope of research: Mobile
Assistive Intelligence, inspection intervention robot systems, semantic
mapping, virtual training with AR techniques, GPU computing.

Andrzej Maslowski, full professor in Automation and Robotics Institute of
Automation and Robotics - Warsaw University of Technology, Institute of
Mathematical Machines Warsaw, Poland. The scope of research: Intelligent
mobile systems, multi robot systems for RISE applications, e-Training
systems for advanced mobile robotics. Member of IFIP, IFAC, IMACS,
IMEKO TC-17 Measurement and Control in Robotics. Since 2006
representation of Poland in Joint Coordinating Forum International
Advanced Robotics Programme.

Janusz Będkowski, et al.

26

