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Abstract: Due to operating at low voltage and high current level, the power loss caused by the 
distribution network (DN) is usually higher than that of other parts of the power system. Thus, 
power loss reduction is one of the important mission in operation the DN. This paper presents a 
method of simultaneous execution of network reconfiguration (REC) and distributed generation 
placement (DGP) based on a new swarm intelligent (SI) namely wild geese algorithm (WGA) to 
reduce power loss considering the improvement of voltage and current profiles as well as satisfy 
the constraints including radial topology, distributed generation capacity limit and power 
balance. The efficiency of the proposed WGA is evaluated on the 33-node and 69-node systems 
at two cases of REC and REC-DGP. The performance of WGA is contrasted with two SI-based 
methods including well-known particle swarm optimization (PSO) and recent developed 
pathfinder algorithm (PFA). The obtained results demonstrate that REC and REC-DGP are 
effective solutions to reduce power loss and improve voltage and current profiles of the DN, 
wherein REC-DGP achieves higher efficiency than REC. Furthermore, the statistical results 
show that WGA outperforms PSO and PFA for both problems in indexes of worst, average, 
standard deviation values of the fitness function and the computation time. The contrasted results 
with the previous performed methods also point that WGA can reach the better results than other 
ones for the REC and REC-DGP problems. Thus, WGA can be a potential method for the REC-
DGP problem. 
 
Keywords: Wild geese algorithm; reconfiguration; distributed generation; power loss; 
distribution network. 
 
1.  Introduction 
A. Motivations 

Low voltage level and high power loss in the distribution network (DN) are the factors that make 
to increase the operating costs of the DN and the power system [1]. Therefore, finding approaches 
to reduce power loss on the DN has attracted much attention of researchers. One of the effective 
approaches to reduce power loss is to adjust the existing DN structure by changing the state of some 
switches on the DN. This process is called reconfiguration (REC). Although it is inexpensive to 
implement the REC technique on practical DNs, it is a complex discrete problem, wherein the 
number of possible structures may reach to 2 exponent 𝑛𝑛 for a DN with 𝑛𝑛 switches. In addition to 
the REC technique, distributed generation placement (DGP) is also an effective solution for loss 
reduction on the DN. distributed generation (DG) is small power sources installed at the DN [2], [3]. 
In recent years, the presence of DGs on the DN has being increased due to the strong development 
of renewable energy sources as well as the great technical and economic benefits. However, the 
presence of DGs on the DN also increases the complexity of operating the DN. Their improper 
installation location and capacity can negatively affect to the DN's performance. Therefore, selection 
of the optimal parameters of DGs such as location and installation capacity is also a problem that 
needs attention. In addition, these parameters certainly influence the REC process. Therefore, the 
problem of combining REC and DGP (REC-DGP) needs to be carried out to promote the 
performance of the DNs. However, due to the discrete and continuous variable combination and the 
high search space, the REC-DGP problem becomes more complex that requires efficient solving 
methods. 
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B. Background and related works 
In recent years, many works have carried out the REC-DGP problem for technical and economic 

goals by different methods. In [4], thief and police algorithm (TPA) is presented for the REC-DGP 
problem considering to capacitor placement for power loss, operational costs and voltage stability. 
One of strong points of this work is that the TPA performance has been compared with the popular 
methods such as particle swarm optimization (PSO) and genetic algorithm (GA). However, the final 
results and convergence characteristics are only presented, statistical results between methods have 
not been analyzed to show advantages of the proposed TPA over the compared methods. In [5], 
moth-flame optimization (MFO) is presented for the REC-DGP problem for power loss, voltage 
profile and stability of the DN. However, the obtained results of MFO is only compared with the 
other previous methods, the statistical results of MFO has not also displayed to show the stability of 
the proposed method. In [6], tabu search algorithm (TSA) is successful presented to the REC-DGP 
problem for loss and switching cost reduction. In this work, TSA has shown the better performance 
over PSO in terms of convergence and optimal result. In [7], the REC-DGP problem for power loss 
reduction and voltage improvement is solved by salp swarm algorithm (SSA). However, the final 
results of SSA is only compared with the previous methods in literature, the statistical results of SSA 
has not discussed for demonstrating the SSA’s stability. In addition to using methods based on 
original metaheuristic algorithms as aforementioned approaches, there are also some works using 
methods based on the modified or improved algorithms for the REC-DGP problems. In [8], improved 
equilibrium optimization (IEO) is proposed for the REC-DGP problem to decrease power loss and 
increase the DN’s voltage. In this work, based on the statistical result comparison, IEO outperforms 
EO for the REC-DGP problem. In [9], enhanced sine-cosine algorithm (ESCA) is successful applied 
for the REC-DGP problem for the power loss reduction and other technical and economic goals. In 
this work, the authors have shown the higher performance of ESCA over the original SCA and other 
methods in literature. In [1], modified whale optimization algorithm (MWOA) is successful 
proposed for the REC-DGP problem for the power loss reduction and voltage stability improvement. 
However, the effectiveness of MWOA is only compared with some pervious methods in literature, 
the statistical results of MWOA has not been presented and the MWOA has not also compared with 
the original WOA version. In addition to the methods mentioned above, there are also some methods 
that have been successfully used for the REC-DGP problem such as butterfly optimizer [10], 
gravitational search algorithm [11], water cycle algorithm [12], three-dimensional group search 
algorithm (3DGSO) [13], fireworks algorithm [14], sine-cosine algorithm [15], combination of grey 
wolf optimizer and PSO (GWO-PSO) [16]. It can be shown that the REC-DGP problem is mainly 
solved by metaheuristic methods. The applied methods have also proven their effectiveness for this 
problem. However, the stability and reliability of many methods for the REC-DGP problem through 
the statistical results have not been analyzed clearly confirmed. This situation may lead to a difficult 
method choice for the REC-DGP problem. Moreover, the reality has shown no universal algorithm 
reaching the high efficiency for all problems [17]. Therefore, the applying and testing of new 
methods for the REC-DGP problem should continue to be implemented in order to supplement 
effective methods for the REC-DGP problem. 

 
C. Contributions 

Wild geese algorithm (WGA) is a swarm intelligent (SI)-based metaheuristic algorithm that is 
inspired from the behavior of wild geese consisting of  coordination in migration process, 
reproduction and mortality [18]. In [18], WGA has successful applied for determining the optimal 
value of many high-dimension test functions. However, the efficiency of WGA for the problems in 
engineering fields as the REC-DGP problem is still a master of concern. Thus, in this paper, WGA 
is proposed for the REC-DGP problem to minimize the power loss considering the improvement of 
voltage and current profiles and satisfy the constraints such as radial topology, DG capacity limit 
and power balance of the DN. The novelty of this work is that the recent developed WGA algorithm 
is adapted for the REC-DGP and REC problems. The performance of WGA for the REC-DGP and 
REC problems is compared with two other SI-based metaheuristic methods including PSO and 
pathfinder algorithm (PFA) in terms of final and statistical results for two test systems consisting the 
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33-node and 69-node systems. All of three methods consisting of WGA, PSO and PFA belong to the 
swarm intelligent category that is inspired from the social behavior of animal groups. While PSO is 
a well-known algorithm that uses the personal best position and the global best position of the whole 
population to generate new population [19], PFA is also a recent developed algorithm that uses the 
information of neighbor individual and the pathfinder of the swarm to produce new population [20]. 
In addition, both of the algorithms have been successful proposed for the problems in the field of 
power system such as DG placement [21], reconfiguration [22] and reactive power dispatch [23], 
[24]. Moreover, the final results of WGA are also contrasted with those of other techniques in 
literature such as MWOA [1], SSA [7], IEO [8] and ESCA [9].  

The contributions of this work are summarized as follows: 
1) Propose the REC-DGP method based on WGA for power loss reduction considering the 

improvement of voltage and current profiles as well as satisfy the constraints including radial 
topology, distributed generation capacity limit and power balance. 

2) Consider the effectiveness of REC and REC-DGP solutions in reducing power loss and 
improving voltage and current of the DNs consisting of the 33-node and 69-node systems. 

3) Evaluate the efficiency and reliability of the proposed WGA method by comparing with two 
other SI-based metaheuristic methods of PSO and PFA for the REC and REC-DGP problems as well 
as the previous methods. 

 
D. Paper organization  

The rest paper is organized as follows: Section 2 discusses the REC-DGP problem for power loss 
reduction. The overview of WGA and its application to the REC-DGP problem that is called the 
REC-DGP problem for power loss reduction is given in Section 3. Section 4 presents the calculated 
results and discussions of the REC and REC-DGP problems, called numerical results. The 
conclusion is provided in Section 5 that summaries the whole contents and main findings of this 
paper. 
 
2. The REC-DGP problem for power loss reduction 

Due to operating at the low voltage level, power loss of DN often takes a high part in total power 
loss of the power system. Thus, power loss reduction is an important mission in operation of the DN. 
The objective function of the REC-DGP is defined as follows: 
 ∑∆P (X) = ∑ ∆P𝑖𝑖

𝑛𝑛𝑏𝑏𝑏𝑏
𝑖𝑖=1    (1) 

Where, ∑∆P (X) is power loss of the DN that is caused by the solution 𝑋𝑋 of the REC-DGP 
problem. ∆P𝑖𝑖 is the 𝑖𝑖th branch’s power loss. 𝑛𝑛𝑏𝑏𝑏𝑏 is the number of branches of the DN. 

The solution of the REC-DGP problem has to satisfy the following constraints: 
The power limit of DGs: The DG capacity has to is in the permitted limits as follows: 

 𝑃𝑃𝐷𝐷𝐷𝐷 ,𝑘𝑘 ≤ 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑘𝑘  ; 𝑘𝑘 = 1,2, … ,𝑛𝑛𝑑𝑑𝑑𝑑   (2) 
Where, 𝑃𝑃𝐷𝐷𝐷𝐷,𝑘𝑘 and 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑘𝑘 are power and rated power of the DG 𝑘𝑘. 
The radial topology: each node has to be served from only it upfront node. This constraint is 

ensured by the following equation [25], [26]: 
 |𝑑𝑑𝑑𝑑𝑑𝑑 (𝑌𝑌)| = 1 (3) 

Where, 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑌𝑌) is determination of matrix Y. Y is a (𝑛𝑛𝑏𝑏𝑏𝑏 × 𝑛𝑛𝑏𝑏𝑏𝑏) matrix that presents the 
connection configuration of the DN for the solution 𝑋𝑋. 𝑌𝑌(𝑖𝑖, 𝑗𝑗) is set to 0 if there is not any connection 
between branch 𝑖𝑖 and node 𝑗𝑗. 𝑌𝑌(𝑖𝑖, 𝑗𝑗) is set to -1 or 1 if branch 𝑖𝑖 is linked to or from node 𝑗𝑗. 

Power balance:  

 �
𝑃𝑃𝑠𝑠 + ∑ 𝑃𝑃𝐷𝐷𝐷𝐷,𝑘𝑘

𝑛𝑛𝑑𝑑𝑑𝑑
𝑘𝑘=1 = 𝑃𝑃𝐿𝐿 + ∑∆P

𝑄𝑄𝑠𝑠 + ∑ 𝑄𝑄𝐷𝐷𝐷𝐷 ,𝑘𝑘
𝑛𝑛𝑑𝑑𝑑𝑑
𝑘𝑘=1 = 𝑄𝑄𝐿𝐿 + ∑∆Q

 (4) 

Where, 𝑃𝑃𝑠𝑠 + j𝑄𝑄𝑠𝑠 is power of supplied by the slack bus. 𝑃𝑃𝐷𝐷𝐷𝐷,𝑘𝑘 + 𝑗𝑗𝑄𝑄𝐷𝐷𝐷𝐷,𝑘𝑘 is power of the DG 𝑘𝑘. 𝑃𝑃𝐿𝐿 +
𝑗𝑗𝑄𝑄𝐿𝐿  is load demand. ∑∆P + j∑∆Q is the power loss of the DN. 

Voltage and current limits: The voltage and current should be in the permitted ranges. 
 𝑉𝑉𝐿𝐿𝐿𝐿 ≤ 𝑉𝑉𝑗𝑗 ≤ 𝑉𝑉𝐻𝐻𝑖𝑖 ; 𝑗𝑗 = 1,2, … ,𝑛𝑛𝑏𝑏𝑏𝑏   (5) 
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 𝐾𝐾𝐾𝐾𝑖𝑖 ≤ 𝐾𝐾𝐾𝐾𝐻𝐻𝑖𝑖,𝑖𝑖  ; 𝑖𝑖 = 1,2, … ,𝑛𝑛𝑏𝑏𝑏𝑏   (6) 
Where, [𝑉𝑉𝐿𝐿𝐿𝐿,𝑉𝑉𝐻𝐻𝑖𝑖] are the permitted voltage ranges that is often selected to [0.95, 1.0]. 𝐾𝐾𝐾𝐾𝑖𝑖  and 

𝐾𝐾𝐾𝐾𝐻𝐻𝑖𝑖,𝑖𝑖 are respectively the current carrying factor and its rated value of the branch 𝑖𝑖. 𝐾𝐾𝐾𝐾𝐻𝐻𝑖𝑖 ,𝑖𝑖 is often 
selected to 1, meanwhile 𝐾𝐾𝐾𝐾𝑖𝑖  is found by quotient of current in branch 𝑖𝑖 and its rated current. 
 
3. Wild geese algorithm for the REC-DGP problem 

The WGA is inspired on the behavior of wild geese's lives consisting of migration, food 
searching, reproduction and death in the wild goose population. Wherein, the position of each wild 
goose is considered as a candidate solution of the optimization problem. The WGA is adapted for 
the REC-DGP problem are follows: 
 
A. Generate the current wild goose population 

The solution vector of the REC-DGP problem consists of open switches, location and capacity 
of DGs. For encoding of open switches, the binary variables can be used to represent the status of 
switches, wherein the zero and one states represent respectively for opened and closed switches [27]–
[30]. However, by using this encoding technique, the number of variables in each solution will be 
very high for the large-scale DNs because the number of variables must be set equal to the number 
of branches of the DN. Therefore, in this study, in order to reduce the number of variables of the 
solution vector, the open switches are represented by integer variables that indicate the open switch 
position in the closed loops of the DN. For location and capacity of DGs, integer variables are used 
to indicate the installation node and real variables are chosen to indicate the capacity of the DGs. In 
order to solve the REC-DGP problem, the wild goose population is first generated as follows: 
 𝑋𝑋𝑖𝑖 = 𝑅𝑅1(𝑋𝑋𝐻𝐻 − 𝑋𝑋𝐿𝐿) + 𝑋𝑋𝐿𝐿; 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖 (7) 

Where, 𝑋𝑋𝑖𝑖 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐷𝐷] is the position of the wild goose i. 𝑅𝑅1 is a (1 × 𝐷𝐷) vector of random 
numbers in the interval (0,1). 𝐷𝐷 is number of variables of the problem. 𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖 is the initial number of 
geese in the population. [𝑋𝑋𝐿𝐿 ,𝑋𝑋𝐻𝐻] is the boundary vectors that contains allowed limit about open 
switches, location and capacity of DGs. For open switch variables, 𝑋𝑋𝐿𝐿 is selected to 1, wherein 𝑋𝑋𝐻𝐻 
represents the size of the mesh loops containing the possible open switches. For DG location 
variables, 𝑋𝑋𝐿𝐿 is selected to 2 and 𝑋𝑋𝐻𝐻 is the number of nodes of the DN. For DG capacity variables, 
𝑋𝑋𝐿𝐿 is selected to 0 and 𝑋𝑋𝐻𝐻 is the limit of DGs as shown in (2). 

The solution to the REC-DGP problem includes open switches on branches and DG installation 
locations at nodes as well as DG capacity. So, after being randomly initialized, the geese population 
should be modified as follows: 

 𝑥𝑥𝑖𝑖,𝑑𝑑 = �
𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑�𝑥𝑥𝑖𝑖,𝑑𝑑�; 𝑖𝑖𝑖𝑖 𝑑𝑑 ∈ [1,2, … ,𝑛𝑛𝐿𝐿𝑠𝑠 ]                            
𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑�𝑥𝑥𝑖𝑖,𝑑𝑑�; 𝑖𝑖𝑖𝑖 𝑑𝑑 ∈ [𝑛𝑛𝐿𝐿𝑠𝑠+1,𝑛𝑛𝐿𝐿𝑠𝑠+2, … ,𝑛𝑛𝐿𝐿𝑠𝑠 + 𝑛𝑛𝑑𝑑𝑑𝑑]
𝑥𝑥𝑖𝑖,𝑑𝑑                ; 𝑟𝑟𝑑𝑑ℎ𝑑𝑑𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑑𝑑                                             

 (8) 

From each generated REC-DGP solution, the node and branch parameters of the DN are updated. 
Based on the variables indicating the position and power of the DGs, the DN's node parameter is 
updated. For the open switch variables, they are mapped into closed loop vectors of the DN to 
determine the open switches. For example, the radial DN in Figure 1 has 6 nodes, 7 branches and 2 
open switches. In which, the search space of the first open switch is the closed loop vector of {s1, 
s2, s4, s5} that is defined by closing s5. Similarly, the search space of the second open switch is the 
vector of {s1, s2, s3, s4, s6, s7} which is determined by closing s7. Then, the value of the open switch 
variables is considered as the order index of the switches in the closed loops. 
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Figure 1. The DN with 2 open switches 
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In order to evaluate the quality of each solution, the DN configuration 𝑋𝑋𝑖𝑖 is checked the radial 
topology constraint by using (3). If this condition is satisfied, the power flow is executed using the 
Newton method [31]. Then, if the power balance constraint in (4) is maintained, the fitness value of 
each solution (𝐹𝐹𝑖𝑖) which includes objective function in (1) and the voltage and current constraints in 
(5) and (6) is calculated as follows:  
 𝐹𝐹𝑖𝑖 = ∑∆𝑃𝑃 (𝑋𝑋𝑖𝑖) + 𝜌𝜌. [𝑚𝑚𝑚𝑚𝑥𝑥(𝑉𝑉𝐿𝐿𝐿𝐿 − 𝑉𝑉𝐷𝐷𝑖𝑖𝑛𝑛(𝑋𝑋𝑖𝑖),0) + 𝑚𝑚𝑚𝑚𝑥𝑥(𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋𝑖𝑖) − 𝑉𝑉𝐻𝐻𝑖𝑖 , 0) +
 𝑚𝑚𝑚𝑚𝑥𝑥(𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋𝑖𝑖) −  𝐾𝐾𝐾𝐾𝐻𝐻𝑖𝑖 , 0)] (9) 

 Where, 𝜌𝜌 is the penalty factor. 𝑉𝑉𝐷𝐷𝑖𝑖𝑛𝑛(𝑋𝑋𝑖𝑖), 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋𝑖𝑖) and 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋𝑖𝑖) are the minimum, maximum 
voltage amplitudes and the maximum current carrying factor of the solution 𝑋𝑋𝑖𝑖, respectively. 

In case of the radial topology and power balance constraints in (3) and (4) do not satisfy, a very 
high value will be assigned to the fitness value of the configuration 𝑋𝑋𝑖𝑖. Based on the fitness value of 
the goose population, the best wild goose (𝐺𝐺𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡) of the population is also determined.  

 
B. Generate new solutions by the mechanisms of coordinated group migration and walking for 

searching food mechanisms 
In order to generate new geese, the population is arranged in ascending order of the fitness value. 

Then, the new solutions are generated by two techniques including the coordinated group migration 
and food searching mechanisms. Details of each are follows: 

During migration process, the wild geese often fly in a certain order. The position of each goose 
depends on the position of adjacent geese. Based on this idea, velocity of the goose 𝑖𝑖 at the next 
iteration (𝑉𝑉𝑖𝑖𝑡𝑡+1) is depended on the velocity of upfront and rear geese as well as position of adjacent 
geese that is defined as follows: 
 𝑉𝑉𝑖𝑖𝑡𝑡+1 = 𝑅𝑅2𝑉𝑉𝑖𝑖𝑡𝑡 + 𝑅𝑅3(𝑉𝑉𝑖𝑖+1𝑡𝑡 − 𝑉𝑉𝑖𝑖−1𝑡𝑡 ) + 𝑅𝑅4(𝑃𝑃𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑖𝑖−1𝑡𝑡 ) + 𝑅𝑅5(𝑃𝑃𝑖𝑖+1𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡) + 𝑅𝑅6(𝑃𝑃𝑖𝑖+2𝑡𝑡 − 𝑋𝑋𝑖𝑖+1𝑡𝑡 ) −
𝑅𝑅7(𝑃𝑃𝑖𝑖−1𝑡𝑡 − 𝑋𝑋𝑖𝑖+2𝑡𝑡 ) (10) 

Where, 𝑉𝑉𝑖𝑖𝑡𝑡, 𝑋𝑋𝑖𝑖𝑡𝑡 and 𝑃𝑃𝑖𝑖𝑡𝑡 are the current velocity, position and the best position of the goose 𝑖𝑖. 𝑅𝑅2 
to 𝑅𝑅7 are random number vectors in [0, 1]. 

Moreover, the best goose of the population guides for flying of the whole population. Thus, the 
position of each goose is updated by the coordinated group migration mechanism as follows: 
 𝑋𝑋𝑖𝑖𝐷𝐷 = 𝑃𝑃𝑖𝑖𝑡𝑡 + 𝑅𝑅8𝑅𝑅9�(𝐺𝐺𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡 + 𝑃𝑃𝑖𝑖+1𝑡𝑡 − 2𝑃𝑃𝑖𝑖𝑡𝑡) + 𝑉𝑉𝑖𝑖𝑡𝑡+1�  (11) 

Where, 𝑋𝑋𝑖𝑖𝐷𝐷 is the new position of the goose 𝑖𝑖 generated by the coordinated group migration 
mechanism. 𝑅𝑅8 and 𝑅𝑅9 are random number vectors in [0, 1]. 

Unlike the migratory mechanism, in the process of walking for searching food, each goose tends 
to follow the its upfront individual. This idea is mathematically described as follows: 
 𝑋𝑋𝑖𝑖𝑤𝑤 = 𝑃𝑃𝑖𝑖𝑡𝑡 + 𝑅𝑅10𝑅𝑅11(𝑃𝑃𝑖𝑖+1𝑡𝑡 − 𝑃𝑃𝑖𝑖𝑡𝑡)  (12) 

Where, 𝑋𝑋𝑖𝑖𝑤𝑤 is the new position of the goose 𝑖𝑖 generated by the mechanism of walking for 
searching food. 𝑅𝑅10 and 𝑅𝑅11 are random number vectors in [0, 1]. 

The reproduction of GWA is performed by the combination of the coordinated group migration 
mechanism and the walking for searching food mechanism as shown (13). In which, the probability 
that each mechanism is selected is the same.  

 𝑋𝑋𝑖𝑖𝑡𝑡+1 = �
𝑋𝑋𝑖𝑖𝐷𝐷 ;   𝑖𝑖𝑖𝑖 𝑅𝑅12 ≤ 0.5
𝑋𝑋𝑖𝑖𝑤𝑤  ;  𝑟𝑟𝑑𝑑ℎ𝑑𝑑𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑑𝑑      (13) 

The new geese are checked and adjusted to their boundaries [𝑋𝑋𝐿𝐿 ,𝑋𝑋𝐻𝐻] to ensure each solution in 
its permitted ranges as follows: 

 𝑋𝑋𝑖𝑖,𝑑𝑑𝑡𝑡+1 = �
𝑋𝑋𝑖𝑖,𝑑𝑑𝑡𝑡+1 ;   𝑖𝑖𝑖𝑖 𝑋𝑋𝐿𝐿,𝑑𝑑 ≤ 𝑋𝑋𝑖𝑖,𝑑𝑑𝑡𝑡+1 ≤ 𝑋𝑋𝐻𝐻,𝑑𝑑

𝑋𝑋𝐿𝐿,𝑑𝑑  ;   𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖,𝑑𝑑𝑡𝑡+1 ≤ 𝑋𝑋𝐿𝐿,𝑑𝑑              
𝑋𝑋𝐻𝐻,𝑑𝑑  ;   𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖,𝑑𝑑𝑡𝑡+1 ≥ 𝑋𝑋𝐻𝐻,𝑑𝑑               

  (14) 

Then, the new geese are modified to map with the REC-DGP by using (8) and evaluated the 
quality by calculating the fitness value using (9). From the fitness value of each new goose, the best 
position of each goose is updated as follows: 
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 𝑃𝑃𝑖𝑖𝑡𝑡+1 = �
𝑋𝑋𝑖𝑖𝑡𝑡+1 ;   𝑖𝑖𝑖𝑖 𝐹𝐹𝑖𝑖𝑡𝑡+1 < 𝐹𝐹𝑝𝑝,𝑖𝑖

𝑡𝑡

𝑃𝑃𝑖𝑖𝑡𝑡       ;  𝑟𝑟𝑑𝑑ℎ𝑑𝑑𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑑𝑑      
  (15) 

 

 𝐹𝐹𝑝𝑝,𝑖𝑖
𝑡𝑡+1 = �

𝐹𝐹𝑖𝑖𝑡𝑡+1 ;   𝑖𝑖𝑖𝑖 𝐹𝐹𝑖𝑖𝑡𝑡+1 < 𝐹𝐹𝑝𝑝,𝑖𝑖
𝑡𝑡

𝐹𝐹𝑝𝑝,𝑖𝑖
𝑡𝑡    ;  𝑟𝑟𝑑𝑑ℎ𝑑𝑑𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑑𝑑       

  (16) 

In addition, the best goose of the current population (𝐺𝐺𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡) is also updated by the comparison 
between the its current fitness value and the best one of each new goose. 

 
C. Reduce the population size  

The weaker goose will be died and the number of geese in the population will reduce to the final 
population size (𝑁𝑁𝑓𝑓𝑖𝑖𝑛𝑛𝐷𝐷𝑓𝑓) as follows: 
 𝑁𝑁 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑 �𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖 − �𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖 − 𝑁𝑁𝑓𝑓𝑖𝑖𝑛𝑛𝐷𝐷𝑓𝑓�

𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡
𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

�  (17) 
Based on the new population size, the process of generating new position and updating the best 

position of each goose continues to performance until the current number of fitness evaluation 
(𝑁𝑁𝐹𝐹𝑁𝑁𝑡𝑡) reaches to the maximum value 𝑁𝑁𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 . The flowchart of GWA for the REC-DGP problem 
is shown in Figure 2. 

 
Start

- Select Nini, Nfinal and NFEmax, N = Nini 
- Generate the current goose population using (7)  
- Modify the current goose population using (8)
- Evaluate the quality of each goose using (9)
- Find the best goose of the population Gbest 

Sort the goose population in asccending order

- Assign the current population to the corresponding best position
- Set the velocity of each goose to zero   
- Set NFE = 0

Set i = 1

- Calculate the velocity of the goose i by the migration mechanism using (10)
- Determine the position of the goose i by the migration mechanism using (11) 
- Calculate the position of the goose i by the walking mechanism using (12)  
- Generate the new goose i using (13)  

- Adjust the boundaries of the new goose i using (14)
- Modify the new goose population using (8)  
- Evaluate the quality of each goose using (9)   

- Update the best position of the goose i using (15) and (16)
- Update Gbest  by comparing its quality with quality of the goose i 

i = i + 1 i <  N

NFE = NFE + N 

Update population size by using (17)

No

end

NFE <  NFEmax

Post the best goose Gbest

No

Yes

Yes

 
Figure 2. The WGA for the REC and REC-DGP problem 
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4. Numerical results 
The REC-DGP method based on WGA is coded in Matlab 2016a. Its performance is compared 

with PSO and PFA. Both of PSO an PFA are also the SI-based metaheuristic algorithms and their 
metaphor looks like to that of WGA. While PSO uses the personal best position and the global best 
position of the whole population to generate new population [19], PFA uses the information of 
neighbor individual and the pathfinder of the swarm for creating new population [20]. The 
performance of WGA, PSO and PFA are evaluated on two DNs consisting of the 33-node and 69-
node systems as shown in Figure 3 [32], [33]. In addition, in order to evaluate the efficiency of the 
REC-DGP for reducing power loss of the DNs, the REC-DGP solution is also compared with the 
REC only in term of power loss reduction. The steps of WGA for the REC problem is similar to 
those of the REC-DGP problem except that variables related to DGs are excluded from the candidate 
solutions. 
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a) The 33-node system b) The 69-node system 

Figure 3. The 33-node and 69-node systems 
 
A. The 33-node system 

The 12.66 kV 33-node system in Figure 3.a has 33 nodes, 37 branches with their rated current of 
255A [34] and the total load 3.72 + j2.3 MVA. At the initial configuration, there is five open switches 
of 33-34-35-36-37. The power loss, minimum voltage amplitude and maximum current carrying 
factor of the initial configuration are respectively 202.6863 kW, 0.9131 pu and 0.8250 pu. The 
number of DGs installed in the DN is selected to three DGs with 2 MW for each. The penalty factor 
𝜌𝜌 for vilolating the voltage and current constraints is chosen to 1000. To compare the efficiency of 
the above algorithms, based on the initial and final population size of WGA as well as the maximum 
number of fitness evaluations, the population size of PSO and PFA is chosen so that all three 
algorithms will stop searching with the same number of iterations. By selection of 𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖  of 60, 𝑁𝑁𝑓𝑓𝑖𝑖𝑛𝑛𝐷𝐷𝑓𝑓  
of 30 and 𝑁𝑁𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷  of 3000, WGA will stop searching after about 68 iterations, the average number 
of individuals of WGA is about 3000/68 = 44.1176. Thus, the population size of PSO and PFA is 
selected to 44. 

The optimal REC and REC-DGP results of WGA, PSO and PFA for the 33-node system are 
presented in Table 1. After performing REC and REC-DGP, the loss power is reduced to 139.9823 
and 50.7189 kW respectively corresponding to the reduction of 30.94% and 74.98% compared to 
the original configuration. The smallest voltage amplitude in the system obtained by implementing 
using REC and REC-DGP has also increased from 0.9131 to 0.9412 and 0.9734 pu respectively 
corresponding to the increase of 3.08% and 6.60% compared to the original structure. In addition, 
the maximum load carrying factor of the system has also been respectively reduced from 0.8250 
to 0.8126 and 0.4407 p.u. It shows that the optimal DGs installation combined with REC has 
significantly reduced the current on the branches carrying heavy loads. In comparison between 
REC and REC-DGP, the power loss reduction and minimum voltage improvement achieved by 
the latter is 44.04% and 3.52% respectively higher than those of the former and the maximum load 
carrying factor of the REC-DGP is also 0.3843 p.u lower than that of the REC solution. The voltage 
and current profiles after performing REC and REC-DGP in Figure 4 show a significant 
improvement, wherein REC-DGP has a much better improvement than REC. 
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Table 1. The REC and REC-DGP optimal results for the 33-node system of WGA over PSO, PFA and other methods 

Case Method Optimal OS DG’s location and size in 
MW 

Power 
loss (kW) 

Loss 
reduction 

(%) 

𝑉𝑉𝐷𝐷𝑖𝑖𝑛𝑛 
(p.u) 

Voltage 
enhancing 

(%) 

𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 
(p.u) 

𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷 
(p.u) 

Initial - 33-34-35-36-37 - 202.6863 - 0.9131 - 1.0000 0.8250 

REC 

WGA 7-14-9-32-28 - 139.9823 30.94% 0.9412 3.08% 1.0000 0.8126 
PSO 7-14-9-32-28 - 139.9823 30.94% 0.9412 3.08% 1.0000 0.8126 
PFA 7-14-9-32-28 - 139.9823 30.94% 0.9412 3.08% 1.0000 0.8126 

SSA [7] 7-14-9-32-37 - 139.5500 31.15% 0.9378 2.71% - - 
ESCA [9] 7-9-14-32-37 - 139.5500 31.15% 0.9378 2.71% - - 

MWOA [1] 7-14-9-32-28 - 139.9823 30.94% 0.9412 3.08% - - 

REC-DGP 

WGA 33-34-11-31-28 7 (0.956947); 25 
(1.27956); 17 (0.75296) 50.7189 74.98% 0.9734 6.60% 1.0000 0.4407 

PSO 33-34-11-31-28 26 (0.922483); 25 
(1.28689); 17 (0.753231) 51.6587 74.51% 0.9734 6.60% 1.0000 0.4425 

PFA 33-34-11-31-28 17 (0.752953); 7 
(0.956943); 25 (1.27965) 50.7189 74.98% 0.9734 6.60% 1.0000 0.4407 

SSA [7] 6-14-11-17-28 8 (1.027); 24 (1.180) ; 31 
(0.837) 56.42 72.16% 0.9762 6.91% - - 

ESCA [9] 7-14-9-27-30 12 (0.5672); 18 (0.7125); 
25 (1.190) 53.53 73.59% 0.9651 5.69% - - 

IEO [8] 7-10-13-27-31 8 (0.39900); 17 
(0.66900), 29 (1.1600) 57.4000 71.68% - - - - 

MWOA [1] 11-28-31-33- 34 8 (0.8299); 17 (1.3412); 
31 (0.7109)  50.61 75.03% - - - - 
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The comparison results in Table 1 also show the high performance of WGA for the REC and 
REC-DGP problems. For the REC case, the results obtained by GWA are similar to those of 
PSO, PFA and MWOA [1] in both terms of power loss and lowest voltage amplitude. The loss 
reduction obtained by WGA is 0.21% lower than that of SSA [7] and ESCA [9] but the lowest 
voltage in the network obtained by GWA is 0.36% higher than that of SSA [7] and ESCA [9]. 
For the REC-DGP case, the results obtained by GWA are similar to those of PFA in both power 
loss and lowest voltage amplitude while the power loss reduction obtained by PSO is 0.46% 
lower than WGA. In comparisons with the implemented methods, the power loss reduction of 
WGA is only 0.05% lower than that of MWOA [1] but it is 2.81%, 1.39% and 3.30% higher than 
SSA [7], ESCA [9] and IEO [8], respectively. These results show that WGA is an effective 
method for both of the REC and REC-DGP problems. 

 

 
Figure 4. Voltage amplitude profile for the 33-node system by REC and REC-DGP 

 
The results of the efficiency comparison between WGA with PSO and PFA via statistical 

results are presented in Table 2. For the REC problem, although all three methods have obtained 
the optimal results in 30 runs, the ratio of founding out the optimal structure of WGA is 83.33% 
and 23.33% higher than that of PSO and PFA, respectively. In addition, the statistical values 
such as worst (𝐹𝐹𝑤𝑤𝐿𝐿𝑏𝑏𝑠𝑠𝑡𝑡), average (𝐹𝐹𝐷𝐷𝑎𝑎𝑏𝑏), standard deviation (𝑒𝑒𝑑𝑑𝑑𝑑) values of fitness function and 
the run time of WGA are also lower than those of PSO and PFA. Similarly, for the REC-DGP 
problem, the 𝐹𝐹𝑤𝑤𝐿𝐿𝑏𝑏𝑠𝑠𝑡𝑡 , 𝐹𝐹𝐷𝐷𝑎𝑎𝑏𝑏 and 𝑒𝑒𝑑𝑑𝑑𝑑 values and the computation time of WGA are also lower than 
those of PSO and PFA. The lower 𝐹𝐹𝐷𝐷𝑎𝑎𝑏𝑏 and 𝑒𝑒𝑑𝑑𝑑𝑑 values of WGA indicate the higher reliability 
and stability of GWA for the REC and REC-DGP problems over PSO and PFA. The average 
convergence characteristics over 30 runs and the minimum fitness value in each run for the REC 
problem shown in Figure 5 and the REC-DGP problem shown in Figure 6 demonstrate that WGA 
often converges to a better value than PSO and PFA in each run. This shows the superiority of 
WGA over the two SI-based PSO and PFA methods. 

 
Table 2. The performance of WGA, PSO and PFA for the REC and REC-DGP problems on the 

33-node system 

Case Method Successful 
rate (%) 𝐹𝐹𝑤𝑤𝐿𝐿𝑏𝑏𝑠𝑠𝑡𝑡  𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡 𝐹𝐹𝐷𝐷𝑎𝑎𝑏𝑏 𝑒𝑒𝑑𝑑𝑑𝑑 CPU 

time (s) 

REC  
WGA 100 148.7392 148.7392 148.7392 0 7.9641 
PSO 16.6667 192.7752 148.7392 162.2682 9.8575 8.4906 
PFA 76.6667 160.8025 148.7392 150.1684 2.8948 9.9698 

REC-
DGP 

WGA 3.3333 56.3640 50.7189 53.6289 1.2122 82.7172 
PSO 3.3333 78.9408 51.6587 61.134 5.5520 92.4901 
PFA 3.3333 66.7015 50.7189 55.9814 3.5387 102.5661 
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Figure 5. The convergence curve and value over 30 runs of REC only for the 33-node system 

 

 
Figure 6. The convergence curve and value over 30 runs of REC-DGP for the 33-node system 

 
B. The 69-node system 

The 12.66 kV 69-node system in Figure 3.b has 69 nodes, 73 branches [33]. The initial 
configuration with open switches of 69-70-71-72-73 has power loss of 224.8871 kW and 
minimum voltage amplitude of 0.9092 pu. Because of lack of rated current of branches, it is 
assumed that implementing REC and REC-DGP does not influence on the system overload. The 
control parameters of WGA, PSO and PFA are set similar to those of the 33-node system.  

The results of REC and REC-DGP of WGA, PSO and PFA for the 69-node system are 
presented in Table 3. By performing REC and REC-DGP, the loss power is reduced to 98.5875 
and 35.1537 kW respectively corresponding to the reduction of 56.16% and 84.37% compared 
to the original network. The smallest voltage amplitude in the system gained by implementing 
using REC and REC-DGP has also increased from 0.9092 to 0.9495 and 0.9813 pu, respectively 
corresponding to the increase of 4.43% and 7.93% compared to the original structure. In 
comparison between REC and REC-DGP, the power loss reduction and minimum voltage 
improvement achieved by the latter is 28.21% and 3.5% respectively higher than those of the 
former. The voltage profile after performing REC and REC-DGP in Figure 7 shows a significant 
improvement, wherein REC-DGP has a much better improvement than REC. 

In comparison with PSO, PFA and other methods, the results in Table 3 also show the high 
performance of WGA for the large-scale REC and REC-DGP problems. For the REC problem, 
the results obtained by GWA are similar to those of PSO, PFA, ESCA [9] and MWOA [1] in 
both terms of power loss and lowest voltage amplitude. The loss reduction and voltage 
improvement obtained by WGA is 0.02% and 0.03% respectively higher than those of SSA [7]. 
For the REC-DGP case, the results obtained by GWA are also similar to those of PFA in both 
power loss and lowest voltage amplitude while the power loss reduction obtained by PSO is 
2.14% lower than WGA. In comparisons with the implemented methods, the power loss 
reduction of WGA is 0.29%, 0.8%, 0.91% and 0.55% higher than SSA [7], ESCA [9], MWOA 
[1] and IEO [8], respectively. This result shows that WGOA can reach the higher performance 
compared the above methods for the REC-DGP problem. 
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Table 3. The REC and REC-DGP optimal results for the 69-node system of WGA over PSO, PFA and other methods 

Case Method Optimal OS DG’s location and size in MW Power 
loss (kW) 

Loss 
reduction 

(%) 
𝑉𝑉𝐷𝐷𝑖𝑖𝑛𝑛 (p.u) 

Voltage 
enhancing 

(%) 
𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 (p.u) 

Initial 
REC 

- 69-70-71-72-73 - 224.8871 - 0.9092 - 1.0000 
WGA 69-70-14-57-61 - 98.5875 56.16% 0.9495 4.43% 1.0000 
PSO 69-70-14-57-61 - 98.5875 56.16% 0.9495 4.43% 1.0000 
PFA 69-70-14-57-61 - 98.5875 56.16% 0.9495 4.43% 1.0000 

SSA [7] 69-14-71-61-58 - 98.63 56.14% 0.9492 4.40% - 
ESCA [9] 14-55-61-69-70 - 98.60 56.16% 0.9495 4.43% - 

MWOA [1] 70-69-61-57-14 - 98.5875 56.16% - - - 

REC-DGP 

WGA 69-70-14-57-61 61 (1.43399); 11 (0.537415);  
64 (0.490203) 35.1537 84.37% 0.9813 7.93% 1.0000 

PSO 10-70-12-57-63 21 (0.768452); 61(1.46703);  
21 (0) 39.9562 82.23% 0.9804 7.83% 1.0000 

PFA 69-70-14-56-61 11 (0.537447); 64 (0.490178); 
61 (1.43401) 35.1537 84.37% 0.9813 7.93% 1.0000 

SSA [7] 69-14-70-63-58 11 (0.650); 27 (0.490);  
61 (1.4675 ) 35.81 84.08% 0.9808 7.88% - 

ESCA [9] 12-19-69-63-57 11 (0.436); 61(1.300);  
65 (0.4616) 36.95 83.57% 0.9774 7.50% - 

MWOA [1] 70-69-61-58-14 11 (0.5413); 65 (0.5536);  
61 (1.724)  37.20 83.46% - - - 

IEO [8] 12-57-63-69-70 12 (0.362); 26 (0.518);  
61 (1.400) 36.39 83.82% - - - 
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Figure 7.Voltage amplitude profile for the 69-node system by REC and REC-DGP 

 
The statistical results of WGA with PSO and PFA for the 69-node system are presented in 

Table 4. For the REC problem, although all three methods have obtained the optimal results in 
30 runs, the ratio of founding out the optimal structure of WGA is 56.67% and 10% higher than 
that of PSO and PFA, respectively. Furthermore, all of the values of the indexes such as 𝐹𝐹𝑤𝑤𝐿𝐿𝑏𝑏𝑠𝑠𝑡𝑡 , 
𝐹𝐹𝐷𝐷𝑎𝑎𝑏𝑏 and 𝑒𝑒𝑑𝑑𝑑𝑑 and the run time of WGA are also lower than those of PSO and PFA. The average 
convergence characteristic over 30 runs and the minimum fitness value in each run for two 
problems in Figure 8 and Figure 9 show that WGA converges to a lower value than PSO and 
PFA in each run. These results once again confirm the superiority of WGA over PSO and PFA 
for REC and REC-DGP problems. 

 
Table 4. The performance of WGA, PSO and PFA for the REC and REC-DGP problems on the 

69-node system 

Case Method Successful 
rate (%) 𝐹𝐹𝑤𝑤𝐿𝐿𝑏𝑏𝑠𝑠𝑡𝑡  𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡 𝐹𝐹𝐷𝐷𝑎𝑎𝑏𝑏 𝑒𝑒𝑑𝑑𝑑𝑑 CPU 

time (s) 

REC  
WGA 70 112.1841 99.1169 100.8847 3.2252 24.8745 
PSO 13.3333 140.7413 99.1169 117.2604 16.8942 27.774 
PFA 60 116.3852 99.1169 103.1021 6.3702 34.7089 

REC-
DGP 

WGA 3.3333 43.8166 35.1537 38.4488 2.4717 291.0964 
PSO 3.3333 53.7236 39.9562 44.5813 2.9177 304.7312 
PFA 3.3333 44.0419 35.1537 40.0178 2.9603 322.0344 

 

 
Figure 8. The convergence curve and value over 30 runs of REC only for the 69-node system 
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Figure 9. The convergence curve and value over 30 runs of REC-DGP for the 69-node system 

 
5. Conclusion 

In this paper, the swarm intelligence-based WGA algorithm has been adjusted to successfully 
solve the combination problem of optimal network reconfiguration and DG installation on the 
DN. The considered objective in the REC-DGP process is to minimize the power loss 
considering the improvement of voltage and current profiles. In addition, the REC-DGP 
implementation must maintain the radial structure and ensure the power limit of the DGs as well 
as the power balance of the DN. The recommended WGA method is compared with two other 
swarm intelligence-based algorithms including PSO and PFA. The effectiveness of the methods 
is evaluated on the 33-node and 69-node DNs for both problems including REC and REC-DGP. 
The main findings of this work can be summarized as follows: 

1) The WGA has been successful adjusted for finding the optimal solution of the REC and 
REC-DGP problem. The solutions gained by WGA have the lower power loss than that of the 
original network. for the REC problem, the power loss of the 33-node and 69-node DNs has been 
respectively reduced by 30.94% and 56.16% compared to the original status of the DNs. For the 
REC-DGP problem, the loss reduction of the two systems are up to 74.98% and 84.37%, 
respectively. In addition, the voltage and current profiles are also greatly improved compared to 
the original structure. 

2) The improvement achieved by REC-DGP is much greater than that of implementing REC 
only, wherein power loss reduction achieved by REC-DGP solution is 44.04% for the 33-node 
DN and 28.21% for the 69-node DN higher than that of REC only.  

3) The statistical result comparison shows that WGA outperforms PSO and PFA for both of 
the problems in indexes of worst, average, standard deviation values of the fitness function and 
the computation time. In addition, the results compared with the previous performed methods on 
the two systems also show that WGA is an appropriate method for both of the REC and REC-
DGP problems. Based on the achieved results, WGA is one of the effective and reliable methods 
for the REC and REC-DGP problems. 

For future work, the REC and REC-DGP problems can be carried out considering to the 
uncertainty factors and WGA can be used for the REC and REC-DGP problems for practical 
DNs to satisfy other technical and economic objectives. 
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