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Abstract: The paper concerns the results related with GPGPU computing applied for 
mobile robotics applications. The scalable implementation of the point to point and 
point to plane 3D data registration methods with an improvement based on regular grid 
decomposition is shown. 3D data is delivered by mobile robot equipped with 3D laser 
measurement system for INDOOR environments. Presented empirical analysis of the 
implementation shows the On-Line computation capability using modern graphic 
processor unit NVIDIA GF 580. In the paper the discussion concerning the comparison 
between these two methods is given. It will be shown why the point to plain ICP 
implementation can achieve better performance than the point to point approach. We 
show parallel vector computation that is used for semantic objects identifications and 
for loop closing detection.  
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robot. 

  
1. Introduction 
 Several researches of 3D mapping are based on the so called simulation of 3D laser range 
finder to obtain 3D cloud of points [1]. In most cases 3D laser simulator is built on the basis of 
a rotated 2D range finder. The rotation axis can be horizontal [2], vertical [3] or the rotational 
axis in the middle of the scanner’s field of view [4]. Another approach of obtaining 3D cloud 
of points using two orthogonal lasers is shown in [5]. The applications are related with urban 
mapping [6]. 
 Alignment and merging of two 3D scans, which are obtained from different sensor 
coordinates, with respect to a reference coordinate system is called 3D registration [7] [8] [9]. 
Park [10] proposed a real-time approach for 3D registration using GPU, where the registration 
technique is based on the Iterative Projection Point (IPP) algorithm. IPP technique is a 
combination of point-to-plane and point-to-projection registration schemes [11]. Processing 
time for this approach is about 60ms for aligning two 3D data sets of 76800 points during 30 
iterations of the IPP algorithm. Fast searching algorithms such as the k-d tree algorithm are 
usually used to improve the performance of the closest point search [12] [13]. GPU accelerated 
nearest neighbor search for 3D registration is proposed in [14], where the advantage of Arya’s 
priority search algorithm described in [15] to fit NNS in the SIMD (Single Instruction Multiple 
Data) model was used for GPU acceleration purpose. Purcell suggested that k-d tree and 
priority queue methods are efficient but difficult to be implemented on GPU [16]. Garcia 
proves, that a brute force NNS approach using NVidia Compute Unified Device Architecture 
(CUDA) is 400 times faster over the CPU k-d tree implementation [17]. GPU-based NNS with 
advanced search structures is also used in the context of ray tracing [18], where NNS procedure  
builds  trees  with   a  different   manner  from  a triangle  soup,  and takes these triangles as the  
objects  of  interest.  To  convert k-d tree into serialized flat array that can be easily loaded into  
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CUDA device, left-balanced k-d tree was proposed [19] [20]. Another technique for 3D 
registration using Fast Point Feature Histograms (FPFH) is shown in the work of Rusu [21]. 
Rusu also proposed a way of characterizing the local geometry of 3D points, using persistent 
feature histograms, where the relationships between the neighbors of a point are analyzed and 
the resulted values are stored in a 16-bin histogram [22]. The histograms are pose and point 
cloud density invariant and cope well with noisy datasets. An alternative concept to ICP 
algorithm which relies on instantaneous kinematics and on the geometry of the squared 
distance function of a surface is shown in [23]. The proposed algorithm exhibits faster 
convergence than ICP, which is supported both by results of a local convergence analysis and 
by experiments. The ICP algorithm is used in SLAM 6D (Simultaneous Localization and 
Mapping), where 6 DOF (Degree Of Freedom) of robot position is computed based on aliment 
of 3D clouds of points and loop-closing technique [24].  
 The Iterative Closest Point algorithm with its variations point to point and point to plane is 
a well known method since it appeared in [25]. It is already proven that the ICP algorithm 
needs a good prediction to achieve an accurate matching. The fastest implementation that can 
be found in literature needs 60 ms to align two point clouds, each of 320 x 240 data points  
[10], but the authors unfortunately did not report about scalability of proposed method. In this 
paper, we will discuss new implementations of ICP (point to point, point to plane) that are 
designed especially for high performance with an assumption of scalability for future GPGPU 
devices. At the current stage of the implementation, we can process two data sets of 210*210 
data points in parallel. The main goal was to decrease the bottlenecks, therefore they are 
limited to copying data from/to host (CPU) to/from device (GPU). All computation related to 
neighbor search and to calculating the correlation matrix is performed by the GPU. We will 
show why the point to plain ICP implementation can achieve better performance than the 
classic point to point approach. In the same time, we demonstrate the weaknesses of this 
method in contrast to the advantages reported in many articles.  
 The paper shows an improved implementation and empirical validation of GPGPU ICP 
point to point and point to plane algorithms and the practical applications for normal vector 
parallel computation. This algorithms offer online computation. The main difference compared 
to State of The Art approaches is NNS procedure, where 3D space was divided into regular 
grid of buckets, therefore there is no need to build complex data structures such as k-d tree, and 
the time of ICP is decreased. We are optimistic that proposed methods will be used in future 
real-task applications using for example FPGA or embedded computers with GPUs.  
 
2. Classic point to point iterative closest point algorithm 
 First classic ICP point to point algorithm will be described. Iterative Closest Points 
algorithm is aligning two-view range images with respect to the reference coordinate system. 
Range images are defined as a model set M and data set D, Nm and Nd  denotes the number of 
the elements in the respective set. The alignment of these two data sets is solved by 
minimization with respect to R,t of the following cost function: 
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wij is assigned 1 if the i-th point of M correspond to the j-th point in D. Otherwise wij=0. R is a 
rotation matrix, t is a translation matrix. mi and di corresponds to the i-th point from model set 
M and D respectively. Calculation of the rotation and translation (R,t) is performed using 
reduced equation 1: 
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Rotation R is decoupled from computation of translation t using the centroids cm and cd of 
points: 
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and modified data sets: 
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After applying equations 3-6 to the mean square error function E(R, t), the equation 1 takes the 
following form: 
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Assuming that: 
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Equation 1 takes following form: 
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To minimize 9 the algorithm has to minimize only term: 
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With an assumption:  
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 The optimal rotation is calculated by TVUR = , where matrices V  and U  are derived 

from the singular value decomposition of a correlation matrix TUSVC = given by: 
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where: 
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The optimal translation t is derived from equation 11 and 8, therefore 

 dm Rcct −= , (17) 
Listing 1 shows a classic ICP algorithm.  
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3. GPGPU based point to point iterative closest point algorithm 
The algorithm of point to point method using GPU is shown on listing 2. 

  
  
 The main idea of using the GPU is to decompose the 3D space into a regular grid of k*k*k 
buckets, where k = 2n, n=5,6,7,8. Because we are violating the assumption of full overlap, we 
are forced to add a maximum matching threshold dmax related to the dimension of single 
bucket. This threshold accounts for the fact that some points will not have any correspondence 
in the second scan. In most implementations of ICP, the choice of dmax represents a trade of 
between convergence and accuracy. A low value results in bad convergence, a large value 
causes incorrect correspondences to pull the final alignment away from the correct value. In 
our implementation the choice of dmax is done by a normalization point cloud, which has XYZ 
coordinates from the interval < 1; 1 >. We improved the state of the art algorithm described in 
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[12] by replacing the complex k-d tree data structure to improve the performance of the closest 
point search by performing all computation using only GPU, we obtained TRUE nearest 
neighbor search and after some approximation real-time ICP with minimal lost of accuracy. 
NVIDIA GPGPUs are fully programmable multi core chips built around an array of processors 
working in parallel. Details about the GPU architecture can be found in [26] and useful 
additional programming issues are published in [27]. The GPU is composed of an array of SM 
multiprocessors, where each of them can launch up to 1024 co-resident concurrent threads. It 
should be noticed that available graphics units are in the range from 1 SM up to 30 SMs in high 
end products. Each single SM contains 8 scalar processors (SP) each with 1024 32-bit registers, 
the total of 64KB of register space is available for each SM. Each SM is also equipped with a 
16KB on-chip memory that is characterized by low access latency and high bandwidth. It is 
important to realize that all thread management (creation, scheduling, synchronization) is 
performed in hardware (SM), and overhead is extremely low. The SM multiprocessors work in 
SIMT scheme (Single Instruction, Multiple Thread), where threads are executed in groups of 
32 called warps. The CUDA programming model defines the host and the device. The Host 
executes CPU sequential procedures, whereas the device executes parallel programs - kernels. 
A kernel works according to a SPMD scheme (Single Program, Multiple Data). CUDA gives 
an advantage of using massively parallel computation for several applications. 
 
4. Correlation matrix elements computation using optimized parallel reduction 
 For the computation of the correlation matrix, the parallel prefix sum [28] is used. The all-
refix-sums operations take a binary associate operator  with identity I, and an array of n 
elements  
  
 [a0; a1; … ; an-1]  (18)
   
and returns the array 
  
 [I; a0; (a0  a1) ; …;  (a0  a1  …  an-2)]  (19)
   
 All-prefix-sums operations on an array of data is commonly known as a scan. The parallel 
implementation uses multiple thread blocks for processing an array up to 1024*1024 data 
points stored in a one dimensional array. The strategy is to keep all multiprocessors on the 
GPU busy to increase the performance. An assumption is that each thread block reduces a 
portion of the array. To avoid problem of global synchronization the computation is 
decomposed into multi kernel invocations. An optimized kernel available in CUDA SDK 
[26][27] is used in parallel computation. 
 
5. Singular Value Decomposition (SVD) 
 The equation for the singular value decomposition of a 3 x 3 matrix A is the following: 
 
ܣ  ൌ ܷ∑்ܸ  (20) 
 
where U is an 3x3 matrix,  is an 3x3 diagonal matrix, and VT is also an 3x3 matrix. The 
columns of U are called the left singular vectors { uk }, and form an orthonormal basis. The 
rows of VT contain the elements of the right singular vectors {vk}. The elements of  are only 

nonzero on the diagonal, and are called the singular values, thus  = diag(Ԅ1;…; Ԅn). 
Furthermore, Ԅk > 0 for 1 ≤ k ≤ r, and Ԅi = 0 for (r+1) ≤ k ≤ n. 
 The ordering of the singular vectors is determined by high-to-low sorting of singular 
values, with the highest singular value in the upper left index of the  matrix. In this particular 
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application we need to compute the SVD of a 3x3 matrix. For such a small matrix, generalized 
SVD algorithms from libraries like LAPACK (Linear Algebra PACKage) [29] are not 
beneficial especially when we have to implement them on GPGPU. Our implementation 
computes the singular values by solving for the roots of a cubic polynomial and then 
eigenvectors of ATA for V , then it uses A and V to compute U. The algorithm is executed in 5 
steps. 
1. Compute AT and ATA. 
2. Determine the eigenvalues of ATA (by solving the roots of a cubic polynomial) and sort 
 these in descending order. Compute square roots to obtain singular values of A. 
3. Construct the diagonal matrix  by placing singular values in descending order along its 
 diagonal. Compute -1. 
4. Use the ordered eigenvalues from step 2 and compute the eigenvectors of ATA. Place these 
 eigenvectors along the columns of V and compute VT . 
5. Compute U = AV -1 
 
6. Point to plain ICP 
 The alignment of the M and D data sets for point to plane ICP is solved by minimization of 
the following cost function: 
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where mp

i corresponds to projected point from data set D onto the approximation plane of data 
set M. wij is assigned 1 if the ith point of M correspond to the jth  point in D. Otherwise wij=0. R 
is the rotation matrix, t is the translation matrix, dj corresponds to points from data set D. We 
also assume that the INDOOR dataset is locally planar. Since we are sampling from two 
different perspectives, we will not in general sample the exact same point. For this reason, in 
theory the point to plane method is more accurate than point to point (see Figures 1 and 2). 
Unfortunately in practical application there are many exceptions where this method is less 
accurate than classic point to point method. We observed that in some cases it is difficult to 
find automatically an accurate plane approximation and a correct point to plane correspondence 
(see Figure 3). Of course everything is determined by the need for high performance using 
GPU. Therefore, the implementation based on decomposition into a regular grid of buckets 
may be affected by this problem. The advantage of the point to plane method over point to 
point is the decreased time of computation, as there is no need to search best correspondence 
for each bucket. This is also related to the global synchronization of threads busy with 
executing the same kernel for each bucket. Instead of searching the best correspondence for 
each bucket, the point to plane method computes a projected point, and all kernels are executed 
in almost the same time. Therefore, the synchronization of threads does not affect global 
execution time. In the consequence point to plane method can be 3 times faster than point to 
point. However, we would like to emphasize the fact that the bottleneck related to the large 
amount of processed points affects the global performance of the method. 
 

 
Figure 1. An advantage point to plane over point to point method. 

 

Janusz Będkowski, et al.

20



 
 

Figure 2
correspo

persp

 

Fi

7. Using
 Loop 
important
displacem
should be
using the 
loop closi
to be take
robot that
INDOOR
on entrop
showing s
(RGB) w
image fro
are visual
walls will
B for ea
following

 

(Ad PE

where: 

 AdP - 

. Comparison b
ond points are c
ectives, we wi
eliminates this

igure 3. An exa
corresp

g parallel vecto
closing occur

t to realize tha
ment between l
e minimized to

strategy of ro
ing method is 
en into the con
t it visited twi

R environment 
py. This meth
satisfying resu

where different 
om 3D laser sca
lized as colors 
l have the same

ach semantic o
g equation: 

)
B

B

A

Cd
dP

∈
∑ −=

region of pixel

between point 
connected via l
ll not in genera
s problem (the 

ample of disad
pondence betw

or computatio
rs when robot
at the robot is 
loop closing ro
o increase the 
obot motion, es
guarantying he

nsideration. Fo
ice with the sim
we propose ne

hod is faster 
ults. For our pu

colors corres
an normal vect
(R, G, B). As

e color. To find
object from im

A

Ad
B

d

Pd P

P

P ∈
log

ls in image A o

to point and po
line segments. 
al sample the e
interesting reg

 
 

dvantage of poi
een point and l

 
on for loop clo
t is visiting th

not able to p
obot positions 
efficiency of t
specially when
eading and dis

or this reason w
milar region o
ew method ba
than classic a

urpose the sema
pond to differ
tors for each po
s a result we ex
d entropy betw
mage A follow

A

Ad
B

d

Pd

P

P ∈
 

of category d,

oint to plane m
When we are s

exact same poin
gions are marke

nt to plane met
local plane app

osing detection
he same place

perform exactly
occurs. In ou

the loop closin
n it traverses n
splacement inv
we define loop
of observation. 
sed on semant
approach and 
antic image is 
rent semantic 
oint are compu
xpect that poin

ween semantic 
wing entropy 

methods. In the 
sampling from
nt. Point to pla
ed as green circ

thod related to
proximation. 

n 
e a second tim
y the same pa
ur opinion, this
ng method. Thi
narrow paths. E
variance, the co
p closing as a l

To improve l
tic images com
performed ex
represented as
objects. To ob

uted. Normal v
nts belong to fl
image A and s
has to be co

central image 
m two different 
ane method 
cles). 

 
o wrong 

me. It is very
ath, therefore a
s displacement
is can be done
Even when the
ompromise has
location of the
loop closing in
mparison based
xperiments are
s a color image
btain semantic

vectors (X,Y,Z)
loor, ceiling or
semantic image
omputed using

(22)

y 
a 
t 
e 
e 
s 
e 
n 
d 
e 
e 
c 
) 
r 
e 
g 

GPGPU computation in mobile robot applications

21



 
 

 d - category/label, 

 BC -set of categories in image B, 

 Ad
B PdP ∈ - amount of pixels in image B of category dB from region of category dA  

  in image A, 

 
AdP - amount of pixels in region of category dA in image A. 

 
Final entropy is given by following equation: 
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where: 
 

AP -all pixels of image A, 
d -category/label, 

AC -set of categories in image A, 

AdP -amount of pixels of category Ad , 

AP - amount of pixels in image A, 
( )AA dd PE  - entropy computed using equation 22. 

   

 
Figure 4. Loop closing with semantic images comparison based on entropy. Corresponding 

semantic images are connected via black arrows. Corresponding robot position are marked by 
red lines. Loop closing was found between robot observation 11 and 180, what is related with 
the minimum value of ICP error and maximum amount of corresponding points between 3D 

scans. Positive examples are shown on the left, negative example are shown on the right. 
  
 The entropy of the same image equals 0, therefore to find corresponding semantic images 
first we should minimize entropy. To demonstrate an approach figure 4 shows the loop closing 
procedure performed for data set shown on figure 7. The minimization of entropies is very fast 
(100ms per matching) but it does not guarantee loop closing, therefore further computation is 
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 To conclude the discussion concerning the Iterative Closest Point method used for 
odometry correction, we show a result of an additional experiment on figure 7. The idea was to 
collect 3D data sets by the same robot (PIONEER 3AT equipped with 3DLSN unit and 
gyroscope odometry correction) two times in the same environment using different types of 
wheels (PIONEER 3AT indoor wheels and PIONEER 3AT outdoor wheels). The wheels have 
different radius, size and friction. The result is a longer odometry path for the indoor wheels 
(figure 7 C). We observed two important aspects of the applied ICP point to point method. 
First, the odometry error was decreased satisfactory in both cases. Second, there are some 
situations where the ICP accuracy can be decreased drastically, especially during rotations. 
Therefore, a proper strategy of data acquisition during robot motion has to be applied to avoid 
occlusions in the scan. 
 

 
Figure 6. Comparison of ICP variants results. From left – indoor environment (Warsaw 

University of Technology, Faculty of Mechatronics), ICP point to point 10 iterations, ICP point 
to point 100 iterations, ICP point to plane 50 iterations. 

 

 
Figure 7. Comparison of ICP point to point (30 iterations) 10dometry correction for robot 

PIONEER 3AT equipped with 3DLSN unit and two different types of wheels (AB-
OUTDOOR, CD-indoor). A-odometry path using OUTDOOR wheels, B-ICP result for A, C-
odometry path using indoor wheels, D-ICP result for C. Experiment was performed in MECA 

laboratory in Royal Military Academy, Brussels, Belgium. 
 

Conclusion 
 Compared to a state of the art method [10] where 60ms are needed to align two data sets of 
320 x 240 data points, our implementation can process 361*498 data sets in 130ms for 30 
iterations. Our main contribution was to propose a scalable method with an assumption of 
satisfying performance. Based on our best knowledge it will be very difficult to improve the 
performance while increasing amount of processed points because of the bottlenecks. For 
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practical application it is very beneficial to process 210 * 210 points because we can align not 
only iteratively neighboring scans, but also building meta models containing more scans. It will 
improve the accuracy of the method and it can be done with the newest GPUs with the FERMI 
architecture. We demonstrated the problem of point to plane method’s accuracy and compared 
with ICP point to point method based on various data sets. We have shown the applications of 
the loop closing and the vegetation detection based on normal vector computation. Future work 
will be related with GPGPU based ICP integration in 6DSLAM algorithm for robot 
localization and map building purpose. 
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