=8 International Journal on Electrical Engineering and Informatics - Volume 4, Number 1, March 2012

GPGPU computation in mobile robot applications
Janusz Bedkowski', Andrzej Mastowski*?

"Institute of Automation and Robotics, Warsaw University of Technology
ul. Sw. A. Boboli 8, 02-525, Warsaw, Poland **Institute of Mathematical Machines
ul. Ludwika Krzywickiego 34, Warsaw, Poland
'januszbedkowski@gmail.com
%a.maslowski@mchtr.pw.edu.pl
3 RS
a.maslowski@imm.org.pl

Abstract: The paper concerns the results related with GPGPU computing applied for
mobile robotics applications. The scalable implementation of the point to point and
point to plane 3D data registration methods with an improvement based on regular grid
decomposition is shown. 3D data is delivered by mobile robot equipped with 3D laser
measurement system for INDOOR environments. Presented empirical analysis of the
implementation shows the On-Line computation capability using modern graphic
processor unit NVIDIA GF 580. In the paper the discussion concerning the comparison
between these two methods is given. It will be shown why the point to plain ICP
implementation can achieve better performance than the point to point approach. We
show parallel vector computation that is used for semantic objects identifications and
for loop closing detection.

Keywords: Data registration, parallel computing, point to point, point to plane, mobile
robot.

1. Introduction

Several researches of 3D mapping are based on the so called simulation of 3D laser range
finder to obtain 3D cloud of points [1]. In most cases 3D laser simulator is built on the basis of
a rotated 2D range finder. The rotation axis can be horizontal [2], vertical [3] or the rotational
axis in the middle of the scanner’s field of view [4]. Another approach of obtaining 3D cloud
of points using two orthogonal lasers is shown in [5]. The applications are related with urban
mapping [6].

Alignment and merging of two 3D scans, which are obtained from different sensor
coordinates, with respect to a reference coordinate system is called 3D registration [7] [8] [9].
Park [10] proposed a real-time approach for 3D registration using GPU, where the registration
technique is based on the Iterative Projection Point (IPP) algorithm. IPP technique is a
combination of point-to-plane and point-to-projection registration schemes [11]. Processing
time for this approach is about 60ms for aligning two 3D data sets of 76800 points during 30
iterations of the IPP algorithm. Fast searching algorithms such as the k-d tree algorithm are
usually used to improve the performance of the closest point search [12] [13]. GPU accelerated
nearest neighbor search for 3D registration is proposed in [14], where the advantage of Arya’s
priority search algorithm described in [15] to fit NNS in the SIMD (Single Instruction Multiple
Data) model was used for GPU acceleration purpose. Purcell suggested that k-d tree and
priority queue methods are efficient but difficult to be implemented on GPU [16]. Garcia
proves, that a brute force NNS approach using NVidia Compute Unified Device Architecture
(CUDA) is 400 times faster over the CPU k-d tree implementation [17]. GPU-based NNS with
advanced search structures is also used in the context of ray tracing [18], where NNS procedure
builds trees with a different manner from a triangle soup, and takes these triangles as the
objects of interest. To convert k-d tree into serialized flat array that can be easily loaded into

Received: December 14 2011. Accepted: January 9™ 2012

Janusz Bedkowski, et al.

CUDA device, left-balanced k-d tree was proposed [19] [20]. Another technique for 3D
registration using Fast Point Feature Histograms (FPFH) is shown in the work of Rusu [21].
Rusu also proposed a way of characterizing the local geometry of 3D points, using persistent
feature histograms, where the relationships between the neighbors of a point are analyzed and
the resulted values are stored in a 16-bin histogram [22]. The histograms are pose and point
cloud density invariant and cope well with noisy datasets. An alternative concept to ICP
algorithm which relies on instantancous kinematics and on the geometry of the squared
distance function of a surface is shown in [23]. The proposed algorithm exhibits faster
convergence than ICP, which is supported both by results of a local convergence analysis and
by experiments. The ICP algorithm is used in SLAM 6D (Simultaneous Localization and
Mapping), where 6 DOF (Degree Of Freedom) of robot position is computed based on aliment
of 3D clouds of points and loop-closing technique [24].

The Iterative Closest Point algorithm with its variations point to point and point to plane is
a well known method since it appeared in [25]. It is already proven that the ICP algorithm
needs a good prediction to achieve an accurate matching. The fastest implementation that can
be found in literature needs 60 ms to align two point clouds, each of 320 x 240 data points
[10], but the authors unfortunately did not report about scalability of proposed method. In this
paper, we will discuss new implementations of ICP (point to point, point to plane) that are
designed especially for high performance with an assumption of scalability for future GPGPU
devices. At the current stage of the implementation, we can process two data sets of 2'%%2'
data points in parallel. The main goal was to decrease the bottlenecks, therefore they are
limited to copying data from/to host (CPU) to/from device (GPU). All computation related to
neighbor search and to calculating the correlation matrix is performed by the GPU. We will
show why the point to plain ICP implementation can achieve better performance than the
classic point to point approach. In the same time, we demonstrate the weaknesses of this
method in contrast to the advantages reported in many articles.

The paper shows an improved implementation and empirical validation of GPGPU ICP
point to point and point to plane algorithms and the practical applications for normal vector
parallel computation. This algorithms offer online computation. The main difference compared
to State of The Art approaches is NNS procedure, where 3D space was divided into regular
grid of buckets, therefore there is no need to build complex data structures such as k-d tree, and
the time of ICP is decreased. We are optimistic that proposed methods will be used in future
real-task applications using for example FPGA or embedded computers with GPUs.

2. Classic point to point iterative closest point algorithm
First classic ICP point to point algorithm will be described. Iterative Closest Points
algorithm is aligning two-view range images with respect to the reference coordinate system.
Range images are defined as a model set M and data set D, N, and Ny denotes the number of
the elements in the respective set. The alignment of these two data sets is solved by
minimization with respect to R,t of the following cost function:
Nm N 2
E-(Rt)= 3 ”“ml RdJ +t]‘)
i=1 j= 1
wi; is assigned 1 if the i-th point of M correspond to the j-th point in D. Otherwise w;=0. R is a
rotation matrix, t is a translation matrix. m; and d; corresponds to the i-th point from model set
M and D respectively. Calculation of the rotation and translation (R,t) is performed using
reduced equation 1:

Ny Ng
where N = ZZW“- , 3)

i=1 j=1

E(R.1) oc—2||m (Rd; +t),)

Janusz Bedkowski, et al.

Algorithm 1 Classic ICP
INPUT: Two point clonds A = {a;}, B= {b;}, an initial transformation 7j
OUTPUT: The correct transformation T, which aliens A and B
T« T,
for iter «+ 0 to maxiterations do
for i «+ 0 to N do
m; + FindClosestPointInA(T - b;)
if |lm; =T - b;|| € dyar then
w; +—1
else
w; <0
end if
end for
1+ argmin {Z; w; |
T

end for

1 b — m,-||2}

3. GPGPU based point to point iterative closest point algorithm
The algorithm of point to point method using GPU is shown on listing 2.
Algorithm 2 [CP - parallel computing approach
INPUT: Two point clouds M = {m;}, D = {d;}. an initial transformation
Ty
OUTPUT: The correct transformation 1. which aligns M and D
Myvice +— M
D,f, vice D
Tieviee < To
for iter « 0 to maxlterations do
for i + 0 to N {in parallel} do
m; + FindClosestPointInN (T, 0 - ;) {llr-iill;_',' regular erid decompo-
sition}
if foundClosest PointInNeighboring Buckets then
w; — 1
else
w; 0
end if
end for
Tihevice 4+ argmin {Z, wi || T+ d; — m,-||2} {calculation T+R.t with
v

SVD} -
end for
M — Miovie
D « Devie
T — Tyevies

The main idea of using the GPU is to decompose the 3D space into a regular grid of k¥k*k
buckets, where k = 2", n=5,6,7,8. Because we are violating the assumption of full overlap, we
are forced to add a maximum matching threshold d,., related to the dimension of single
bucket. This threshold accounts for the fact that some points will not have any correspondence
in the second scan. In most implementations of ICP, the choice of d.x represents a trade of
between convergence and accuracy. A low value results in bad convergence, a large value
causes incorrect correspondences to pull the final alignment away from the correct value. In
our implementation the choice of d,,, is done by a normalization point cloud, which has XYZ
coordinates from the interval < 1; 1 >. We improved the state of the art algorithm described in

Janusz Bedkowski, et al.

application we need to compute the SVD of a 3x3 matrix. For such a small matrix, generalized
SVD algorithms from libraries like LAPACK (Linear Algebra PACKage) [29] are not
beneficial especially when we have to implement them on GPGPU. Our implementation
computes the singular values by solving for the roots of a cubic polynomial and then
eigenvectors of ATA for V , then it uses A and V to compute U. The algorithm is executed in 5
steps.

1. Compute A" and ATA.

2. Determine the eigenvalues of ATA (by solving the roots of a cubic polynomial) and sort

these in descending order. Compute square roots to obtain singular values of A.

3. Construct the diagonal matrix). by placing singular values in descending order along its

diagonal. Compute Z".

4. Use the ordered eigenvalues from step 2 and compute the eigenvectors of A"A. Place these
eigenvectors along the columns of V and compute V" .
5. Compute U= AVy"

6. Pointto plain ICP
The alignment of the M and D data sets for point to plane ICP is solved by minimization of
the following cost function:
NP

m Ng 2
E=Rt)=> wymPi-(Ra;+t]
i=1 j=1 1)

where m”; corresponds to projected point from data set D onto the approximation plane of data
set M. wj; is assigned 1 if the iy, point of M correspond to the ji, point in D. Otherwise w;=0. R
is the rotation matrix, t is the translation matrix, d; corresponds to points from data set D. We
also assume that the INDOOR dataset is locally planar. Since we are sampling from two
different perspectives, we will not in general sample the exact same point. For this reason, in
theory the point to plane method is more accurate than point to point (see Figures 1 and 2).
Unfortunately in practical application there are many exceptions where this method is less
accurate than classic point to point method. We observed that in some cases it is difficult to
find automatically an accurate plane approximation and a correct point to plane correspondence
(see Figure 3). Of course everything is determined by the need for high performance using
GPU. Therefore, the implementation based on decomposition into a regular grid of buckets
may be affected by this problem. The advantage of the point to plane method over point to
point is the decreased time of computation, as there is no need to search best correspondence
for each bucket. This is also related to the global synchronization of threads busy with
executing the same kernel for each bucket. Instead of searching the best correspondence for
each bucket, the point to plane method computes a projected point, and all kernels are executed
in almost the same time. Therefore, the synchronization of threads does not affect global
execution time. In the consequence point to plane method can be 3 times faster than point to
point. However, we would like to emphasize the fact that the bottleneck related to the large
amount of processed points affects the global performance of the method.

nt to point ICP

points to align

i : point to p
* . . = " .
. . .t 5 = g
* p . * -
reference points 7%‘.2‘&’\

Figure 1. An advantage point to plane over point to point method.

Janusz Bedkowski, et al.

d - category/label,
Cg -set of categories in image B,

P - amount of pixels in image B of category d® from region of category d*

dBe%A

in image A,

Fur

;+| - amount of pixels in region of category d* in image A.

Final entropy is given by following equation:

EP)= Y |dA (P,) (23)

dAEC

where:

P, -all pixels of image A,
d -category/label,
C 5 -set of categories in image A,

Fus

|PA| - amount of pixels in image A,

-amount of pixels of category 0 A ,

E A (P ; A) - entropy computed using equation 22.

d

4 s
g [

¥

Figure 4. Loop closing with semantlc images comparison based on entropy Corresponding
semantic images are connected via black arrows. Corresponding robot position are marked by
red lines. Loop closing was found between robot observation 11 and 180, what is related with

the minimum value of ICP error and maximum amount of corresponding points between 3D

scans. Positive examples are shown on the left, negative example are shown on the right.

The entropy of the same image equals 0, therefore to find corresponding semantic images
first we should minimize entropy. To demonstrate an approach figure 4 shows the loop closing
procedure performed for data set shown on figure 7. The minimization of entropies is very fast
(100ms per matching) but it does not guarantee loop closing, therefore further computation is

Janusz Bedkowski, et al.

To conclude the discussion concerning the Iterative Closest Point method used for
odometry correction, we show a result of an additional experiment on figure 7. The idea was to
collect 3D data sets by the same robot (PIONEER 3AT equipped with 3DLSN unit and
gyroscope odometry correction) two times in the same environment using different types of
wheels (PIONEER 3AT indoor wheels and PIONEER 3AT outdoor wheels). The wheels have
different radius, size and friction. The result is a longer odometry path for the indoor wheels
(figure 7 C). We observed two important aspects of the applied ICP point to point method.
First, the odometry error was decreased satisfactory in both cases. Second, there are some
situations where the ICP accuracy can be decreased drastically, especially during rotations.
Therefore, a proper strategy of data acquisition during robot motion has to be applied to avoid

occlusions in the scan.

robot position 142 robotposition 142 METRY

ODONETRY ODOMETRY

robot position 142

point to plane ICP

classic ICP (10 iterations) classic ICP (100 iterations) {50 terations)

robot position 0 robot position 0 robot pasition 0

Figure 6. Comparison of ICP variants results. From left — indoor environment (Warsaw
University of Technology, Faculty of Mechatronics), ICP point to point 10 iterations, ICP point
to point 100 iterations, ICP point to plane 50 iterations.

{
J !
/if f 7
i

I
§ kzu / J’ 5

10m 10m
10m 4 10m | 10m “lm

Figure 7. Comparison of ICP point to point (30 iterations) 10dometry correction for robot
PIONEER 3AT equipped with 3DLSN unit and two different types of wheels (AB-
OUTDOOR, CD-indoor). A-odometry path using OUTDOOR wheels, B-ICP result for A, C-
odometry path using indoor wheels, D-ICP result for C. Experiment was performed in MECA
laboratory in Royal Military Academy, Brussels, Belgium.

Conclusion
Compared to a state of the art method [10] where 60ms are needed to align two data sets of

320 x 240 data points, our implementation can process 361*498 data sets in 130ms for 30
iterations. Our main contribution was to propose a scalable method with an assumption of
satisfying performance. Based on our best knowledge it will be very difficult to improve the
performance while increasing amount of processed points because of the bottlenecks. For

Janusz Bedkowski, et al.

[17] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor search using
gpu. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, pages 1-6, 2008.

[18] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a gpu raytracer. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, HWWS’05, pages 15-22, New York, NY, USA, 2005. ACM.

[19] Henrik Wann Jensen. Realistic image synthesis using photon mapping. A. K. Peters, Ltd.,
Natick, MA, USA, 2001.

[20] Deyuan Qiu, Stefan May, and Andreas Nuchter. Gpu-accelerated nearest neighbor search
for 3d registration. In Proceedings of the 7™ International Conference on Computer Vision
Systems: Computer Vision Systems, ICVS *09, pages 194-203, Berlin, Heidelberg, 2009.
Springer-Verlag.

[21] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms
(fpth) for 3d registration. In Proceedings of the 2009 IEEE international conference on
Robotics and Automation, ICRA’09, pages 1848—1853, Piscataway, NJ, USA, 2009.
IEEE Press.

[22] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, and Michael Beetz. Persistent
Point Feature Histograms for 3D Point Clouds. In Proceedings of the 10th International
Conference on Intelligent Autonomous Systems (IAS-10), Baden-Baden, Germany, 2008.

[23] Helmut Pottmann, Stefan Leopoldseder, and Michael Hofer. Registration without icp.
Computer Vision and Image Understanding, 95:54-71, 2002.

[24] Jochen Sprickerhof, Andreas Nuchter, Kai Lingemann, and Joachim Hertzberg. An
explicit loop closing technique for 6d slam. In 4™ European Conference on Mobile Robots
ECMRO09, September 23-25, 2009, Mlini/Dubrovnik, Croatia, pages 229-234.

[25] P. J. Besl, H. D. Mckay, A method for registration of 3-d shapes, Pattern Analysis and
Machine Intelligence, IEEE Transactions on 14 (2) (1992) 239-256.
doi:10.1109/34.121791

[26] NVIDIA CUDA C Programming Guide 3.2. http://www.nvidia.com/cuda, 10 2010.

[27] CUDA C Best Practices Guide 3.2. http://www.nvidia.com/cuda, 8 2010.

[28] Mark Harris, Shubhabrata Sengupta, and John D. Owens. GPU Gems 3, Parallel Prefix
Sum (Scan) with CUDA, chapter 39, pages 851-876. Addison-Wesley, 2007.

[29] http://www.netlib.org/lapack (2011).

Janusz Bedkowski, PhD in Automation and Robotics, adjunct in Industrial
Research Institute for Automation and Measurements, Institute of
Automation and Robotics- Warsaw University of Technology, Institute of
Mathematical Machines, Warsaw, Poland. The scope of research: Mobile
Assistive Intelligence, inspection intervention robot systems, semantic
mapping, virtual training with AR techniques, GPU computing.

Andrzej Maslowski, full professor in Automation and Robotics Institute of
Automation and Robotics - Warsaw University of Technology, Institute of
Mathematical Machines Warsaw, Poland. The scope of research: Intelligent
mobile systems, multi robot systems for RISE applications, e-Training
systems for advanced mobile robotics. Member of IFIP, IFAC, IMACS,
IMEKO TC-17 Measurement and Control in Robotics. Since 2006
representation of Poland in Joint Coordinating Forum International
Advanced Robotics Programme.

