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Abstract: Forecasting the annual long-term consumption of electrical energy in a 
country has remained for the Electrical Engineer quite a difficult problem to solve. As 
an important planning tool, the forecast of electrical energy consumption has to be as 
precise as possible. The most commonly employed method is that of scenario building.  
With the scenario method, consumption forecasting is done through the simulation of a 
sequence of events. The generated data cannot therefore be as stochastic as it is in 
reality. With the advent of the computer age, numerous other statistical methods for 
consumption forecasting have been developed. Prominent among them is the 
forecasting by machine learning with multiple-Input multiple-Output local learning 
strategy. The objective here is to obtain a forecast which is as precise as possible, while 
conserving the stochastic nature between the historical and the forecasted data. 
This article first presents the different strategies for long-term power consumption 
forecasting using Multiple-Input Multiple-Output local learning strategies. It then 
proposes, based on the work of earlier researchers, an approach that uses the weighted 
averages to improve on the level of precision obtained.  Furthermore, it applies this new 
improved calculation method to forecast the power consumption specifically in 
Cameroon for horizon 2035, when the country aspires to become an emerging economy.  
The last part of this article utilizes historical data on the electricity consumption of some 
countries from the World Bank dataset to do a comparative study between the here 
newly proposed method and that used previously. The results show that, the new 
method using MISMO plus weighted average delivers more exact results for long-term 
electrical power consumption forecasts. 
  
Keywords: long-term forecasting, automatic apprenticeship, nearest neighbors, 
weighted average, electric energy consumption  

 
1. Introduction  
 Long-term annual electricity consumption forecasting is an important tool for major 
decision-makers like governments and multinational investors. It serves not only in the 
planning of power supply for future investments, but also serves in the scheduling of 
generation and transmission equipment maintenance. Ideally, an investor would want to know 
the exact future demand. Since this is impossible, only long-term electrical demand forecast 
methods can be used to estimate future annual electricity consumptions. It is therefore evident 
that such long-term forecasts have to come as close as possible to reality. 
 For the past years, many research endeavors have not only developed long-term electricity 
annual load demand forecast methods, but also improved on their level of accuracy. One of the 
most popular methods used for this purpose is that called “scenarios building”. EDF used the 
scenarios building method to forecast the annual electricity consumption of France from 2012 
to 2020. The same method was used in [11] to forecast Cameroon’s electricity demand from 
2005 to 2030. Also, [19] employed this method to do a forecast of Tahiti’s annual electricity 
demand from 2005 to 2020. This method is known to be not quite realistic and somewhat 
illusionistic too. To overcome these weaknesses, quantitative methods known as time series- 
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based methods were introduced. One of the most popular of the time series-based methods 
used for this purpose is the Autoregressive Moving Average (ARMA). For instance, Edigera 
and Akarb [5] used seasonal ARIMA (SARIMA) to estimate the future primary energy 
consumption of Turkey from 2005 to 2020. Biancoa et al [2] also proposed a linear regression 
model for Italy’s electricity consumption. 
 However, such methods, generally referred to as linear methods, can give accurate forecasts 
if and only if there is some linearity in the past data. They therefore fail to capture data with 
non- linearities. With the advent of the computer, Computer Intelligence (CI)-based methods 
have been at the center of many research undertakings in the area of long-term annual 
electricity demand forecasting. The main advantage of these methods is that they can capture 
both linear and non-linear behavior of the time series. Machine learning, Fuzzy logic and 
Artificial Neural Network (ANN) are three main CI-based techniques, which have shown how 
powerful they are in capturing both linearity and non-linearity in data. Hossein Iranmanesh et 
al [7] proposed a Mid-Term Energy demand forecasting using hybrid Neuro-Fuzzy models. 
Their method was used to estimate the U.S monthly gasoline demand in 2010. In their study, 
they combined Local Linear Neuro-Fuzzy (LLNF) models and Hodrick-Prescott (HP) filter and 
showed how powerful the HP filter was in accuracy improvement. J.V Ringwood and D. 
Bofelo proposed an approach of short (hourly), medium (weekly) and long-term (yearly) 
electricity demand forecasting using neural networks [8]. A combination of neural networks 
and fuzzy inference systems was proposed by Chen for long-term forecasting of the electrical 
load in Taiwan [18]. They were preceded by Nuorati et al, who also proposed a Neuro-Fuzzy 
model for long-term electrical load forecasting [13]. Souhaib Ben Taieb et al combined direct 
and MIMO strategies (MISMO) and developed a new long-term prediction method for time 
series [16]. Their proposed strategy was tested on the European Symposium for Time Series 
Prediction (ESTSP) competition in 2007. It came second. Many other methods have been 
proposed by different researchers as mentioned by the above authors.  For example, [7] 
mentioned the studies of Han et al, who propose a review on electric load forecasting. They 
have provided an overview on classical time series and regression methods, as well as artificial 
intelligence and computational intelligence approaches [7]. However, very little has been done 
in the field of annual long-term electricity consumption.  
 In this paper, it is shown that the accuracy of the original MISMO strategy [16] can be 
improved when combining it to the Weighted Average [17]. Then this method is used to 
forecast the annual Cameroonian electricity consumption from 2012 to 2035. The rest of the 
paper is organized as follows: Section II briefly recalls the MISMO strategy methodology 
followed by the weighted average method. Section III describes our proposed methodology to 
improve the accuracy of the MISMO strategy and section IV gives some comparative results 
on the forecasting of the annual electricity demand for some countries. 
 
2. The MISMO Strategy 
In this section the MISMO strategy (Multiple Input Several Multiple Outputs) shall be briefly 
described.  
Firstly, an overview of long-term prediction techniques using machine learning is necessary. 
Considering a univariate time series 1 2{ , ,..., }NY Y Y for which the next H values need to be 
predicted, there are two main strategies that can be adopted: the direct strategy and the 
recursive strategy. 
 
A. The Direct Strategy 
The first strategy initially embeds the time series into H datasets as follows: 
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Then H models ( ).hf are trained using the datasets in order to obtain the H predictions as 
follows: 
 ( )ih h ih ihy f w= +x  (3) 

Where     ihw is an additive noise  
 
B. The Recursive Strategy 
In contrast, the recursive strategy after embedding the time series is as follows: 

 ( ) ( ){ }
1

, x
Nd

i i i
D y

=
= ∈x R R  (4) 

 { }1,...,i i i dY Y + −=x  (5) 

 { }i i dy Y +=  (6) 
The dataset is used to train a function which estimates the next value of the series as follows: 
 � ( )*

1NY f+ = x  (7) 

{ }*
1 ,...,N d Nwhere Y Y− +=x  

Then the estimated value is used as an input to predict the following value as follows:  

 � �{ }( )*
2 11/ ,N NN dY f Y Y+ +− += x  (8) 

And the next values are estimated in the same manner. 
Usually, in order to obtain accurate forecasts, an input variable selection algorithm is used to 
choose the best subsets between the input variables. 
The recursive strategy suffers from error accumulation while the direct strategy suffers from 
the strong conditional independence of the trained models. The multiple input multiple output 
(MIMO) strategy was introduced to combine the advantages of both the direct and the 
recursive strategies [16], reduce the error due to the recursive method and remove the 
conditional independence of the direct strategy. 
 
C. The MIMO Strategy 
The MIMO strategy embeds the dataset into a multidimensional input output variable set as 
follows: 

 ( ) ( ){ }
1

, x
Nd H

i i i i
D

=
= ∈x y R R  (9) 

Where 
 { }1,...,i i i dY Y + −=x  (10) 

 { }1,...,i i i d HY Y + + −=y  (11) 

Then a multidimensional function (.)f is trained from the dataset as follows: 
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 { } ( )i i if w= +y x  (12) 
Then the function is used to predict the next H values. 
However this method constrains all the horizons to be predicted with the same model structure, 
thus reducing the flexibility of the MIMO strategy [16]. 
 
D. The MISMO Strategy 
 The MISMO strategy was introduced by [16] in order to resolve the problem of flexibility 
imposed by the MIMO strategy. The MISMO strategy brings the problem of prediction of 
horizon H into n prediction part problems of horizon s. That is, a problem of prediction of 
horizon H is broken down into several problems of prediction of horizon s. This is why it is 
called multiple input several multiple outputs (MISMO). The time series is therefore divided 
into n portions of training datasets as follows: 
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 The MISMO strategy therefore trains n models ( ).pf  with  

 { } ( )ip p ip ipf= +y x w  (17) 

 
Then each model is used to estimate the s desired predictions in the following manner: 
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E. Learning and Validation 
 Learning and validation are two terms commonly used in machine training. The former is 
the process through which information is extracted from data, while validation is the process 
through which the performance of a model is estimated [7], [16]. 
 The estimation of the functions ( ).pf is based on the nearest neighbor approach. In order 
to adjust the number of nearest neighbors, a lazy learning algorithm is used [16]. The general 
methodology to forecast using the MISMO strategy is as follows: 
Given a query point *x  

- Select the best subset of inputs { }1,...,i i i dY Y + −⊂x which can best predict the desired 
value 

- Determine the optimal value of s  
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- Divide the horizon of prediction into nH into n portions where Hn
s

=  as in (13) 

- For each input ix  calculate the Euclidean distance from the query point ( )*
i −x x  in 

order to determine the kk nearest neighbors. The kk nearest neighbors are the variables 
that give the smallest value of the calculated Euclidean distance. 

- For each portion, the output is estimated as: 

    $
[ ]

1

1 k

qp j p
j

y
k =

= ∑y  (19) 

 
Where 

[ ]
* is the output of the th closest neighbor of  in the dataset  pj py j Dx  

- Concatenate these outputs to obtain the prediction as follows: 

- $ $ $ ${ }1 2, ,...,q q q qn=y y y y  (20) 

- Estimate the performance of the model using chosen criteria. [16] proposed two methods 
to estimate the performance of the model, one based on cross validation and the other 
based on a measure of stochastic discrepancy between the forecasted sequence and the 
training time series.   

- Choose the best model depending on the desired criteria.  
 
The algorithms of each step mentioned above are developed in [4], [16]. 
 
F. Weighted Moving Average 
 The weighted moving average is introduced by [17] to estimate the future value of a time 
series. For the above time series, the future value can be estimated by the weighted moving 
average as follows: 
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 A variety of weight functions is developed by [17]. The advantage of this method is that the 
influence of each observation to the predicted output can be modified by adjusting the 
corresponding weight. Thus, the higher the weight the more important is the corresponding 
observation in predicting the output. Usually, the sum of the weights is normalized to one. 
 
3.  The Proposed Methodology  
 In this section, the new methodology is presented. This methodology combines the MISMO 
strategy and the Weighted Moving Average. The MISMO strategy forecasts the next values of 
the time series by averaging the outputs of the nearest neighbors of the query. This assumes 
that, the output of each neighbor is considered having the same influence in the forecast, which 
therefore tends to diminish the strong hypothesis that underlies the nearest neighbor theory. 
The nearest neighbor theory assumes that, if two random variables and X Y  are considered, 
and supposing that X Y= , then for a given function ( ).f : 
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 ( ) ( )f X f Y=  (22) 
 
 This also means that outputs of the points that are nearer to the query point have more 
information concerning the predicted values. 
 To take this fact into consideration, this paper therefore proposes that after determining the 
k nearest neighbors, the outputs should be estimated using a weighted average. The weights 
should decrease with an increase in the distance from the query point. In this paper the 
following weight function is proposed:  
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 Therefore, the nearer an input to the query, the smaller is the distance and higher is the 
corresponding weight. In this way, the contribution of each neighbor is proportional to the 
information it contains about the query point. 
After estimating the weight functions in this way, the corresponding Leave One Out error has 
to be re-estimated. With the corresponding weight function, the Leave One error then becomes: 
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 It is seen from (23) and (24) that setting the id  to one (or to the same values) leads to (19) 
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4. Evaluation of the New Method on Data Sets 
  The performance of the new method was tested by forecasting the annual electricity 
consumption of Cameroun, China, Brazil, India, South Africa, France, Germany, USA and 
Italy. The model is selected based on the minimum error criteria, and not the minimum average 
criteria. The data used was obtained from the World Bank dataset.  
 The dataset set consists of values from 1971 to 2009 for each country except, for that of the 
USA, Italy, France and Germany which consists of values from 1960 to 2009. The data for 
each country will be divided into two parts: one for training and the other for testing. In order 
to appreciate the method, the forecasts for H=1, 2, 3, 10 and 15 are done. After what, the 
Cameroonian electricity consumption from 2012 to 2035 is forecasted using the newly 
proposed method.  Figure 1 below shows some data used: 
 

 
Figure 1. Examples of data used 

 
 As shown by the figure, most of the time series contain a trend pattern. Therefore, the time 
series are firstly de-trended as recommended by the MISMO strategy using the Mann Kendall 
test [3]. 
 The embedded value is chosen to one since values are collected annually. 
 
5. Results and Discussions  
 The newly proposed methodology was compared to the original MISMO_CV strategy 
using the Leave One out algorithm. The comparison was done using two statistical quantities, 
namely the Mean Absolute Percentage Error (MAPE) [16]: 
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And the Symmetric Mean Absolute Percentage Error (SMAPE) [16] 
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Then the MAPE and the SMAPE for each horizon are averaged to obtain a mean MAPE and 
SMAPE. The table below summarizes the results obtained 
 

Table 1. SMAPE and MAPE for the two strategies 
Country Germany USA Italy France South-

Africa Cameroon Brazil India China 

H
or

iz
on

 

1 

Smape 1 4.04 6.18 8.08 2.92 5.85 4.96 4.68 3.38 8.28 
Smape 2 4.01 6.19 8.33 3.77 5.92 6.27 5.15 3.69 7.60 
Mape 1 4.12 6.38 8.42 2.96 6.10 5.09 4.79 3.44 7.96 
Mape 2 4.09 6.38 8.69 3.84 6.03 6.45 5.28 3.76 7.32 

2 

Smape 1 4.42 3.87 6.17 1.80 8.42 1.48 3.88 7.12 11.55 
Smape 2 3.79 3.81 6.17 1.81 8.74 1.32 3.91 6.13 11.82 
Mape 1 4.58 3.99 6.45 1.82 8.85 1.48 4.00 7.45 12.32 
Mape 2 3.92 3.93 6.47 1.83 9.19 1.33 4.04 6.36 12.63 

3 

Smape 1 2.72 3.66 5.73 2.90 5.84 7.79 2.15 2.70 9.48 
Smape 2 2.09 3.97 5.26 2.41 5.58 8.60 2.29 2.33 9.85 
Mape 1 2.79 3.80 5.99 2.96 6.13 7.45 2.16 2.76 10.21 
Mape 2 2.05 4.12 5.47 2.46 5.84 8.17 2.29 2.37 10.63 

10 

Smape 1 3.25 5.10 5.45 3.83 2.74 21.29 4.82 5.65 8.94 
Smape 2 3.78 5.85 5.15 2.01 1.96 22.45 4.05 6.32 12.10 
Mape 1 3.34 5.27 5.76 3.98 2.74 19.20 4.73 5.41 8.42 
Mape 2 3.74 6.06 5.46 2.05 2.02 18.97 4.01 6.01 11.16 

15 

Smape 1 11.69 2.07 3.09 6.23 4.07 16.33 3.92 12.18 16.76 
Smape 2 8.38 3.43 2.15 7.80 4.67 16.80 6.57 16.31 11.29 
Mape 1 12.63 2.10 3.05 6.02 4.07 13.90 4.00 13.19 15.36 
Mape 2 8.89 2.53 3.14 7.46 4.81 14.43 6.78 18.10 11.93 

 
Smape1: stands for the SMAPE obtained by the proposed methodology 
Smape2: stands for the SMAPE obtained by the original MISMO_CV 
Mape1: stands for the MAPE obtained by the proposed methodology 
Mape2: stands for the MAPE obtained by the original MISMO_CV 
The values are in percentage 
The following table gives the average values for the different quantities and horizon then, and 
overall average is given: 
 

Table 2. Averaged values 
 

Average 
 

Horizon Total 
average 1 2 3 10 15 

Smape1 5.34 5.42 4.78 6.79 8.49 6.17 
Smape2 5.66 5.23 4.71 7.08 8.60 6.26 
Mape1 5.48 5.66 4.92 6.54 8.26 6.18 
Mape2 5.76 5.53 4.83 6.61 8.68 6.29 

 
 The figure below shows the plots of some predicted (using the newly proposed 
methodology) values together with the real values 
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Figure 2. Some forecasted values together with real values for horizon 15 

 
 From Table 2, it is seen that, the proposed methodology has the best overall average for 
horizons 10 and 15. Although the data set was not large enough, it is seen from Table 1 that, 
these methods can be trusted in forecasting annual electricity load consumption with very good 
precision. It is also seen from Table 1 that, the overall accuracy is best for the time series with 
larger datasets (USA, France, Germany, and Italy). This means that the more data we have, the 
more we are able to predict the future values. 
 
6. The Cameroonian consumption for horizon 2035 
 This part estimates the Cameroonian annual electricity consumption for horizon 2035 when 
the country aspires to become an emerging economy. An emerging economy needs to have 
sufficient electricity generation capacity to fuel industrialization and economic growth, as seen 
in the dataset of the World data bank (an average of 2,000 kWh/inhabitant). It is therefore 
supposed that in 2035, Cameroon aspires having a consumption of 2,000 kWh/inhabitant. 
Since the actual consumption is estimated at 287 kWh/inhabitant, the difference gives 1,713 
kWh/inhabitant. An annual increase of 71.4 kWh/inhabitant is therefore necessary in order to 
achieve this goal. 
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 The population growth from 2012 to 2035 is estimated using the newly proposed methodology. From the population forecast for 2035, the overall 
annual electricity demand is estimated by multiplying the population by the corresponding consumption per inhabitant. Thereafter, the production 
capacity of Cameroonian electric power plants in 2035 is estimated by dividing the amount of energy needed from 2012 to 2035 by 8760, i.e. number of 
hours per year.  
 

The table below summarizes this section: 
Table 3. Cameroonian electricity consumption forecast for 2035 

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 

Forecasted 
Population 20469928 20919142 21379879 21853241 22339764 22838417 23346399 23859998 24376981 24896433 25419651 25949313 

E  
(kWh/inhab) 359 431 503 575 647 719 791 863 935 1007 1079 1151 

E  (TWh) 7.35 9.02 10.76 12.57 14.46 16.43 18.47 20.60 22.70 25.08 27.43 29.87 

Year 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 

Forecasted 
Population 26489346 27041920 27607262 28183730 28769202 29360672 29955993 30554763 31156582 31759516 32361271 32960491 

E (kWh/hab) 1223 1295 1367 1439 1511 1583 1655 1727 1799 1871 1943 2015 

E (TWh) 32.40 35.02 37.74 40.56 43.48 46.48 49.58 52.77 56.06 59.42 62.88 66.42 

Where: 
  E: energy 
  kWh/inhab: kilowatthour per inhabitant 
  TWh: Terawatthour 
From Table 3, it is seen that the Cameroonian electricity consumption will rise from 7.35 TWh in 2012 to 66.42 TWh in 2035. This corresponds to a total 
increase in electricity consumption of 59.07 TWh. To produce this amount of energy, Cameroon will need a generation capacity of 6.7 GW in 2035. 
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7.  Conclusion 
 In most cases, electricity demand forecasting is done with the method of scenario building. 
In this paper various methods for long-, medium- and short-term consumption forecasting are 
reviewed, in addition to the latter. A new approach for forecasting is developed based on the 
MISMO_CV strategy. This method uses weighted averages to improve on the level of 
precision of the method of the nearest neighbors. Results obtained using the new approach are 
compared to those obtained from the conventional scenario building method. The new 
approach delivers more precise results.  
 Finally, the new method is applied specifically to the case of Cameroon, which aspires to 
become an emerging economy by the year 2035. The results reveal that Cameroon shall need to 
possess an electricity production capacity of 5,660 MW in 2030 and 6,712 MW in the year 
2035, i.e. an average capacity increase of about 300 megawatt per annum. Official figures from 
Cameroon’s Ministry of Energy and Water Resources show however that the electric power 
demand in 2030 shall be between 1,665 MW and 5,612 MW, depending on the projects 
realized. The maximum demand here is about 50 MW less than the figure obtained from the 
new method for that same year. The ministry has not published any figure for the electricity 
demand in the year 2035. Given the higher level of precision of the new method, it is evident 
that the actual demand in the year 2035 shall be about 6.7gigawatt, whereas a linear 
extrapolation of the ministry’s figures will deliver a much smaller figure.  
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